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Abstract

Given a random pair of images, a universal style trans-

fer method extracts the feel from a reference image to syn-

thesize an output based on the look of a content image.

Recent algorithms based on second-order statistics, how-

ever, are either computationally expensive or prone to gen-

erate artifacts due to the trade-off between image qual-

ity and run-time performance. In this work, we present

an approach for universal style transfer that learns the

transformation matrix in a data-driven fashion. Our al-

gorithm is efficient yet flexible to transfer different levels

of styles with the same auto-encoder network. It also pro-

duces stable video style transfer results due to the preser-

vation of the content affinity. In addition, we propose a

linear propagation module to enable a feed-forward net-

work for photo-realistic style transfer. We demonstrate

the effectiveness of our approach on three tasks: artistic

style, photo-realistic and video style transfer, with com-

parisons to state-of-the-art methods. The project web-

site can be found at https://sites.google.com/

view/linear-style-transfer-cvpr19.

1. Introduction

A style transfer method takes a content image and a style

image as inputs to synthesize an image with the look from

the former and feel from the latter. In recent years, nu-

merous style transfer methods have been developed. The

method by Gatys et al. [8] iteratively minimizes content and

style reconstruction losses between the target image and in-

put images. To reduce the computational cost, a few ap-

proaches have since been developed based on feed-forward

networks [13, 30]. However, these approaches do not gen-

eralize to universal style images with one single network.

For universal style transfer, a number of methods ex-

plore the second order statistical transformation from ref-

erence image onto content image via a linear multiplica-

tion between content image features and a transformation

matrix [12, 18, 19]. The AdaIn method [12] matches the

⇤equal contribution

(a) artistic (b) photo-realistic (c) video

Figure 1. Applications of the proposed algorithm. (a) Artistic style

transfer. (b) Photo-realistic style transfer. (c) Video style transfer

(click on the image to see animations using Adobe Reader). The

style thumbnails are shown in lower right corners.

means and variances of deep features between content and

style images. The WCT [18] algorithm further exploits the

feature covariance matrix instead of the variance, by em-

bedding both whitening and coloring processes within a

pre-trained encoder-decoder module. However, these ap-

proaches directly compute these matrices from deep fea-

ture vectors. As such, these methods do not present gen-

eral solutions to this problem. Furthermore, such matrix-

computation-based methods can be computationally expen-

sive due to the high dimensionality of deep feature vectors.

In this work, we propose a learnable linear transforma-

tion matrix which is conditioned on an arbitrary pair of con-

tent and style images. We derive a linear transform and

draw connections to the reconstruction objective (squared

Frobenius norm of the difference between Gram matrices)

widely used in style transfer [8, 13, 30, 12]. We learn the

transformation matrix with two light-weighted CNNs, and

show that this approach is significantly faster than comput-

ing the transforms from features (e.g., [18, 19]). Specifi-

cally, the learning-based transformation matrix can be con-

trolled by different levels of style losses and is computation-

ally efficient. In addition, we present a linear propagation

module [22] that can correct distortions and artifacts in con-

tours and textures, which are commonly observed in style
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transfer results. We then integrate this module into our style

transfer network to generate undistorted results for photo-

realistic style transfer.

The contributions of this work are summarized as fol-

lows. First, we propose an efficient (about 140 fps) and

flexible style transfer model that preserves content affinity

during the style transfer process. Second, we show that the

proposed method can be flexibly applied to different tasks,

including but not limited to artistic style and video style

transfer by slightly modifying the network architecture (see

Fig. 1(a) and (c)). Third, we develop a linear propagation

module that can be equipped with a feed-forward neural net-

work to generate high-quality undistorted results for photo-

realistic style transfer (see Fig. 1(b)).

2. Related Work

Deep learning based style transfer has been intensively

studied [15, 32, 33, 9, 31, 17, 1, 7] to match statistical infor-

mation between content and style images based on features

extracted from pre-trained convolutional neural networks.

