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Abstract

In this paper, we propose Object-driven Attentive Gen-

erative Adversarial Newtorks (Obj-GANs) that allow

object-centered text-to-image synthesis for complex scenes.

Following the two-step (layout-image) generation process,

a novel object-driven attentive image generator is pro-

posed to synthesize salient objects by paying attention to

the most relevant words in the text description and the

pre-generated semantic layout. In addition, a new Fast

R-CNN based object-wise discriminator is proposed to

provide rich object-wise discrimination signals on whether

the synthesized object matches the text description and the

pre-generated layout. The proposed Obj-GAN significantly

outperforms the previous state of the art in various metrics

on the large-scale COCO benchmark, increasing the

Inception score by 27% and decreasing the FID score by

11%. A thorough comparison between the traditional grid

attention and the new object-driven attention is provided

through analyzing their mechanisms and visualizing their

attention layers, showing insights of how the proposed

model generates complex scenes in high quality.

1. Introduction

Synthesizing images from text descriptions (known as

Text-to-Image synthesis) is an important machine learning

task, which requires handling ambiguous and incomplete

information in natural language descriptions and learning

across vision and language modalities. Approaches based

on Generative Adversarial Networks (GANs) [5] have re-

cently achieved promising results on this task [23, 22, 32,

33, 29, 16, 9, 12, 34]. Most GAN based methods synthe-

size the image conditioned only on a global sentence vec-

tor, which may miss important fine-grained information at

the word level, and prevents the generation of high-quality

images. More recently, AttnGAN [29] is proposed which

introduces the attention mechanism [28, 30, 2, 27] into the

GAN framework, thus allows attention-driven, multi-stage

† Work was performed when was an intern with Microsoft Research AI.

* indicates equal contributions.

Figure 1: Top: AttnGAN [29] and its grid attention visualization.

Middle: our modified implementation of two-step (layout-image)

generation proposed in [9]. Bottom: our Obj-GAN and its object-

driven attention visualization. The middle and bottom generations

use the same generated semantic layout, and the only difference is

the object-driven attention.

refinement for fine-grained text-to-image generation.

Although images with realistic texture have been synthe-

sized on simple datasets, such as birds [29, 16] and flower-

s [33], most existing approaches do not specifically mod-

el objects and their relations in images and thus have d-

ifficulties in generating complex scenes such as those in

the COCO dataset [15]. For example, generating images

from a sentence “several people in their ski gear are in the

snow” requires modeling of different objects (people, ski

gear) and their interactions (people on top of ski gear), as

well as filling the missing information (e.g., the rocks in the

background). In the top row of Fig. 1, the image gener-

ated by AttnGAN does contain scattered texture of people

and snow, but the shape of people are distorted and the pic-

ture’s layout is semantically not meaningful. [9] remedies

this problem by first constructing a semantic layout from the

text and then synthesizing the image by a deconvolutional
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image generator. However, the fine-grained word/object-

level information is still not explicitly used for generation.

Thus, the synthesized images do not contain enough details

to make them look realistic (see the middle row of Fig. 1).

In this study, we aim to generate high-quality complex

images with semantically meaningful layout and realistic

objects. To this end, we propose a novel Object-driven At-

tentive Generative Adversarial Networks (Obj-GAN) that

effectively capture and utilize fine-grained word/object-

level information for text-to-image synthesis. The Obj-

GAN consists of a pair of object-driven attentive image

generator and object-wise discriminator, and a new object-

driven attention mechanism. The proposed image genera-

tor takes as input the text description and a pre-generated

semantic layout and synthesize high-resolution images vi-

a multiple-stage coarse-to-fine process. At every stage, the

generator synthesizes the image region within a bounding

box by focusing on words that are most relevant to the ob-

ject in that bounding box, as illustrated in the bottom row

of Fig. 1. More specifically, using a new object-driven at-

tention layer, it uses the class label to query words in the

sentences to form a word context vector, as illustrated in

Fig. 4, and then synthesizes the image region conditioned

on the class label and word context vector. The object-wise

discriminator checks every bounding box to make sure that

the generated object indeed matches the pre-generated se-

mantic layout. To compute the discrimination losses for all

bounding boxes simultaneously and efficiently, our object-

wise discriminator is based on a Fast R-CNN [4], with a

binary cross-entropy loss for each bounding box.

