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Abstract

Channel pruning can significantly accelerate and com-
press deep neural networks. Many channel pruning works
utilize structured sparsity regularization to zero out all
the weights in some channels and automatically obtain
structure-sparse network in training stage. However, these
methods apply structured sparsity regularization on each
layer separately where the correlations between consecu-
tive layers are omitted. In this paper, we first combine
one out-channel in current layer and the corresponding in-
channel in next layer as a regularization group, namely out-
in-channel. Our proposed Out-In-Channel Sparsity Regu-
larization (OICSR) considers correlations between succes-
sive layers to further retain predictive power of the compact
network. Training with OICSR thoroughly transfers dis-
criminative features into a fraction of out-in-channels. Cor-
respondingly, OICSR measures channel importance based
on statistics computed from two consecutive layers, not in-
dividual layer. Finally, a global greedy pruning algorithm
is designed to remove redundant out-in-channels in an iter-
ative way. Our method is comprehensively evaluated with
various CNN architectures including CifarNet, AlexNet,
ResNet, DenseNet and PreActSeNet on CIFAR-10, CIFAR-
100 and ImageNet-1K datasets. Notably, on ImageNet-1K,
we reduce 37.2% FLOPs on ResNet-50 while outperform-
ing the original model by 0.22% top-1 accuracy.

1. Introduction

Convolutional neural networks (CNNs) have achieved
significant successes in visual tasks, including image clas-
sification [10, 21, 33], object detection [5, 31], seman-
tic segmentation [2, 25], etc. However, large CNNs suf-
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fer from massive computational and storage overhead. For
instance, deep residual network ResNet-50 [10] takes up
about 190MB storage space, and needs more than 4 bil-
lion float point operations (FLOPs) to classify a single im-
age. High demand for computation and storage resources
severely hinders the deployment of large-scale CNNss in re-
source constrained devices such as mobile devices, wear-
able devices and Internet of Things (IoT) equipment.

Pruning [9, 34] is an important family of methods to slim
neural network by removing redundant connections, chan-
nels and layers. Connection pruning gains high compres-
sion ratio but leads to non-structured sparsity of CNNs [34].
The practical acceleration of non-structured sparsity is lim-
ited due to irregular memory access. Therefore, structured
sparsity pruning [34, 36] becomes growing popular.

Regularization-based channel pruning [24, 34] is a pop-
ular direction of structured sparsity pruning. These works
introduce structured sparsity regularization (structured reg-
ularization) into optimization objective of model training.
Training with structured regularization transfers important
features into a small quantity of channels and automatically
obtains structure-sparse model. Pruning structure-sparse
models keeps more features/accuracy compared with di-
rectly pruning non-sparse models [34]. For channel-level
pruning, existing regularization-based works apply struc-
tured regularization on each layer separately, and only en-
force channel-level sparsity in out-channels. However, the
corresponding in-channels in next layer are neglected and
non-sparse. We call them as the separated structured regu-
larization. Pruning one out-channel in current layer results
in a dummy zero output feature map that in turn prunes
a corresponding in-channel in next layer together. With-
out structure sparsity, useful features in in-channels of next
layer are falsely discarded, which severely impair the repre-
sentational capacity of the network.

In this paper, we propose a novel structured regulariza-
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Figure 1: Correlations between two consecutive layers and the definition of out-in-channel. out-channel! is the weight
vector of i*" out-channel of W'. X' is the input of I layer and X} is the output of X! multiplied/convoluted by out-
channell. Next, X'*! is multiplied/convoluted by in-channel ™! to obtain the input of next layer. The corresponding
channels (marked by the same color) out-channel! and z'n—chcmnelfr1 of two consecutive layers tend to work cooperatively
and are simultaneously pruned/saved. Therefore, out-channell and z'n-chcmnelfrl are regarded as one regularization group
(out-in-channelé’lﬂ) and are regularized together. Above @’ denotes concatenation of out-channel! and in—channelﬁ“.