One main drawback with the method by Gatys et al. [8] is

the heavy computational cost due to the iterative optimiza-

tion process. Fast feed-forward approaches [13, 30, 16] ad-

dress this issue by training feed-forward neural networks

that minimize the same feature reconstruction loss and style

reconstruction loss as [8]. However, each feed-forward net-

work is trained to transfer one fixed style. Dumoulin et

al. [4] introduce an instance normalization layer that allows

32 styles to be represented by one model, and Li et al. [17]

encode 1,000 styles by using a binary selection unit for im-

age synthesis. Nevertheless these models are not able to

transfer an arbitrary style onto a content image.

Universal style transfer. Several methods [10, 12, 27,

34] have been proposed to match mean and variance of

content and style feature vectors to transfer an arbitrary

style onto a content image. However, these methods do

not model the covariance of features and may not synthe-

size images well. Li et al. [18] resolve this problem by

applying both whitening and coloring transforms with pre-

trained image reconstruction auto-encoders. However, this

approach is computationally expensive due to the need of

large matrix decompositions at multiple levels. Shen et

al.[6] propose to train a meta network that generates a 14

layer network for each content and style image pair. How-

ever, it requires extra memory for each content/style pair

and does not explicitly model the second-order image statis-

tics.

Photo-realistic style transfer. Photo-realistic style trans-

fer methods [19, 23] aim to synthesize images without dis-

torting geometric structures. Luan et al. [23] introduce a

local-affinity based energy term as an extra loss function of

the model by Gatys et al. [8], where stylized results are ob-

transformation
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Figure 2. Overview of the proposed method. Our model contains a

pre-trained encoder and a decoder, a loss module, a transformation

module with the compress/uncompress blocks. Only the transfor-

mation module, as well as the pair of compress and uncompress

blocks are learnable, while all the others are fixed (black). We

use orange arrows to denote the losses and “T” to denote the point

where a style is transformed (see Section 3.2 for technical details).

tained through time-consuming optimization. Li et al. [19]

replace the computationally expensive transforms with a

feed-forward network and solve the optimization problem

with a closed-form solution to synthesize images. In this

work, we introduce an efficient linear propagation module

for photo-realistic style transfer. The whole pipeline can

be implemented by a single feed-forward network, which is

faster and GPU-friendly compared to existing methods.

3. Style Transfer by Linear Transformation

The proposed model contains two feed-forward net-

works, a symmetric encoder-decoder image reconstruction

module and a transformation learning module, as shown in

Fig. 2. The encoder-decoder is trained to reconstruct any

input image faithfully. It is then fixed and serves as a re-

construction network in the remaining training procedures.

Instead of computing the transformation of the 2nd moment

statistic in the intermediate layers of the auto-encoder, as

being conducted in many previous work [18, 19, 29], we

make the transformation matrix learnable by outputting it

via a light-weighted CNN block. To learn the transfor-

mation via a feed-forward network, we need some super-

vision signal. We use a pre-trained VGG-19 network to

compute style losses at multiple levels and one content loss

in a way similar to the prior work [13, 12]. The proposed

feed-forward convolutional neural network, which is able to

transfer arbitrary styles efficiently at 140 fps, is much faster

than the computation-based methods.

3.1. Learning Universal Style Transfer

We denote the feature map of the top-most encoder layer

as F (I) 2 RN⇥C , where I is an input image, N is the num-

ber of pixels, and C is the number of channels. For presen-

tation clarity, the feature maps of a content and style image

pair are denoted as row vectors Fc and Fs. We formulate

the image style transfer problem as a linear transformation

between the content feature Fc and learned matrix T , with

the transformed feature vector Fd. We use φs to denote a
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“virtual” feature map that provides the desired style. For

several style transfer methods based on matrix transforma-

tion [18, 12], φs = Fs. In this work, φs accommodates mul-

tiple forms based on different configurations of style losses.

