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Abstract

RGB images differentiate from depth as they carry more

details about the color and texture information, which can

be utilized as a vital complement to depth for boosting the

performance of 3D semantic scene completion (SSC). SSC

is composed of 3D shape completion (SC) and semantic

scene labeling while most of the existing approaches use

depth as the sole input which causes the performance bot-

tleneck. Moreover, the state-of-the-art methods employ 3D

CNNs which have cumbersome networks and tremendous

parameters. We introduce a light-weight Dimensional De-

composition Residual network (DDR) for 3D dense predic-

tion tasks. The novel factorized convolution layer is ef-

fective for reducing the network parameters, and the pro-

posed multi-scale fusion mechanism for depth and color im-

age can improve the completion and segmentation accuracy

simultaneously. Our method demonstrates excellent per-

formance on two public datasets. Compared with the lat-

est method SSCNet, we achieve 5.9% gains in SC-IoU and

5.7% gains in SSC-IOU, albeit with only 21% network pa-

rameters and 16.6% FLOPs employed compared with that

of SSCNet.

1. Introduction

We live in a 3D world where everything occupies part of

the physical space under the view of the human perception

system. Similarly, 3D scene understanding is of importance

since it is a reflection about the real-world scenario. As one

of the most vital fields in 3D scene understanding, Semantic

Scene Completion (SSC) has verity of applications, includ-

ing robotic navigation [13], scene reconstruction [14], auto-

driving [22] etc. However, due to the dimensional curse

brought by 3D representation [40] and the limited annota-

tion datasets, the research field of SSC still step slowly in

the past decades.

∗ First two authors contributed equally.

With the renaissance of deep learning [21, 9, 41] and a

few large-scale datasets being made available [25, 5, 36] in

recent years. The research activities of 3D shape processing

thrive again in the computer vision community, injecting

new possibilities and objectives for SSC as well introducing

some unprecedented challenges.

Conventional methods usually utilize the hand-crafted

features, such as voxel [19] and TSDF [18] to represent

the 3D object shape, and make use of the graph model to

infer the scene occupations and semantic labeling individ-

ually [12, 19]. The current state-of-the-art technique SSC-

Net [36], instead uses an end-to-end 3D network to conduct

the scene completion and category labeling simultaneously.

Through combining the semantic and geometrical informa-

tion implicitly via the network learning process, the two in-

dividual tasks can benefit from each other.

Though remarkable gains in terms of scene comple-

tion and labeling accuracy have been achieved, the mas-

sive amount of parameters brought by the 3D representation

make it computing-intensive. Moreover, another problem

suffered in the existing SSC is the low-resolution represen-

tation [36, 11]. In particular, due to the limitation of compu-

tation resources, both of the conventional and deep learning

based methods sacrifice high-resolution to compromise an

acceptable speed.

On the other hand, most of existing methods solely use

depth as input, which is struggled to differentiate objects

from various categories. For example, a paper and a table-

cloth on the same table can be easily distinguished by color

or texture information. To sum up, depth and color image

are different modalities captured by the sensor, they all pro-

vide us with what the scene looks like. The former gives

us more sense about the object shape and distance, while

the later transfers more information about the object texture

and saliency. It is proved that both of the two modalities are

helpful to boost the performance of SSC task [7], although

how to fuse them is still an unsolved problem.

To overcome the problems as mentioned above, we pro-

pose a light-weight semantic scene completion network,
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which utilizes both of the depth and RGB information. It

formulates the 3D scene completion and labeling as a joint

task and learns in an end-to-end way. The main contribu-

tions of this paper are three-fold:

• Firstly, we propose the dimensional decomposition

residual (DDR) blocks for 3D convolution, which dra-

matically reduces the model parameters without per-

formance degradation.

• Secondly, 3D feature maps of RGB and depth are fused

in multi-scale seamlessly, which enhances the network

representation ability and boost the performance of SC

and SSC tasks.

• Thirdly, the proposed end-to-end training network

achieves state-of-the-art performance on NYU [35]

and NYUCAD [6] datasets.

The rest of this paper is organized as follows. Sec-

tion 2 briefly summaries the related works, Section 3 intro-

duces the methodology. Section 4 presents the experimen-

tal results.Section 5 analyses different parts of the proposed

method. Section 6 summarizes our findings and concludes

with future research interests.

2. Related Works

2.1. 3D Scene Completion and Semantic Labeling

As an important branch in 3D scene understanding, se-

mantic scene completion (SSC) has many real-world appli-

cations and has received increasing attention recently with

the support of deep learning [21] and the large-scale anno-

tated dataset [36].