tion form, namely Out-In-Channel Sparsity Regularization
(OICSR), to learn more compact deep neural networks. Dif-
ferent from separated structured regularization, correlations
between two consecutive layers are taken into account for
channel pruning. An out-channel in current layer and the
corresponding in-channel in next layer are combined to be
a regularization group, namely out-in-channel. In training
stage, features in one out-in-channel are simultaneously re-
distributed by OICSR. After training, features in redundant
out-in-channels are thoroughly transferred to automatically
selected important out-in-channels. Specially, the chan-
nel importance is measured based on statistics of two con-
secutive layers, not individual layer. To minimize accu-
racy loss induced by incorrect channel pruning, a greedy
algorithm is proposed to globally prune redundant out-in-
channels in an iterative way. As a result, pruning redun-
dant out-in-channels induces negligible accuracy loss and it
can be greatly compensated by the fine-tuning procedure.
Our method achieves higher speedup ratio and compression
compared with existing regularization-based methods. For
ResNet-18 [10] on CIFAR-10 [20] dataset, OICSR achieves
7.4x speedup and 11X parameters compression with tiny
(0.19%) top-1 accuracy drop.

The key advantages and major contributions of this paper
can be summarized as follows:

e We propose a novel structured regularization form,
namely OICSR, which takes account correlations be-
tween two consecutive layers to further retain predic-
tive power of the compact network.

e To minimize accuracy loss induced by incorrect chan-
nel pruning, OICSR measures channel importance
based on statistics computed from two consecutive lay-
ers. A global greedy pruning algorithm is proposed to

remove out-in-channels in an iterative way.

e To the best of our knowledge, this paper is the first
attempt to present the evaluation of regularization-
based channel pruning methods for very deep neural
networks (ResNet-50 in this paper) on ImageNet [6]
dataset.

2. Related Work

Obtaining compact deep neural networks for speeding up
inference and reducing storage overhead has been a long-
studied project in both academia and industry.

Recently, much attention has been focused on struc-
tured sparsity pruning to reduce network complexity. He
et al. [13] pruned channels by a LASSO regression based
channel selection and least square reconstruction. Channel
pruning was regarded as an optimization problem by Luo
et al. [26] and redundant channels were pruned by statis-
tics of its next layer. Yu et al. [36] conducted feature rank-
ing to obtain neuron/channel importance score and prop-
agated it throughout the network. The neurons/channels
with smaller importance scores were removed with negligi-
ble accuracy loss. Chin et al. [3] considered channel prun-
ing as a global ranking problem and compensated the layer-
wise approximation error that improved the performance
for various heuristic metrics. To reduce accuracy loss
caused by incorrect channel pruning, redundant channels
were pruned in a dynamic way in [11, 23]. Furthermore,
Huang et al. [17] and Huang & Wang [18] trained prun-
ing agents and removed redundant structure in a data-driven
way. These methods directly pruned insignificant channels
on non-structured sparse models, which may falsely aban-
don useful features and induce obvious accuracy decline.

More recent developments adopted structured regular-
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ization to learn structured sparsity in training stage. Zhang
et al. [39] incorporated sparse constraints into objective
function to decimate the number of channels in CNNs. Sim-
ilarly, Wen et al. [34] utilized Group Lasso to automati-
cally obtain channel, filter shape and layer level sparsity
in CNNs during network training. In [35], group and ex-
clusive sparsity regularization are combined to exploit both
positive and negative correlations among features, while en-
forcing the network to be structure-sparse. Moreover, Liu
et al. [24] proposed Network-Sliming which applied L1-
norm on channel scaling factors. After training, channels
with small-magnitude scaling factors are pruned. Zhang
et al. [38] adopted GrOWL regularization for simultaneous
parameter sparsity and tying in CNNs learning. For chan-
nel pruning, these works automatically obtain channel-level
sparse networks in training stage. Therefore, redundant
channels are pruned with less accuracy decline. However,
the above methods only apply separated structured regular-
ization on out-channel in current layer but in-channels in
next layer are neglected. Besides, these methods have not
been accessed with very deep neural networks on ImageNet
dataset.