The contribution of this work is three-folded. (i) An

Object-driven Attentive Generative Network (Obj-GAN) is

proposed for synthesizing complex images from text de-

scriptions. Specifically, two novel components are pro-

posed, including the object-driven attentive generative net-

work and the object-wise discriminator. (ii) Comprehensive

evaluation on a large-scale COCO benchmark shows that

our Obj-GAN significantly outperforms previous state-of-

the-art text-to-image synthesis methods. Detailed ablation

study is performed to empirically evaluate the effect of d-

ifferent components in Obj-GAN. (iii) A thorough analy-

sis is performed through visualizing the attention layers of

the Obj-GAN, showing insights of how the proposed model

generates complex scenes in high quality. Compared with

the previous work, our object-driven attention is more ro-

bust and interpretable, and significantly improves the object

generation quality in complex scenes.

2. Related Work

Generating photo-realistic images from text description-

s, though challenging, is important to many real-world ap-

plications such as art generation and computer-aided de-

sign. There has been much research effort for this task

through different approaches, such as variational infer-

ence [17, 6], approximate Langevin process [24], condition-

al PixelCNN via maximal likelihood estimation [26, 24],

and conditional generative adversarial networks [23, 22, 32,

33]. Compared with other approaches, Generative Adver-

sarial Networks (GANs) [5] have shown better performance

in image generation [21, 3, 25, 13, 11, 10]. However, ex-

isting GAN based text-to-image synthesis is usually condi-

tioned only on the global sentence vector, which misses im-

portant fine-grained information at the word level, and thus

lacks the ability to generate high-quality images. [29] uses

the traditional grid visual attention mechanism in this task,

which enables synthesizing fine-grained details at different

image regions by paying attentions to the relevant words in

the text description.

To explicitly encode the semantic layout into the gen-

erator, [9] proposes to decompose the generation process

into two steps, in which it first constructs a semantic lay-

out (bounding boxes and object shapes) from the text and

then synthesizes an image conditioned on the layout and

text description. [12] also proposes such a two-step process

to generate images from scene graphs, and their process can

be trained end-to-end. In this work, the proposed Obj-GAN

follows the two-step generation process as [9]. However,

[9] encodes the text into a single global sentence vector,

which loses word-level fine-grained information. More-

over, it uses the image-level GAN loss for the discriminator,

which is less effective at providing object-wise discrimina-

tion signal for generating salient objects. We propose a new

object-driven attention mechanism to provide fine-grained

information (words in the text description and objects in the

layout) for different components, including an attentive se-

q2seq bounding box generator, an attentive image generator

and an object-wise discriminator.

The attention mechanism has recently become a crucial

part of vision-language multi-modal intelligence tasks. The

traditional grid attention mechanism has been successfully

used in modeling multi-level dependencies in image cap-

tioning [28], image question answering [30], text-to-image

generation [29], unconditional image synthesis [31] and

image-to-image translation [16], image/text retrieval [14].

In 2018, [1] proposes a bottom-up attention mechanis-

m, which enables attention to be calculated over semantic

meaningful regions/objects in the image, for image caption-

ing and visual question-answering. Inspired by these work-

s, we propose Obj-GAN which for the first time develops

an object-driven attentive generator plus an object-wise dis-

criminator, thus enables GANs to synthesize high-quality

images of complicated scenes.

3. Object-driven Attentive GAN

As illustrated in Fig. 2, the Obj-GAN performs text-to-

image synthesis in two steps: generating a semantic lay-
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Figure 2: Obj-GAN completes the text-to-image synthesis in two steps: the layout generation and the image generation. The layout

generation contains a bounding box generator and a shape generator. The image generation uses the object-driven attentive image generator.

out (class labels, bounding boxes, shapes of salient object-

s), and then generating the image. In the image generation

step, the object-driven attentive generator and object-wise

discriminator are designed to enable image generation con-

ditioned on the semantic layout generated in the first step.