Thus, φs can be described as a nonlinear mapping of Fs as

φs = φ(Fs). We denote F̄ as the vectorized feature map F

with zero mean.

Our goal is to learn the optimal Fd such that the statistic

of the transformed feature from the encoder matches that of

the desired style , which is determined by the style losses

in the loss network. It can be expressed as minimizing the

difference of centered covariance between Fd and φs:

F ⇤

d
= argminFd

1

NC
kF̄dF̄d

>
� φ̄sφ̄s

>
k2
F

(1)

s.t.F̄d = T F̄c.

By substituting the linear constraint into Eq. (1), the minima

is obtained when

T F̄cF̄c

>
T> = φ̄sφ̄s

>
. (2)

The centered covariance of F̄c is cov (Fc) = F̄cF̄c

>
=

VcDcV
>
c , and the corresponding singular value decompo-

sition (SVD) is cov (φs) = φ̄sφ̄s

>
= VsDsV

>
s . It is easy

to show that

T =
⇣

VsD
1

2

s V
>

s

⌘

U
⇣

VcD
�

1

2

c V >

c

⌘

, (3)

is one set of solutions to Eq. (2) where U 2 RC⇥C is a C-

dimensional orthogonal group. In other words, T is solely

determined by the covariance of the content and style im-

age feature vectors. Given T , the transformed feature is ob-

tained by F̄d + mean(Fs), which simultaneously aligns to

the mean and the covariance statistics of the target style, and

thus describes the style reconstruction used by most exist-

ing approaches. In the following, we discuss how to select

a proper model for learning T .

3.2. Learning Transformation T

Given that T is only conditioned on the content and style

images, one feasible approach is to use a network that takes

both images to directly output a C ⇥ C matrix. According

to Eq. (3), the terms of content and style are decoupled, so

we use two independent CNNs for the content/style inputs.

The formulation in Eq. (2) suggests three input options

to the CNNs: (i) images (c and s), (ii) feature maps (Fc and

Fs), and (iii) covariance matrices (cov (Fc) and cov (Fs)).
In this work, we use the third option where each CNN takes

the covariance of feature vectors and outputs a C⇥C inter-

mediate matrix. These two matrices are then multiplied to

formulate the T as shown in Fig. 2. We explain the design

options in the following paragraph.

First, we hope the module that outputs T should be flex-

ibly adapted to both a full content image, and an arbitrarily-

shaped region, e.g., for stylization within a segmentation

(a) Content (b) Style (c) WCT (d) AdaIn (e) Ours

Figure 3. Style transfer using a shallow auto-encoder described in

Section 3.3. Our method faithfully captures styles even when a

shallow auto-encoder is used.

mask, as in Section 5. This property does not hold when the

model input is the image or feature map. For example, it

is easy to show that T = φ̄sUF̄c

�1
is one of the solutions

for Eq. (2), which is based on feature inputs. However, it

also requires that the content and style features inputing to

the transformation module have the same dimensions. Sec-

ond, since T describes the style transformation, it focus on

describing the global statistics shift, rather than any image

spatial information. Amazingly, using the covariance ma-

trices as the inputs addresses both challenges. The ablation

study in Section 5 shows that using a covariance matrix as

model input leads to better stylized images (see Fig. 5).

3.3. Learning Video Style Transfer

We show that since the transformation is learnable, the

model flexibly accommodates numerous combinations of

the auto-encoder and the loss modules. Here we show

a practical solution for video style transfer. By using a

shallower auto-encoder, the network can generate stabilized

transferred videos as the proposed linear transformation

method is able to preserve affinity across frames. Instead

of enforcing temporal consistency through any cross-frame

alignment strategy, e.g., optical flow warping [11], we en-

sure a transferred video to have similar affinity as the con-

tent video. Although the same principle could be applied

to both WCT and Adain methods, it is difficult to preserve

affinity as these algorithms are developed based on rela-

tively deep auto-encoders (see Fig. 10) and perform poorly

when shallower auto-encoders are used (see Fig. 3).