Low rank approximation [7, 29], network quantiza-
tion [4, 19, 30], knowledge distillation [14] and reinforce-
ment learning [1, 12] are popular techniques to speedup and
compress CNNs. These techniques can be combined with
our channel pruning method for further improvement.

3. Approach
3.1. Motivation

We start by analyzing the drawbacks of separated struc-
tured regularization. The optimization objective of CNNs
with separated structured regularization is formulized as:

L
= Loss(W, D) + AR(W) + A\s Y Ras(W') (1)
=1

J(W)

where W is trainable weights across all the L layers
in CNNs and D = {(x;,¥;)}}Y, is a training dataset.
Loss(W, D) denotes the normal training loss on the dataset
D. And R(W) represents the non-structured regularization,
e.g., L1 regularization and L2 regularization. The func-
tion Rss(-) denotes the separated structured regularization
applied on L layers separately. A and A, are the hyper-
parameters of non-structured regularization and structured
regularization.

The correlations between two consecutive layers are il-
lustrated in Fig. 1. Features in the i*" out-channel of layer
I and the *" in-channel of layer [ 4 1 are interdepen-
dent and tend to work cooperatively [26, 36]. Accordingly
they should be regularized and redistributed together dur-
ing training. However, R,,(W') regularizes layer [ sepa-
rately. Suppose the I*" layer is a fully connected layer with

Wt e ROCXIC where OC; and IC| are the dimensions
of W' along the axes of out-channels and in-channels re-
spectively. The separated structured regularization Rgg(+)
applied on out-channels of W' for channel-level sparsity is:

oC,

Z W lle @)

‘th

1y
Rss (W)

where Wl is the weight vector of i*" out-channel of W,
> |l - |le is a specific structured regularization term which
can effectively zero out all weights in some out-channels,
such as Group Lasso [37], CGER [35] and GrOWL [8]. The
separated Group Lasso for channel-level sparsity is:

oC;

Z Z 3)

The critical issue of separated structured regularization
is that the correlations between two consecutive layers of
CNNs are disregarded. It separately regularizes and en-
forces out-channels of each layer to be sparse. After train-
ing with separated structured regularization, features in the

h"out-channel of layer [ may be squeezed to the i** in-
channel of layer | + 1, instead of the rest out-channels of
layer [. Pruning the i*" out-channel of layer [ results in
pruning the i* in-channel of layer [ + 1 together. Important
features in the i*" in-channel of layer [ + 1 may be falsely
discarded that losses massive accuracy. Moreover, the sep-
arated structured regularization fails to maximally prune re-
dundant channels and utilize the representational capacity
of CNN:E.

R (W) =

3.2. Out-In-Channel Sparsity Regularization

We propose out-in-channel sparsity regularization to
tackle the drawbacks of separated structured regulariza-
tion. The definition of out-in-channel is demonstrated
in Fig. 1. The corresponding channels of two con-
secutive layers work cooperatively and are simultane-
ously pruned/saved. Therefore, OICSR concatenates out-
channell with in-channel"™" as one regularization group
out—in—channelﬁ"lﬂ. The optimization objective with
OICSR of CNNs can be given as follows:

J(W) = Loss(W, D) + AR(W)
+ )\s Z Roic(le Wl+1)
=1

where R,;.(W!, W!T1) is the out-in-channel sparisity reg-
ularization which regularizes out-in-channels of layer [ and
layer [ + 1 together. OICSR of two consecutive fully-
connected layers is given as:

oC;

)= Wl @
i=1

Roic(W!HWH? Wi oie )
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Figure 2: Iterative channel pruning procedure with OICSR.

where > || - ||oic is a specific structured regularization
term in OICSR form which can simultaneously zero out all
weights in some out-in-channels. The symbol @ denotes
concatenation of Wl and VV“rl For two consecutive con-
volutional layers, Wlth wte ROCI XICI X HixWi gnd Wi+l
where H; and W; denote the height and width respectively,
we first reshape W' and W'+ to 2D matrices, i.e. W' €
ROC;X(ICLHlWZ) and Wi+1 c R(OCH»IHlJerH»l)XICH»l.
Then, OICSR of two consecutive convolutional layers can
be similarly formulated as Eq. 5.