The input of Obj-GAN is a sentence with Ts tokens.

With a pre-trained bi-LSTM model, we encode its words

as word vectors e ∈ R
D×Ts and the entire sentence as a

global sentence vector ē ∈ R
D. We provide details of this

pre-trained bi-LSTM model and the implementation details

of other modules of Obj-GAN in § ??.

3.1. Semantic layout generation

In the first step, the Obj-GAN takes the sentence as input

and generates a semantic layout, a sequence of objects spec-

ified by their bounding boxes (with class labels) and shapes.

As illustrated in Fig. 2, a box generator first generates a se-

quence of bounding boxes, and then a shape generator gen-

erates their shapes. This part resembles the bounding box

generator and shape generator in [9], and we put our imple-

mentation details in § ??.

Box generator. We train an attentive seq2seq model [2],

also referring to Fig. 2, as the box generator:

B1:T := [B1, B2, . . . , BT ] ∼ Gbox(e). (1)

Here, e are the pre-trained bi-LSTM word vectors, Bt =
(lt, bt) are the class label of the t’s object and its bounding

box b = (x, y, w, h) ∈ R
4. In the rest of the paper, we will

also call the label-box pair Bt as a bounding box when no

confusion arises. Since most of the bounding boxes have

corresponding words in the sentence, the attentive seq2seq

model captures this correspondence better than the seq2seq

model used in [9].

Shape generator. Given the bounding boxes B1:T , the

shape generator predicts the shape of each object in its

bounding box, i.e.,

M̂1:T = Gshape(B1:T , z1:T ). (2)

where zt ∼ N (0, 1) is a random noise vector. Since the

generated shapes not only need to match the location and

category information provided by B1:T , but also should be

aligned with its surrounding context, we build Gshape based

on a bi-directional convolutional LSTM, as illustrated in

Fig. 2. Training of Gshape is based on the GAN framework

[9], in which a perceptual loss is also used to constrain the

generated shapes and to stabilize the training.

3.2. Image generation

3.2.1 Attentive multistage image generator

As shown in Fig. 3, the proposed attentive multistage gen-

erative network has two generators (G0, G1). The base gen-

erator G0 first generates a low-resolution image x̂0 condi-

tioned on the global sentence vector and the pre-generated

semantic layout. The refiner G1 then refines details in d-

ifferent regions by paying attention to most relevant words

and pre-generated class labels and generates a higher reso-

lution image x̂1. Specifically,

h0 = F0(z, ē, Enc(M0), cobj, clab), x̂0 = G0(h0),

h1 = F1(c
pat, h0 + Enc(M1), cobj, clab), x̂1 = G1(h1),

where (i) z is a random vector with standard normal distri-

bution; (ii) Enc(M0) ( Enc(M1) ) is the encoding of low-

resolution shapes M0 (higher-resolution shapes M1); (iii)

cpat = F
grid
attn (e, h0) are the patch-wise context vectors from

the traditional grid attention, (iv) cobj = F
obj
attn(e, e

g, lg,M)
are the object-wise context vectors from our new object-

driven attention, and clab = clab(lg,M) are the label context

vectors from class labels. We can stack more refiners to the

generation process and get higher and higher resolution im-

ages. In this paper, we have two refiners (G1 and G2) and

finally generate images with resolution 256× 256.

Compute context vectors via attention. Both patch-wise

context vectors cpat and object-wise context vectors cobj are

attention-driven context vectors for specific image regions,

and encode information from the words that are most rel-

evant to that image region. Patch-wise context vectors are
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Figure 3: The object-driven attentive image generator.

Figure 4: Object-driven attention.

for uniform-partitioned image patches determined by the u-

niform down-sampling/up-sampling structure of CNN, but

these patches are not semantically meaningful. Object-wise

context vectors are for semantically meaningful image re-

gions specified by bounding boxes, but these regions are at

different scales and may have overlaps.