SSCNet [36] is the first one which formulates the shape

completion and semantic labeling as a joint task and learns

the task in an end-to-end way. TS3D [7] is based on SSC-

Net, and utilizes an additional network to incorporate the

color information into the learning loop. Both of SSC-

Net and TS3D adopt truncated signed distance function

(TSDF [18]) to encode the 3D volume, where every voxel

stores the distance value d to its closest surface, and the

sign of the value indicates whether the voxel is in free space

or occluded. However, TSDF is computationally intensive

since it requires the calculation of the distance between the

points on the surface and each point belong to the objects.

Although with remarkable performance achieved, the 3D

convolution representation results in a network that is com-

putationally expensive with highly redundant parameters.

2.2. Computation­efficient Networks

As a milestone in deep learning architectures,

ResNet [16] uses a residual block to prevent the per-

formance degradation that occurs when network layers

become deep. The extreme deep network leads to the

state-of-the-art performance in many tasks including

image classification [21], object detection [30, 29, 26] and

segmentation [3, 15]. However, this is very expensive con-

cerning computation resource and heavy-burden [16, 21].

To cater to the appeal for real-world applications, there

is a trend to tailor the heavy-burden networks to the

light-weight network in recent years.

Feature Representation Considering the redundant in-

formation contained in the 3D scene completion, the first

spectrum of work try to model the scene with sparse feature

representation. Specifically, OctNet [31] and O-CNN [39]

utilize the Octree-based CNN to represent the 3D object

shape. PointNet [2] and Kd-Networks [20] employ point

clouds to indicate the occupation of the scene. Although

saving the memory and computation, the neighbor pixels

are usually mapped to the same voxel, which inevitably

causes the detail missing for semantic labeling and scene

understanding.

Group Convolution In recent two years, there are sev-

eral popular light-weight networks have been proposed, in-

clude MobileNet [17, 34] and ShuffleNet [43]. In Mo-

bileNet, depth-wise convolutions and point-wise convolu-

tions are utilized to separate the channels as well as reduce

the parameters and the calculations. In ShuffleNet, besides

the group point-wise convolution and depth-wise convolu-

tion are adopted, shuffle layer is developed for informa-

tion exchange between different shuffle units. However, the

above models heavily rely on depth-wise convolution and

group convolution, and mainly target at 2D networks thus

can not directly be applied for 3D tasks.

Spatial Group Convolution To improve the computing

efficiency of the 3D network. EsscNet [42] is introduced,

rather than to conduct the group convolution on feature

channel dimension, which adopts the group convolution on

the spatial aspect. The drawback of spatial group convolu-

tion is that it splits the features manually into separate parts,

which cause the performance drops. Meanwhile, the split-

ting process involves hash table maintaining and coordinate

with other blocks, and is cumbersome for transplantation.

On the contrary, the proposed DDR block is much flexible,

and it can be planted to any network which contains the 3D

modules.

2.3. Modality Fusion in SSC

There are many works focused on RGBD fusion in 2D

applications [38, 27, 1, 28, 12]. RGBD sensor can capture

the depth and color images simultaneously, although depth

can be used to infer the geometry of the scene, which is

too sparse to reconstruct the occluded parts of the scene.

Compared with depth, color image carries more cues about

texture, color, and reflections, which can be viewed as an es-

sential complement to the depth for SSC task. Following the

design philosophy of SSCNet, TS3D [7] adds the color im-

age into the work-flow. However, the scene labeling needs

to be estimated twice, and the depth flow and color flow are
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Figure 1. (a) Network architecture for semantic scene completion. Taking RGBD image as input, the network predicts occupancies and

object labels simultaneously. (b) Detailed structure of the feature extractor. (c) Structure of the down-sample block.

still apart from each other from the essential.

In [10], two fusion strategies were proposed, one is

early-stage fusion which concatenates the feature at the first

layer, and another is mid-level fusion which concatenates

the features before the output layer. Although follow the

overall design and reuse the features of SSCNet, the perfor-

mance of adopting both fusion strategies are unexpectedly

worse than that of SSCNet.

The most related work for feature fusion is RDFNet [27],

which utilizes multi-scale fused features from color images,

and aims to build a 2D segmentation framework. However,

fusing the features in the 3D network is much more chal-

lenging as mentioned before. In this paper, we propose a

novel fusion strategy which effectively fuses the 3D depth

and color features on multi-scales without bringing in extra

parameters.