OICSR regards one out-in-channel as a regularization
group in which features are simultaneously redistributed in
training stage. After training, features in redundant out-
in-channels are thoroughly transferred to important out-in-
channels. As a result, OICSR is able to prune more redun-
dant out-in-channels in large networks with less accuracy
loss. Actually, the correlations between layer | and layer
I+ n (n > 2) are too complex to be formulated in struc-
tured regularization form. It is a trade-off between practi-
cability and effectiveness to consider the correlation of two
consecutive layers.

OICSR is a generic regularization form which can works
with several structured regularization terms, e.g., Group
Lasso in OICSR form for channel-level sparsity is given as:

R*

olc

(Wl7 Wl+l) _
ocC,

2 /2

The other structured regularization terms can be extended
into OICSR form in a similar way.

2y y iy ©

J

3.3. Criterion of Channel Importance

For computational efficiency, the channel energy is
chosen as the channel importance metric.  Existing
regularization-based methods [22, 24, 34, 35] only utilize
statistics of individual layer to guide the channel pruning.
In this paper, the channel importance of separated Group
Lasso and non-structured regularization is defined as:

E} = HWH‘% = Z(Wil,j)Q (7

J

where E! is the energy of the i*" out-channel of layer [. The
statistical imformation of next layer are abandoned that may
cause incorrect selection of redundant channels. In partic-
ular, OICSR measures channel importance based on statis-

tical imformation of two consecutive layers. The channel
importance of Group Lasso in OICSR form is given as:

WL = S0V, S

J

(®)
where E;" " is the energy of the i‘" out-in-channel of layer
land layer I+ 1. The higher the energy, the more important
the out-in-channel is.

B = W,

LI+1 .

3.4. Channel Pruning Framework

With initialized deep neural networks, our iterative chan-
nel pruning procedures are illustrated in Fig. 2. In fact,
it is puzzling to manually determine the redundancy and
channel pruning ratio for each layer. Therefore, a global
greedy pruning algorithm is proposed to minimize the ac-
curacy loss caused by incorrect channel pruning. As shown
in Algorithm 1, in each iteration, redundant out-in-channels
across all layers are globally selected and greedily removed
until reaching the preset FLOPs pruning ratio.

Algorithm 1 Global greedy pruning algorithm

Input: Training dataset D, initialzed model VW, number of
pruning iteration 7", FLOPs pruning ratio P € R7
1: WO < train(W, D) with OICSR from scratch
2: forr=1to T do
3 E+o
4 /I global channel selection
5: for/=1to L —1do
6 fori =11to OC, do
7 E+« EU{E""""} asEq. 8
8
9

E = sort(E)
: Il greedy channel pruning
10: repeat
11: /] remove the corresponding channel with E(0)
12: WED  prune(WE1D E(0))
13: E « E\E(0)

14: until f1ops(WIY) <
150 W W=D

16 WO « fine-tune(W® D) with OICSR
Output: The compact model W(7)

(1—"P;) - flops(W®)

Compared with single pass pruning, iterative pruning
leads to smoother pruning process with less accuracy drop.
Pruning a whole layer is detrimental to the network [3, 24].
Accordingly, we set a constraint that no more than 50% of
out-in-channels in two consecutive layers are pruned in one
channel pruning iteration.