Specifically, the patch-wise context vector c
pat
j (

objective-wise context vector c
obj
t ) is a dynamic represen-

tation of word vectors relevant to patch j (bounding box

Bt), which is calculated by

c
pat
j =

Ts∑

i=1

β
pat
j,iei, c

obj
t =

Ts∑

i=1

β
obj
t,i ei. (3)

Here, β
pat
j,i ( β

obj
t,i ) indicates the weight the model attends to

the i’th word when generating patch j (bounding box Bt)

and is computed by

β
pat
j,i =

exp(spat
j,i)∑Ts

k=1
exp(spat

j,k)
, s

pat
j,i = (hj)

T ei, (4)

β
obj
t,i =

exp(sobj
t,i )∑Ts

k=1
exp(sobj

t,k)
, s

obj
t,i = (lgt )

T e
g
i . (5)

For the traditional grid attention, we use the image region

feature hj , which is one column in the previous hidden lay-

er h ∈ R
Dpat×N pat

, to query the pre-trained bi-LSTM word

vectors e. For the new object-driven attention, we use the

GloVe embedding of object class label l
g
t to query the GloVe

embedding of the words in the sentence, as illustrated in the

lower part of Fig. 4.

Feature map concatenation. The patch-wise context vec-

tor c
pat
j can be directly concatenated with the image feature

vector hj in the previous layer. However, the object-wise

context vector c
obj
t cannot, because they are associated with

bounding boxes instead of pixels in the hidden feature map.

We propose to copy the object-wise context vector c
obj
t to

every pixel where the t’th object is present, i.e., Mt ⊗ c
obj
t

where ⊗ is the vector outer-product, as illustrated in the

upper-right part of Fig. 4. 1

If there are multiple bounding boxes covering the same

pixel, we have to decide whose context vector should be

used on this pixel. In this case, we simply do a max-pooling

across all the bounding boxes:

cobj = max
t :1≤t≤T

Mt ⊗ c
obj
t . (6)

Then cobj can be concatenated with the feature map h and

patch-wise context vectors cpat for next-stage generation.

Label context vectors. Similarly, we distribute the class

label information to the entire hidden feature map to get the

label context vectors, i.e.,

clab = max
t : 1≤t≤T

Mt ⊗ e
g
t . (7)

Finally, we concatenate h, cpat, cobj and clab and pass the

1This operation can be viewed as an inverse of the pooling operator.
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concatenated tensor through one up-sampling layer and sev-

eral residual layers to generate a higher-resolution image.

Grid attention vs. object-driven attention. The process

to compute the patch-wise context vectors above is the tra-

ditional grid attention mechanism used in AttnGAN [29].

Note that its attention weights β
pat
j,i and context vector c

pat
j

are useful only when the hidden feature h
pat
j in the G0 stage

correctly captures the content to be drawn in patch j. This

essentially assumes that the generation in the G0 stage al-

ready captures a rough sketch (semantic layout). This as-

sumption is valid for simple datasets like birds [29], but

fails for complex datasets like COCO [15] where the gen-

erated low-resolution image x̂0 typically does not have a

meaningful layout. In this case, the grid attention is even

harmful, because patch-wise context vector is attended to a

wrong word and thus generate the texture associated with

that wrong word. This may be the reason why AttnGAN’s

generated image contains scattered patches of realistic tex-

ture but overall is semantically not meaningful; see Fig. 1

for example. Similar phenomenon is also observed in Deep-

Dream [20]. On the contrary, in our object-driven attention,

the attention weights β
obj
t,i and context vector c

obj
t rely on the

class label l
g
t of the bounding box and are independent of

the generation in the G0 stage. Therefore, the object-wise

context vectors are always helpful to generate images that

are consistent with the pre-generated semantic layout. An-

other benefit of this design is that the context vector c
obj
t can

also be used in the discriminator, as we present in § 3.2.2.