Affinity describes the pairwise relation of pixels, fea-

tures, or other image elements. Preserving the affinity of

content image/video, which indicates that the dense pair-

wise relations among pixels in the content image are pre-

served well in the stylized result, is a key solution for gener-

ating stabilized video. In principle, style transfer and affin-

ity preservation belong to different forms of matrix multipli-

cations: the former is pre-multiplication while the latter is

post-multiplication to the feature vector (see Eq. (1)). Given

Eq. (1) and the normalized affinity for a vectorized feature

F 2 RN⇥C :

aff (F ) = F̄>cov (F )
�1

F̄ (4)

It is straightforward to show that the affinities of Fc and
Fd are equal to each other by the following equations:
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Figure 4. Photo-realistic style transfer with the linear propagation

module. We first fix pretrained auto-encoder and train a SPN mod-

ule on reconstructed images to minimize distortions caused by

the auto-encoder using the whitened content image as guidance.

Given a test image, we directly apply it on style transferred image.

F̄d

>
cov (φs)

�1
F̄d = F̄d

>
⇣

T F̄cF̄c

>
T

>

⌘

�1

F̄d (5)

= F̄c

>
T

>

⇣

T F̄cF̄c

>
T

>

⌘

�1

T F̄c = F̄c

>
cov (Fc)

�1
F̄c.

Thus, the proposed linear transformation method is capable

of preserving the feature affinity of the content image.

Although the affinity is preserved via the proposed lin-

ear transformation model, there are three more factors can

cause temporal inconsistency: (i) the non-linear layers in

the decoder; (ii) the trace tr
⇣

φ̄sφ̄s

>
⌘

, determined by how

the loss is enforced (see similar analysis in [11]), that af-

fects Fd; and (iii) the spatial resolution of the top layer that

determines the scale at which the affinity is preserved. In

this work, we use a shallower model up to the relu3 1 layer

of the VGG-19 model to better preserve affinity. This shal-

lower model can still express rich stylization when a rela-

tively deep style loss network (e.g., using up to relu4 1 in

the loss module) is used. We show that the stylized results

contain fewer distortions and are more stable than existing

methods [8, 13] that are not based on the formulation in

Eq. (1) (see Fig. 8 and 10). Note that for a shallower en-

coder, the corresponding Fc (e.g., relu2 1) is not expressive

enough to transfer abstract styles.

3.4. Learning Photo-realistic Style Transfer

Photo-realistic style transfer is another important appli-

cation which aims to synthesize images without structural

distortions. Although using a shallower network described

in Section 3.3 can generate results that better align with

the content images, the stylized results still contain signifi-

cant artifacts due to the distortion caused by the deep auto-

encoder. To address this issue, we exploit the spatial propa-

gation network (SPN) proposed by Liu et al. [22]. The SPN

is a generic framework that learns to model pixel pairwise

relations. We insert a SPN as a “anti-distortion filter” on top

of the auto-encoder, while the coefficients of the filter are

learned through a CNN guidance network in a data-driven

manner (See [22] for more details). Specifically, we train

a SPN using the reconstructed and content images since no

photo-realistic stylized ground truth is available. The con-

tent image also serves as the input to the guidance network.

Then we apply the SPN on the stylized image to minimize

distortions caused by the auto-encoder. However, affinity

learned directly from the original content image will include

color information and affect the stylized image. Instead of

using the original content image as guidance, we use the

whitened content image to remove color information and

encode only affinity information. Fig. 4 illustrates the train-

ing and testing process of our method.

4. Model Analysis

In this section, we discuss the advantages of the linear

transformation method for style transfer in terms of run-

time efficiency and model size. The analysis of the propa-

gation module for photo-realistic style transfer is presented

in Section 5.