Fine-tuning is an important process after channel prun-
ing. To the best of our knowledge, we are the first to
fine-tune the pruned network with structured regularization.
Fine-tuning with OICSR simultaneously recovers the di-
minished accuracy of channel pruning in last step and en-
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Figure 3: Comparison between OICSR-GL and baselines of the trade-off between top-1 accuracy (without fine-tuning) and
pruned FLOPs ratio. L1-BN [24] can not be appied on the variant AlexNet® which has no batch normalization layers.
Obviously, OICSR-GL generally has less accuracy drop compared with baselines under the same pruned FLOPs.

forces channel-level sparsity on the pruned model. There-
fore, the next iteration of channel pruning is smoothly con-
ducted after fine-tuning.

4. Experiments

In this section, we evaluate the effectiveness of OICSR
on CIFAR-10 [20], CIFAR-100 [20], ImageNet-1K [6]
datasets using popular CNNs architectures: CifarNet [20],
AlexNet [21], ResNet [10], DenseNet [16] and SeNet [15].
OICSR is mainly compared with non-structured regulariza-
tion and separated structured regularization to demonstrate
its superiority. Moreover, we also compare OICSR with
other state-of-the-art channel pruning methods [3, 11, 13,
17,18, 23, 26, 27, 36]. All the experiments are implemented
using PyTorch [28] on four NVIDIA P100 GPUs.

4.1. Experimental Setting

For CIFAR-10/100 datasets, OICSR is evaluated with
CifarNet!, ResNet-182, ResNet-362, DenseNet-89% and
PreActSeNet-182. OICSR is also accessed with AlexNet?
and ResNet-50° on ImageNet-1K dataset. All the initial-
ized networks are trained from scratch using SGD optimizer
with a weight decay 10~* and Nesterov momentum [32]
of 0.9. On CIFAR-10/100 datasets, we train networks us-
ing mini-batch size 100 for 160 epochs. On ImageNet-1K

1 https:/github.com/tensorflow/models/blob/master/research/slim/nets
2 https://github.com/kuangliu/pytorch-cifar/tree/master/models
3 https://github.com/pytorch/vision/tree/master/torchvision/models
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Figure 4: The distribution of energy of out-in-channels
(layer4.2.convl and layer4.2.conv2 in ResNet-56 on
CIFAR-100 dataset) after training with L2, GL and OICSR-
GL respectively.

dataset, we train AlexNet and ResNet-50 with mini-batch
size 256 for 90 and 120 epochs, respectively. All the accu-
racies on ImageNet-1K dataset are tested on the validation
dataset using the single view center crop.

The hyper-parameter A balances the normal training
loss and the structured sparsity. We empirically recommend
choosing relatively large A, for simple task but small A,
for complex task. The hyper-parameter )\, is set to 10~*
for networks (except for DenseNet-89 with 5 x 10~°) on
CIFAR-10/100 dataset and 10~—° for ImageNet-1K dataset.

Considering that fully-connected layers are much impor-
tant in CifarNet and AlexNet and the majority of FLOPs is
contributed by convolutional layers, only convolutional lay-
ers in these networks are regularized and pruned.
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Figure 6: Comparison between OICSR-GL and relevant baselines of the trade-off between pruned FLOPs ratio and top-
1 accuracy with various fine-tuning epochs. As expected, all the methods achieve higher accuracy with more fine-tuning
epochs. With the same fine-tuning epochs, OICSR-GL consistently outperforms all the baselines under different pruned

FLOPs ratio.

4.2. Comparison with Non-structured Regulariza-
tion and Seperated structured Regularization

In this section, OICSR is compared with non-structured
regularization and separated structured regularization from
multiple aspects. The most classic structured regulariza-
tion, Group Lasso [37], is chosen as the specific regular-
ization term to demonstrate the effectiveness of OICSR.
OICSR with Group Lasso (OICSR-GL) is used in all ex-
periments. OICSR-GL is compared with three baselines:
(1) L2. The network is only trained with non-structured
regularization L2 regularization. The structure regulariza-
tion is not used.(2) GL (Separated Group Lasso). Group
Lasso is separately applied on layers of the network as de-
scribed in Eq. 1. (3) L1-BN. L1-BN [24] is another form of
separated structured regularization which applies L1-norm
on the scaling factors of batch normalization layers. After

training with L.1-BN, we obtain a network in which the vec-
tor of scaling factors is sparse. Scaling factors with small
magnitudes and their corresponding channels are pruned.