3.2.2 Discriminators

We design patch-wise and object-wise discriminators to

train the attentive multi-stage generator above. Given a

patch from uniformly-partitioned image patches determined

by the uniform down-sampling structure of CNN, the patch-

wise discriminator is trying to determine whether this patch

is realistic or not (unconditional) and whether this patch is

consistent with the sentence description or not (condition-

al). Given a bounding box and the class label of the object

within it, the object-wise discriminator is trying to deter-

mine whether this region is realistic or not (unconditional)

and whether this region is consistent with the sentence de-

scription and given class label or not (conditional).

Patch-wise discriminators. Given an image-sentence pair

x, ē (ē is the sentence vector), the patch-wise unconditional

and text discriminator can be written as

ppat,un = D
pat
uncond.(Enc(x)), ppat,con = D

pat
text(Enc(x), ē),

(8)

where Enc is a convolutional feature extractor that extracts

patch-wise features, Duncond. ( D
pat
text ) determine whether the

patch is realistic (consistent with the text description) or not.

Shape discriminator. In a similar manner, we have our

patch-wise shape discriminator

Figure 5: Object-wise discriminator.

ppix = Dpix(Enc(x,M)), (9)

where we first concatenate the image x and shapes M in the

channel dimension, and then extracts patch-wise features by

another convolutional feature extractor Enc. The probabili-

ties ppix determine whether the patch is consistent with the

given shape. Our patch-wise discriminators D
pat
uncond., D

pat
text

and Dpix resembles the PatchGAN [11] for the image-to-

image translation task. Compared with the global discrim-

inators in AttnGAN [29], the patch-wise discriminators not

only reduce the model size and thus enable generating high-

er resolution images, but also increase the quality of gener-

ated images; see Table 1 for experimental evidence.

Object-wise discriminators. Given an image x, bounding

boxes of objects B1:T and their shapes M , we propose the

following object-wise discriminators:

{hobj
t }Tt=1 =FastRCNN(x,M,B1:T ),

p
obj,un
t = D

obj
uncond.(h

obj
t ), p

obj,con
t = Dobj(hobj

t , e
g
t , c

obj
t ).

(10)

Here, we first concatenate the image x and shapes M and

extract a region feature vector h
obj
t for each bounding box

through a Fast R-CNN model [4] with an ROI-align lay-

er [7]; see Fig. 5(a). Then similar to the patch-wise dis-

criminator (8), the unconditional (conditional) probabilities

p
obj,un
t ( p

obj,con
t ) determine whether the t’th object is real-

istic (consistent with its class label e
g
t and its text context

information c
obj
t ) or not; see Fig. 5(b). Here, e

g
t is the GloVe

embedding of the class label and c
obj
t is its text context in-

formation defined in (3).

All discriminators are trained by the traditional cross en-

tropy loss [5].
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3.2.3 Loss function for the image generator

The generator’s GAN loss is a weighted sum of these dis-

criminators’ loss, i.e.,

LGAN(G) = −
λobj

T

T∑

t=1


 log pobj,un

t︸ ︷︷ ︸
obj uncond. loss

+ log pobj,con
t︸ ︷︷ ︸

obj cond. loss




−
1

N pat

N pat∑

j=1


log ppat,un

j︸ ︷︷ ︸
uncond. loss

+λtxt log p
pat,con
j︸ ︷︷ ︸

text cond. loss

+λpix log p
pix
j︸ ︷︷ ︸

shape cond. loss


 .

Here, T is the number of bounding boxes, N pat is the num-

ber of regular patches, (λobj, λtxt, λpix) are the weights of the

object-wise GAN loss, patch-wise text conditional loss and

patch-wise shape conditional loss, respectively. We tried

combining our discriminators with the spectral normalized

projection discriminator [18, 19], but did not see significant

performance improvement. We report performance of the

spectral normalized version in § 4.1 and provide model ar-

chitecture details in § ??.

Combined with the deep multi-modal attentive similarity

model (DAMSM) loss introduced in [29], our final image

generator’s loss is

LG = LGAN + λDAMSMLDAMSM (11)

where λdamsm is a hyper-parameter to be tuned. Here,

the DAMSM loss is a word level fine-grained image-text

matching loss computed, which will be elaborated in § ??.