Run-time efficiency. Our method performs efficiently (see

Table 1) since it does not involve time-consuming matrix

computation, e.g., SVD in WCT [18]. On the other hand,

the AdaIn [12] method performs efficiently as only first-

order statistics (i.e., variance) are involved but at the ex-

pense of image quality. We show that while the AdaIn

method can generate favorable results with a deeper auto-

encoder, the proposed model performs well since the co-

variance shift is accurately modeled with a much shallower

auto-encoder (which brings further speedup).

Model size. Our model can transfer rich styles using a sin-

gle auto-encoder, in contrast to the cascade networks in the

WCT method [18], thanks to the learnable transformation.

As analyzed in [8], Gram matrices of features from differ-

ent layers capture different details for style transfer, e.g.,

features from lower layers usually capture color and tex-

tures while those based on features from higher layers cap-

ture common patterns. Since the transformation in the WCT

method is not learnable, it has to present multi-level styles

by cascading several auto-encoders with different layers at

the expense of additional computational loads. In contrast,

a single transformation T in our model can express rich

styles by using a combination of multiple style reconstruc-

tion losses in the loss module, e.g., via {relu1 1, relu1 2,

relu1 3, relu1 4} in a way similar to [12, 13] as shown in

Fig. 6. Thus, the proposed method achieves the same goal

without additional computational overhead during the infer-

ence stage.

5. Experimental Results

We discuss the experimental settings and present abla-

tion studies to understand how the main modules of the pro-

posed algorithm contribute. We evaluate the proposed algo-

rithm against the state-of-the-art methods on artistic, video

and photo-realistic style transfer.
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(a) Content (b) Style (c) Image CNN (d) Feature CNN (e) Covariance CNN

Figure 5. Stylized images using different model inputs. The CNN

in (c) takes content/style images as input, the CNN in (d) takes

content/style features as input, and the CNN in (e) takes con-

tent/style features as input but feeds the covariance matrix of en-

coded features into the final fully connected layer (see Fig. 2 and

Section 5 for details).

5.1. Experimental Settings

Encoder-decoder. Our method contains an encoder with

the first few layers from the VGG-19 model [28] pre-trained

on the ImageNet dataset [3] and a symmetric decoder.

We train the decoder on the MS-COCO dataset [21] from

scratch to reconstruct images. This module is then fixed

throughout the remaining network training procedure. We

show various design options of the encoder-decoder with

varying model depth for different applications.

Transformation module. Our transformation module con-

sists of two CNNs where each takes either content or style

features as input and outputs a transformation matrix, re-

spectively. These two transformation matrices are then mul-

tiplied to generate the final transformation matrix T . We

compute the transferred feature vector Fd by multiplying a

content feature vector Fc with T , and feed Fd into the de-

coder to generate the stylized image. Within each CNN in

the transformation module, as discussed in Section 3, we

compute the transformation matrix from feature covariance

to handle images of any size during inference. In order to

learn a nonlinear mapping from feature covariance to the

transformation matrix, a number of fully-connected layers

are used. However, this leads to a large memory require-

ment and model size since the covariance matrix usually has

high dimensions, i.e., 512 ⇥ 512 in relu4 1. Thus, we fac-

torize the model by first encoding the input features to the

reduced dimensions (e.g., 512 ! 32) via three consecutive

convolutional units (denoted as “CONVs” in Fig. 2), where

each is equipped with a 3⇥ 3 conv and a relu layer. The co-

variance matrix of the encoded feature is then fed into one

fc unit to compute the transformation matrix. We further

use a pair of convolutional layers to “compress” the con-

tent features, and “uncompress” the transformed features to

the corresponding dimensions. Overall, our transformation

module is compact, efficient and can be easily trained for

any combination of styles.