For all the above methods, the global greedy pruning al-
gorithm (Algorithm 1) is uniformly adopted to prune the
redundant channels. All the experimental settings are the
same except for the regularization and the corresponding
criterion of channel importance.

4.2.1 Accuracy without Fine-tuning

We first validate whether OICSR-GL retains more impor-
tant features and accuracy after channel pruning. The sub-
stantial remaining feature/accuracy works as a great ini-
tializer that leads to higher accuracy after fine-tuning [3].
OICSR-GL is compared with relevant baselines by mea-
suring top-1 accuracy (without fine-tuning) over pruned
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FLOPs. For fair comparison, results of all the methods are
reported after channel pruning of the first iteration.

Fig. 3 shows the top-1 accuracy without fine-tuning of
different classification tasks over pruned FLOPs, obtained
by differentiating the structured regularization. As ex-
pected, training and pruning with structured regularization
GL, L1-BN and OICSR-GL reserve more prediction ac-
curacy compared with non-structured regularization L2 in
most of cases. Separated Group Lasso is an efficient struc-
tured regularization which in general performs better than
L1-BN and non-structured regularization L2. Specifically,
L2, GL and OICSR-GL achieve similar performance (L1-
BN performs worst) with CifarNet on CIFAR-10 dataset
(Fig. 3(a)) due to simplicity of both CIFAR-10 dataset and
CifarNet architecture. Finally, OICSR-GL achieves the best
trade-off between pruned FLOPs and prediction accuracy
without fine-tuning owing to the fact that OICSR enforces
channel-level sparsity on out-in-channels and prunes redun-
dant out-in-channels based on statistical information com-
puted from two consecutive layers.

For channel pruning, feature/energy in one out-in-
channel is pruned/saved together. The distribution of en-
ergy of out-in-channels (Eq. 8) after training with differ-
ent regularization are visualized (Fig. 4) to show the ef-
fect of OICSR. After training with OICSR-GL, energy dis-
tributes in less out-in-channels and more redundant chan-
nels are automatically selected. Here, OICSR-GL regu-
larizes out-in-channels and transfers important features in
much less out-in-channels compared with separated GL and
non-structured regularization L2. Therefore, important fea-
tures and accuracy can be maximally preserved by OICSR-
GL after pruning the redundant out-in-channels.

4.2.2 Convergence Speed

To further study advantages of OICSR-GL over baselines,
we next analyze learning curves of different methods shown
in Fig. 5. Interestingly, we find that L1-BN outperforms
separated Group Lasso and L2 with CifarNet but performs
worst with multi-branches architecture ResNet on CIFAR-
10/100 datasets. For CifarNet on CIFAR-100 and ResNet-
18 on CIFAR-10, separated Group Lasso converges faster
and has lower accuracy loss compared with non-structured
regularization L2.

OICSR-GL outperforms all the relevant baselines, which
is reflected in three aspects. Firstly, OICSR-GL has less ac-
curacy loss compared with baselines at fine-tuning iteration
0. This implies that OICSR-GL keeps higher accuracy af-
ter channel pruning, which agrees with the conclusion in
section 4.2.1. Secondly, OICSR-GL converges faster and
achieves the same accuracy loss using much fewer fine-
tuning iterations. Thirdly, OICSR-GL has lowest accuracy
loss after fine-tuning.