Based on the experiments on a held-out validation set, we

set the hyperparameters in this section as: λobj = 0.1, λtxt =
0.1, λpix = 1 and λdamsm = 100.

Remark 3.1. Both the patch-wise and object-wise discrim-

inators can be applied to different stages in the generation.

We apply the patch-wise discriminator for every stage of the

generation, following [33, 11], but only apply the object-

wise discriminator at the final stage.

4. Experiments

Dataset. We use the COCO dataset [15] for evaluation. It

contains 80 object classes, where each image is associat-

ed with object-wise annotations (i.e., bounding boxes and

shapes) and 5 text descriptions. We use the official 2014

train (over 80K images) and validation (over 40K images)

splits for training and test stages, respectively.

Evaluation metrics. We use the Inception score [25] and

Fréchet inception distance (FID) [8] score as the quantita-

tive evaluation metrics. In our experiments, we found that

Inception score can be saturated, even over-fitted, while FID

is a more robust measure and aligns better with human qual-

itative evaluation. Following [29], we also use R-precision,

Table 1: The quantitative experiments. Methods marked with 0, 1

and 2 respectively represent experiments using the predicted boxes

and shapes, the ground-truth boxes and predicted shapes, and the

ground-truth boxes and shapes. We use bold, ∗, and ∗∗ to high-

light the best performance under these three settings, respectively.

The results of methods marked with † are those reported in the

original papers. ↑ (↓) means the higher (lower), the better.

Methods Inception ↑ FID ↓ R-prcn (%) ↑

Obj-GAN0
27.37 ± 0.22 25.85 86.20 ± 2.98

Obj-GAN1
27.96 ± 0.39∗ 24.19∗ 88.36 ± 2.82

Obj-GAN2
29.89 ± 0.22∗∗ 20.75∗∗ 89.59 ± 2.67

P-AttnGAN w/ Lyt0 18.84 ± 0.29 59.02 65.71 ± 3.74

P-AttnGAN w/ Lyt1 19.32 ± 0.29 54.96 68.40 ± 3.79

P-AttnGAN w/ Lyt2 20.81 ± 0.16 48.47 70.94 ± 3.70

P-AttnGAN 26.31 ± 0.43 41.51 86.71 ± 2.97

Obj-GAN w/ SN0
26.97 ± 0.31 29.07 86.84 ± 2.82

Obj-GAN w/ SN1
27.41 ± 0.17 27.26 88.70 ± 2.65∗

Obj-GAN w/ SN2
28.75 ± 0.32 23.37 89.97 ± 2.56∗∗

Reed et al. [23]† 7.88 ± 0.07 n/a n/a

StackGAN [32]† 8.45 ± 0.03 n/a n/a

AttnGAN [29] 23.79 ± 0.32 28.76 82.98 ± 3.15

vmGAN [35]† 9.94 ± 0.12 n/a n/a

Sg2Im [12]† 6.7 ± 0.1 n/a n/a

Infer [9]0† 11.46 ± 0.09 n/a n/a

Infer [9]1† 11.94 ± 0.09 n/a n/a

Infer [9]2† 12.40 ± 0.08 n/a n/a

Obj-GAN-SOTA0
30.29 ± 0.33 25.64 91.05 ± 2.34

Obj-GAN-SOTA1
30.91 ± 0.29 24.28 92.54 ± 2.16

Obj-GAN-SOTA2
32.79 ± 0.21 21.21 93.39 ± 2.08

a common evaluation metric for ranking retrieval results, to

evaluate whether the generated image is well conditioned

on the given text description. More specifically, given a

pre-trained image-to-text retrieval model, we use generat-

ed images to query their corresponding text descriptions.

First, given generated image x̂ conditioned on sentence s

and 99 random sampled sentences {s′i : 1 ≤ i ≤ 99}, we

rank these 100 sentences by the pre-trained image-to-text

retrieval model. If the ground truth sentence s is ranked

highest, we count this a success retrieval. For all the im-

ages in the test dataset, we perform this retrieval task once

and finally count the percentage of success retrievals as the

R-precision score.