Dataset and training settings. We use the MS-COCO

dataset [21] as our content images and the WikiArt

database [24] as our styles. Both datasets contain roughly

80,000 images. We keep the image ratio and re-scale the

smaller dimension of each training image to 300 pixels. We

then apply patch-based training by randomly cropping a re-

gion of 256⇥256 pixels from it as one training sample with

randomly flip at the probability of 0.5. During the inference

stage, our model is able to handle any input size for both

content and style images, as discussed in Section 3. We

train our network using the Adam solver [14] with a learn-

ing rate of 10�4 and a batch size of 8 for 105 iterations. The

training roughly takes 5 hours on a single Titan XP GPU for

each model in our Pytorch [25] implementation.

The source code, trained models and real-time demos

will be made available to the public.

5.2. Ablation Studies for Transformation Modules

One single network? As discussed in Section 3.1, using

two separate CNNs for learning T is more suitable than

sharing a single CNN for content and style images. To ver-

ify this, we train a single CNN to learn the transformation

matrix, which takes both content and style images as in-

puts. However, this model does not converge during train-

ing, which is consistent with our discussion.

Inputs to the transformation module. We discuss in Sec-

tion 3 that the formulation in Eq. (2) suggests three input op-

tions to the CNNs in the transformation module. We imple-

ment three models with the same architecture except for the

image CNN, which uses five convolutional units instead of

three. Note that neither image nor feature CNN uses matrix

multiplication between the “CONVs” and “fc” modules, as

shown in Fig. 2. We show stylized images in Fig. 5. In

general, the image CNN does not generate faithful stylized

results, e.g., the patches in the second row of Fig. 5(c) still

retain color pixels from the original content image. On the

other hand, the proposed covariance CNN generates results

more similar to the styles (e.g., abstract lines in the close-

ups of Fig. 5(e)) than the other methods.

Combining multi-level style losses. Features from dif-

ferent layers capture different style details. We show our

algorithm allows a flexible combination of multiple lev-

els of styles within a single transformation matrix T by

making use of different style reconstruction losses in the

loss module. We apply two types of auto-encoders – en-

coders up to relu3 1 and relu4 1 in the VGG-19 model,

and use different style reconstruction losses – single loss

layer on relu1 1, relu2 1 or relu3 1, and multiple loss lay-

ers {relu1 1, · · · , relu4 1}, as shown in Fig. 6. The results

show that both transferring content features of lower layers

(relu3 1 in row (i)) and using one single style reconstruc-

tion loss from lower layers (relu1 1, relu2 1 in column (a)
and (b)) lead to more photo-realistic visual effects. On the

other hand, more stylized images can be generated using

the style reconstruction loss from higher layers (e.g., Fig. 6
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Figure 6. Our model can flexibly combine style losses at different levels. We use the same style loss (shown in the last row) to train models

in each column. Row 1 and 2 show stylized images by transferring content features from relu3 1 and relu4 1, respectively. The last column

shows results by one single layer WCT (relu3 1 on the top and relu4 1 at the bottom).

Image Size 256 512 1024

Ulyanov et al. [30] 0.013 0.028 0.092

Gatys et al. [9] 16.51 59.45 N/A

Huang et al. [12] 0.019 0.071 N/A

Li et al. [18] 0.922 1.080 N/A

Ours (relu3 1) 0.007 0.025 0.100

Ours (relu4 1) 0.010 0.036 0.146

Table 1. Runtime performance. “N/A” indicates the input cannot

fit 12GB GPU. Runtime is measured in seconds using the source

code on a single Titan XP GPU. For WCT [18], we use the version

that cascades four different encoder-decoder modules because of

its best performance and faster speed.

column (c) and (d)). Specifically, the auto-encoder up to

relu3 1 (row (i) in Fig. 6) generates more undistorted re-

sults for all types of style losses than using auto-encoder up

to relu4 1 (row (ii) of Fig. 6).

We also show stylized results by the single-encoder

WCT in column (e) of Fig. 6 (relu3 1 on top and relu4 1

on bottom), where neither model performs well (e.g., nei-

ther color nor texture is well aligned, and edges are blurry).