Acc\ Regu

L2 L1-BN GL OICSR-GL
FLOPs
39.2%. 95.04% 94.95% 94.96% 95.10%
86.5%.. 94.10% 93.77% 94.10% 94.27 %
94.5%., 92.15% 91.02% 92.15% 92.44%

(a) ResNet-18 on CIFAR-10 (Original Acc is 94.46%)

L2 L1-BN GL OICSR-GL
345%,  94.09% 94.09% 94.08% 94.21%
81.7%,  92.69% 92.37% 92.69% 92.95%
86.0%)  90.87% 91.21% 90.37% 91.50%

(b) DenseNet-89 on CIFAR-10 (Original Acc is 93.25%)

L2 L1-BN GL OICSR-GL
385%,  76.13% 75.28% 76.04% 76.23%
86.2%,  74.60% 75.13% 75.30% 75.75%
972%)  7198% 7236% 72.29% 73.10%

(c) ResNet-56 on CIFAR-100 (Original Acc is 75.87%)

L2 L1-BN GL OICSR-GL
48.0%.. 75.65% 75.76% 75.80% 76.38%
83.0%. 73.26% 72.66% 72.79% 73.91%
95.1%| 67.43% 65.52% 67.69% 68.30%

(d) PreActSeNet-18 on CIFAR-100 (Original Acc is 75.29%)

L2 L1-BN GL OICSR-GL
23.4%] 57.62% —— 57.35% 57.87 %
54.0% 55.14% ——  55.02% 56.83%
68.3%. 52.55% —— 49.65% 53.78%

(e) AlexNet on ImageNet-1K (Original Acc is 56.98%)

L2 L1-BN GL OICSR-GL
37.3%. 76.39% 76.04% 76.23% 76.53%
44.4%), 76.03% 75.98% 76.02% 76.30%
50.0%. 75.80% 75.53% 75.76% 75.95%

(f) ResNet-50 on ImageNet-1K (Original Acc is 76.31%)

Table 1: Summary of the trade-off between top-1 accu-
ray after fine-tuning and pruned FLOPs ratio with various
CNNs on three benchmark datasets. [xx.x%./] denotes the
percentage of pruned FLOPs.

4.2.3 Accuracy after Fine-tuning

OICSR-GL is also evaluated over relevant baselines in
terms of prediction accuracy after fine-tuning. The results
with various fine-tuning epochs for CifarNet on CIFAR-
10/100 datasets are reported in Fig 6. As expected, un-
der the same pruned FLOPs ratio, all the methods achieve
higher accuracy with more fine-tuning epochs. The loss
feature/accuracy induced by channel pruning can be well
retrieved by fine-tuning. The fewer fine-tuning epochs,
the more obvious the advantage of OICSR-GL is. With
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Methods FLOPs| Params| Top-1 Accl
Huang et al. [17]  35.30% — 1.00%
OICSR-GL 39.20% 59.09% -0.64 %
Huang et al. [17]  76.00% — 2.90%
OICSR-GL 86.50% 90.89% 0.19%
(a) ResNet-18 on CIFAR-10
Methods FLOPs| Params] Top-1 Accl
FMP [27] ([23] impl.) 37.62% — 1.87%
GDP [23] 5230% — 0.77%
NISP [36] 53.70% 2.91% 0.54%
OICSR-GL 54.00% 3.06% 0.15%
(b) AlexNet on ImageNet-1K
Methods FLOPs| Top-1 Acc] Top-5 Accl
LcP [3] 25.00% -0.09% -0.19%
NISP [36] 27.31% 0.21% —
SSS [18] 31.08% 1.94% 0.95%
ThiNet [26] 36.79% 0.84% 0.47%
OICSR-GL 37.30% -0.22% -0.16 %
He et al. [11] 41.80% 1.54% 0.81%
GDP [23] 42.00% 2.52% 1.25%
LcP [3] 42.00% 0.85% 0.26%
NISP [36] 44.41% 0.89% —
OICSR-GL 44.43 % 0.01% 0.08 %
He et al. [13] 50.00% — 1.40%
LcP [3] 50.00% 0.96% 0.42%
OICSR-GL 50.00% 0.37% 0.34%

(c) ResNet-50 on ImageNet-1K

Table 2: Comparison with existing methods. FLOPs] and
Params] denote the reduction of FLOPs and parameters.
Top-k Accl denotes the decline of top-k accuracy and a neg-
ative value indicates an improvement of model accuracy.

the same fine-tuning epochs, OICSR-GL consistently per-
forms better than all the baselines under different pruned
FLOPs ratios. Moreover, OICSR-GL fine-tuned with 20
epochs achieves higher accuracy compared with baselines
fine-tuned with 80 epochs in certain sparsity ranges.