It is important to point out that none of these quantita-

tive metrics are perfect. Better metrics are required to eval-

uate image generation qualities in complicated scenes. In

fact, the Inception score completely fails in evaluating the

semantic layout of the generated images. The R-precision s-

core depends on the pre-trained image-to-text retrieval mod-

el it uses, and can only capture the aspects that the retrieval

model is able to capture. The pre-trained model we use

is still limited in capturing the relations between objects in

complicated scenes, so is our R-precision score.

Quantitative evaluation. We compute these three metrics

under two settings for the full validation dataset.

Qualitative evaluation. Apart from the quantitative evalu-

ation, we also visualize the outputs of all ablative version-

s of Obj-GAN and the state-of-the-art methods (i.e., [29])

whose pre-trained models are publicly available.
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Figure 6: The overall qualitative comparison. All images are generated without the usage of any ground-truth information.

4.1. Ablation study

In this section, we first evaluate the effectiveness of the

object-driven attention. Next, we compare the object-driven

attention mechanism with the grid attention mechanism.

Then, we evaluate the impact of the spectral normalization

for Obj-GAN. We use Fig. 6 and the higher half of Table 1 to

present the comparison among different ablative versions of

Obj-GAN. Note that all ablative versions have been trained

with batch size 16 for 60 epochs. In addition, we use the

lower half of Table 1 to show the comparison between Obj-

GAN and previous methods. Finally, we validated the Obj-

GAN’s generalization ability on the novel text descriptions.

Object-driven attention. To evaluate the efficacy of the

object-driven attention mechanism, we implement a base-

line, named P-AttnGAN w/ Lyt, by disabling the object-

driven attention mechanism in Obj-GAN. In essence, P-

AttnGAN w/ Lyt can be considered as an improved version

of AttnGAN with the patch-wise discriminator (abbreviat-

ed as the prefix “P-” in name) and the modules (e.g., shape

discriminator) for handling the conditional layout (abbre-

viated as “Lyt”). Moreover, it can also be considered as a

modified implementation of [9], which resembles their two-

step (layout-image) generation. Note that there are three

key differences between P-AttnGAN w/ Lyt and [9]: (i)

P-AttnGAN w/ Lyt has a multi-stage image generator that

gradually increases the generated resolution and refines the

generated images, while [9] has a single-stage image gen-

erator. (ii) With the help of the grid attentive module, P-

AttnGAN w/ Lyt is able to utilize the fine-grained word-

level information, while [9] conditions on the global sen-

tence information. (iii) The third difference lies in their loss

functions: P-AttnGAN w/ Lyt uses the DAMSM loss in (11)

to penalize the mismatch between the generated images and

the input text descriptions, while [9] uses the perceptual loss

to penalize the mismatch between the generated images and

the ground-truth images. As shown in Table 1, P-AttnGAN

w/ Lyt yields higher Inception score than [9] does.

We compare Obj-GAN with P-AttnGAN w/ Lyt under

three settings, with each corresponding to a set of condi-

tional layout input, i.e., the predicted boxes & shapes, the

ground-truth boxes & predicted boxes, and the ground-truth

boxes & shapes. As presented in Table 1, Obj-GAN con-

sistently outperforms P-AttnGAN w/ Lyt on all three met-

rics. In Fig. 7, we use the same layout as the conditional

input, and compare the visual quality of their generated im-

ages. An interesting phenomenon shown in Fig. 7 is that

both the foreground objects (e.g., airplane and train) and the

background (e.g., airport and trees) textures synthesized by

Obj-GAN are much richer and smoother than those using

P-AttnGAN w/ Lyt. The effectiveness of the object-driven

attention for the foreground objects is easy to understand.

The benefits for the background textures using the object-

driven attention mechanism is probably due to the fact that

it implicitly provides stronger signal that distinguishes the

foreground. As such, the image generator may have richer

guidance and clearer emphasis when synthesizing textures

for a certain region.

Grid attention vs. object-driven attention. We compare

Obj-GAN with P-AttnGAN herein, so as to compare the ef-

fects of the object-driven and the grid attention mechanism-

s. In Fig. 8, we show the generated image of each method

as well as the corresponding attention maps aligned on the
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Figure 7: Qualitative comparison with P-AttnGAN w/ Lyt.