In contrast, our method generates visually pleasing results

for richer styles, as shown in column (d) in Fig. 6, where no

cascade modules are required. Due to the flexibility of our

algorithm, we are able to choose different settings for dif-

ferent tasks without any computational overheads. Specifi-

cally, we transfer content image features from relu4 1 layer

for artistic style transfer. For video style transfer, we trans-

fer content frame features from relu3 1 to minimize distor-

tions. For all tasks, we compute style reconstruction losses

using features from relu1 1, relu2 1, relu3 1 and relu4 1 to

capture different style details.

5.3. Artistic Style Transfer

We evaluate the proposed algorithm with three state-

of-the-art methods for artistic style transfer: optimization

based method [8], fast feed-forward network [13] and fea-

ture transformation based approaches [12, 18].

Qualitative results. We present stylized results of the eval-

uated methods in Fig. 7 and more results in the appendix.

The proposed algorithm performs favorably against the

state-of-the-art methods. Although the optimization based

method [8] allows universal style transfer, it is computation-

ally expensive due to the adopted iterative optimization pro-

cess (see Table 1). The fast feed-forward methods [13] per-

forms more efficiently than the optimization based scheme,

but it requires training one network for each style and ad-

justing style weights for best performance.

The AdaIn method presents an efficient solution for uni-

versal style transfer, but it generates less appealing results

(e.g., row 2, 3 in Fig. 7) as only the first-order image statis-

tics are used. The WCT method performs well (see column

5 in Fig 7) by modeling the second-order image statistics

but at the expense of runtime (see Table 1). In contrast,

our method learns the covariance-based transformation and

performs favorably for arbitrary style (see the last column

in Fig 7) and efficiently (see Table 1). Besides, it can be

applied to other applications flexibly.

User study. We conduct a user study to evaluate the pro-

posed algorithm against the state-of-the-art style transfer

methods [8, 31, 12, 18]. We use 6 content and 40 style

images to synthesize 240 stylized results, and show 15 ran-

domly chosen content and style combinations to each sub-

ject. For each combination, we present 5 synthesized im-

ages by each method mentioned above in a random order

and ask the subject to select the most visually pleasant one.

We collect 540 votes from 36 users and present the percent-

age of votes for each method in Fig. 9(a). Overall, the pro-

posed algorithm is favored among all evaluated methods.

Efficiency. Table 1 shows the runtime performance of all

evaluated algorithms at three input image scales: 256⇥256,

512⇥ 512, 1024⇥ 1024. All methods listed in this table al-

low universal style transfer except the algorithm by Ulyanov

et al. [30] (row 1). Even the slower variant of the pro-

posed algorithm (trained to transfer content features from

relu4 1) runs at 100 FPS and 27 FPS for 256 ⇥ 256 and

512 ⇥ 512 images, thereby making real-time style trans-

63814



Content Style Gatys [8] Huang [12] Li [18] Sheng [27] Ours

Figure 7. Stylized images by the evaluated methods. Our model is trained to transfer content features from relu4 1 with style losses

computed on relu1 1, relu2 1, relu3 1, relu4 1 layer of VGG 19. All content images, as well as style images have never been seen by our

model during the training process. More examples are available in the appendix.
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Figure 8. Video style transfer results. The first row and second row

show the first frame and fifth frame with corresponding transferred

frames by evaluated methods, and the last row shows the heat map

of the difference between these two frames.
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(a) Stylization effects on images (b) Stability on videos

Figure 9. User study of stylization effects on images and stability

on videos.

fer feasible. Our model performs more efficiently than the

optimization-based method [8] (by three orders of magni-

tude) as well as WCT [18] (by two orders of magnitude)

and comparably to the fast feed-forward schemes [30, 12].