Results of the other network architectures are reported
in Table 1. To maintain channel-level sparsity during prun-
ing, the networks on CIFAR-10/100 dataset and ImageNet-
1K are fine-tuned with 160 epochs and 60 epochs respec-
tively for each channel pruning iteration. Shown in Ta-
ble 1, the superiority of OICSR-GL gradually emerges with
the increase of pruned FLOPs ratio. Pruning channels and
fine-tuning with OICSR-GL lead to higher generalization
accuracy. For ResNet-18 on CIFAR-10 dataset, OICSR-
GL obtains 0.64% accuracy improvement using 39.2% less
FLOPs and achieves 7.4x FLOPs reduction with only
0.19% top-1 accuracy drop. OICSR-GL improves 1.09%
accuracy while using 48.0% less FLOPs for PreActSeNet-

18 on CIFAR-100 dataset. OICSR speeds up ResNet-56
by 7.2x with only 0.12% top-1 accuracy loss on CIFAR-
100 dataset. For AlexNet and ResNet-50 on ImageNet
dataset, OICSR gains 0.89% and 0.32% accuracy improve-
ment while using 23.4% and 37.3% less FLOPs; OICSR-
GL also achieves 2.2 and 2.0x speedup with only 0.19%
and 0.36% top-1 accuracy decline respectively. More-
over, as shown in Table 1(b) and Table 1(d), OICSR-GL
outperforms relevant baselines on both popular networks
DenseNet-89 and PreActSeNet-18.

4.3. Comparison with Other Methods

We compare our method with other state-of-the-art
channel pruning techniques (not regularization-based) us-
ing AlexNet and ResNet on CIFAR-10 and ImageNet-
1K datasets. As shown in Table 2, for ResNet-18 on
CIFAR-10, OICSR-GL significantly reduces more param-
eters (90.89%) and FLOPs(86.50% vs. 35.30% [17]), while
achieving less accuracy decline (0.19% vs. 1.00% [17]).

Our method also shows superior performance on
ImageNet-1K dataset. For AlexNet, with less accuracy loss,
OICSR-GL prunes more FLOPs(54.00%) compared with
FMP [27] (37.62%); OICSR reduces similar FLOPs but
achieves much less accuracy loss (0.15%) compared with
GDP [23] (0.77%) and NISP [36] (0.54%). We are the first
to exploit regularization-based channel pruning methods for
very deep residual network ResNet-50 on ImageNet-1K
dataset. Under various pruned FLOPs ratios, our method
consistently achieves state-of-the-art result compared with
prior arts [3, 11, 13, 18, 23, 26, 27, 36], which strongly
aligns with our pervious analysis and observation.

5. Conclusion

Current deep neural networks are effective with high in-

ference costs. In this paper, we propose a novel structured
regularization form, namely OICSR, which takes account
correlations between successive layers to learn more com-
pact CNNs. OICSR regularizes out-in-channels and mea-
sures channel importance based on statistical information of
two consecutive layers. To minimize accuracy loss caused
by incorrect channel pruning, we investigate a global greedy
pruning algorithm to select and remove redundant out-in-
channel in an iterative way. As a result, important fea-
tures and accuracy are greatly preserved by OICSR after
channel pruning. Experiments demonstrated the superiority
of OICSR against non-structured regularization and sepa-
rated structured regularization. Furthermore, our method
achieves better results compared with existing state-of-the-
art channel pruning techniques.
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