Figure 8: Qualitative comparison with P-AttnGAN. The attention

maps of each method are shown beside the generated image.

right side. In a grid attention map, the brightness of a region

reflects how much this region attended to the word above the

map. As for the object-driven attention map, the word above

each attention map is the most attended word by the high-

lighted object. The highlighted region of an object-driven

attention map is the object shape.

As analyzed in § 3.2.1, the reliability of grid attention

weights depends on the quality of the previous layer’s im-

age region features. This makes the grid attention unreliable

sometimes, especially for complex scenes. For example,

the grid attention weights in Fig. 8 are unreliable because

they are scattered (e.g., the attention map for “man”) and

inaccurate. However, this is not a problem for the object-

driven attention mechanism, because its attention weights

are directly calculated from embedding vectors of word-

s and class labels and are independent of image features.

Moreover, as shown in Fig. 4 and Equ. (6), the impact re-

gion of the object-driven attention context vector is bounded

by the object shapes, which further enhances its semantics

meaningfulness. As a result, the instance-driven attention

significantly improves the visual quality of the generated

images, as demonstrated in Fig. 8. Moreover, the perfor-

mance can be further improved if the semantic layout gen-

eration is improved. In the extreme case, Obj-GAN based

on ground truth layout (Obj-GAN2) has the best visual qual-

ity (the rightmost column of Fig. 8) and the best quantitative

evaluation (Table 1).

Obj-GAN w/ SN vs. Obj-GAN. We present the compari-

son between the cases with or without spectral normaliza-

tion in the discriminators in Table 1 and Fig. 6. We observe

that there is no obvious improvement on the visual quali-

ty, but slightly worse on the quantitative metrics. We show

Figure 9: Generated images for novel descriptions.

more results and discussions in § ??.

Comparison with previous methods. To compare Obj-

GAN with the previous methods, initialized by the Obj-

GAN models in the ablation study, we trained Obj-GAN-

SOTA with batch size 64 for 10 more epochs. In order to

evaluate AttnGAN on FID, we conducted the evaluation on

the officially released pre-trained model. Note that the S-

g2Im [12] focuses on generating images from scene graphs

and conducted the evaluation on a different split of COCO.

However, we still included Sg2Im’s results to reflect the

broader context of the related topic. As shown in Table 1,

Obj-GAN-SOTA outperforms all previous methods signif-

icantly. We notice that the increment of batch size does

boost the Inception score and R-precision, but does not im-

prove FID. The possible explanation is: with a larger batch

size, the DAMSM loss (a ranking loss in essence) in (11)

plays a more important role and improves Inception and R-

precision, but it does not focus on reducing FID between

the generated images and the real ones.

Generalization ability. We further investigate if Obj-GAN

just memorizes the scenarios in COCO or it indeed learn-

s the relations between the objects and their surroundings.

To this end, we compose several descriptions which reflect

novel scenarios that are unlikely to happen in the real-world,

e.g., a decker bus is floating on top of a lake, or a cat is

catching a frisbee. We use Obj-GAN to synthesize images

for these rare scenes. The results in Fig. 9 further demon-

strate the good generalization ability of Obj-GAN.

5. Conclusions

In this paper, we have presented a multi-stage Object-

driven Attentive Generative Adversarial Networks (Obj-

GANs) for synthesizing images with complex scenes from

the text descriptions. With a novel object-driven attention

layer at each stage, our generators are able to utilize the

fine-grained word/object-level information to gradually re-

fine the synthesized image. We also proposed the Fast R-

CNN based object-wise discriminators, each of which is

paired with a conditional input of the generator and provides

object-wise discrimination signal for that condition. Our

Obj-GAN significantly outperforms previous state-of-the-

art GAN models on various metrics on the large-scale chal-

lenging COCO benchmark. Extensive experiments demon-

strate the effectiveness and generalization ability of Obj-

GAN on text-to-image generation for complex scenes.
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