5.4. Video Style Transfer
Video style transfer is conducted between a content

video and a style image in a frame-wise manner by using

a shallower auto-encoder up to the relu3 1 layer. This pro-

cess can be more efficient than image based style transfer,

since the transformation output from the style branch can

be computed only once during initialization (see Fig. 2),

and directly applied to the remaining frames. Since our

approach can preserve the affinity of the content images,

which is naturally consistent and stable, the stylized videos

are also visually stable without the need of any auxiliary

techniques such as optical flow warping [11]. Fig. 8 shows

the direct frame-based style transfer results by the proposed

model compared with existing methods [8, 13, 18]. To visu-

alize stability of synthesized video clip, we show heat maps

of differences between two frames (i.e., row 3). The differ-

ences by the proposed algorithm are closest to that of the

original frames, which suggest that our algorithm is able to

preserve content affinity during style transfer. To further

evaluate the stability of our algorithm in video style trans-

fer, we conduct a user study with 5 video clips synthesized

frame-wise by our algorithm and 4 state-of-the-art meth-

ods [8, 30, 12, 18]. For each group of videos, we ask each

subject to select the most stable video clip. We collect 106

votes from 27 subjects and present the preference of each

method in Fig. 9(b). Overall, the proposed algorithm per-

forms well against the other methods, which indicates our

approach is able to preserve affinity during style transfer.

5.5. Photo-realistic Style Transfer

As discussed in Section 3, to achieve photo-realistic style

transfer, we combine our linear style transfer network with
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Content Style Gatys [8] Johnson [13] Li [18] Huang [12] Ours

Figure 10. Affinity preserving comparison between our algorithm with [8, 13, 18, 12]. Our result has a more photo-realistic feel with the

content images. It faithfully preserves the contour of the dog (row 1) and the shadow of the face (row 2) in the stylized images.

ours + SPN (0.22s)Style Luan [21] (186.52s) Li [18] (2.95s) ours (0.17s)Content

Figure 11. Photo-realistic style transfer results. The spatial mask is displayed at the right bottom corner of each content and style image. “+SPN” in the

last column means results filtered by the SPN module after stylization. Inference time are tested and averaged over 60 512× 256 images.

a SPN [22] to minimize distortions caused by the auto-

encoder. The SPN is similar as Liu et al. [22], which con-

tains a CNN with 8 convolution layers that outputs all local

weights that formulate a pixel-affinity matrix, and a linear

propagation layer that outputs the filtered images. At the

training stage, we fix the style transfer encoder-decoder and

feed a reconstruction image produced by the auto-encoder

into the propagation module as the input. The propagation

module outputs a refined reconstruction image under the

guidance of the corresponding whitened image. We then

compute the Euclidean loss between the refined and origi-

nal images. Note that no style transfer process is involved

during the training stage.

At the inference stage, we first transfer the correspond-

ing regions with respect to a pre-defined mask for every

content/style pairs. This is carried out by separating the

masked regions only within the transformation module (see

Fig. 2) and combining the transformed features of differ-

ent regions, according to the mask. Since the inputs to the

transformation module are covariance matrices, our style

transfer network can take arbitrary masks. We apply pre-

trained propagation module directly onto the transferred im-

age while using its whitened content image as the input to

the guidance network. We show the qualitative comparison

with recent works [23, 19] in Fig. 11 along with their in-

ference time tested on 512 ⇥ 256 images. As shown in the

squared regions, thanks to our data-driven transformation

and propagation module, the proposed approach preserves

photo-realistic details better (e.g., the texture of the sky or

bottle) in content images when transferring color from style

images. Furthermore, our end-to-end approach is two or-

ders of magnitude faster than [23] and one order of magni-

tude faster than [19].

6. Conclusions
In this work, we propose a framework for analyzing uni-

versal style transfer methods and present an effective as

well as efficient algorithm by learning linear transforma-

tions. In addition, we propose a linear propagation module

to enable a feed-forward network for photo-realistic style

transfer. Our algorithm is computationally efficient, flexi-

ble for numerous tasks, and effective for stylizing images

and videos. Experimental results demonstrate that the pro-

posed algorithm performs favorably against the state-of-the-

art methods on image and video style transfer.
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