3. Methodology

3.1. Overview

This section presents the proposed light-weight network

for SSC. The computation-efficient Dimensional Decompo-

sition Residual (DDR) block, as well as a novel modality

fusion module, are emphasized. On the one hand, through

dimensional splitting on 3D convolutions and dense con-

nection, using DDR blocks can dramatically reduce the net-

work parameters. On the other hand, through fusing the

3D features of depth and color image seamlessly, the pro-

posed network can efficiently make use of the information

captured by the RGBD sensors, and various modulates of

inputs complement with each other thus boost the perfor-

mance of shape completion and scene labeling simultane-

ously. The framework of the proposed network is shown

in Figure 1. The network has two feature extractors, which

take a full resolution depth and the corresponding color im-

age as inputs, respectively. The network first uses 2D DDR

blocks to learn the local textures and the geometry repre-

sentation. Then, the 2D feature maps are projected to 3D

space by a projection layer. A multi-level fusion strategy is

then applied to fuse the texture and geometry information.

After that, the network responses are then concatenated and

fed into the subsequent light-weight Atrous Spatial Pyramid

Pooling (ASPP) module to aggregate information in multi-

ple scales. In the end, another three pointwise convolutional

layers are used to predict the final voxel labels. The follow-

ing parts will explain the design details of each module.

3.2. Dimensional Decomposition Residual Blocks

3.2.1 Basic DDR

Residual layers [16] have the property of allowing convolu-

tional layers to approximate residual functions,

xt = Fd (xt−1, {Wi}) + xt−1 (1)

where xt−1 and xt are the input and output.. The func-

tion Fd (xt−1, {Wi}) represents the residual mapping to be

learned and d is the dilation rate within the block. This

residual formulation facilitates learning and alleviates the

degradation problem present in architectures that stack a

large number of layers [33].

Directly applying the original (2D) ResNet block into the

3D dense prediction task, the two corresponding 3D resid-

ual layers will be: the non-bottleneck design with two-layer
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Figure 2. Residual blocks and the proposed DDR blocks.

3× 3× 3 convolutions as described in Figure 2(a), and the

three-layer bottleneck version as depicted in Figure 2(c).

However, both of the two structures will suffer the prob-

lem of high computational costs as the network parameters

grow in cubic. We propose to redesign the residual through

decomposing the 3D convolution into three consecutive lay-

ers along each dimension. The proposed basic DDR block

is shown in Figure 2(b) and its deeper bottleneck version is

shown in Figure 2(d). In this way, the network can reduce

parameters and capable of capturing 3D geometric informa-

tion according to the theory in [37].

Here we provide an episode to illustrate the effectiveness

of DDR block for reducing network parameters: Consid-

ering a 3D CNN with input channels cin, output channels

cout, and kernel size of kx × ky × kz . Without losing the

generality, we can assume kx = ky = kz = k. The original

block in 3D CNN is then be decomposed into three consec-

utive layers with filter size 1×1×k, 1×k×1 and k×1×1,

accordingly. The computational costs of the original block

and DDR block are proportional to cin×cout×k×k×k and

cin×cout×(k+k+k), respectively. The advantage of DDR

for reducing network parameters will be enlarged when k

become large, since 3k ≪ k3. As an example, the param-

eters of a typical 3D convolutional layer with a 3 × 3 × 3
kernel will drops to 1/3 after adopting DDR block.

3.2.2 Deeper DDR

Inspired by the bottleneck design [16], we further deliver a

deeper DDR block. In specific, for each residual function, a

1×1×1 layer is added at both the top and bottom of the Di-

mensional Decomposition convolutions. The 1×1×1 layers

are responsible for reducing and restoring the dimensions,

which make the three Dimensional Decomposition convo-

lutional layers form a bottleneck with smaller input/output

dimensions.

Moreover, parameter-free identity shortcuts are added

within each dimensional decomposition convolution. The

dense identity connections are not only helpful for robust

feature representation but also have the merits of alleviating

the vanishing-gradient problem and strengthen the feature

propagation [16]. In the remainder of the paper, DDR refers

to the deeper DDR block unless specifically noted.

3.3. Two Modality Multi­level Feature Fusion

3.3.1 Feature Extractor Module

In our network, there are two parallel branches for feature

extraction corresponding to the depth and color image. As

shown in Figure 1(b), the feature extractor module is com-

posed of three components: a 2D feature extractor, a 3D

feature extractor and a projection layer which mapping the

2D feature to the 3D feature. The network first utilizes 2D

feature extractor to learn local color and texture representa-

tion. After feature mapping to the 3D space by a projection

layer, 3D feature extractor is employed to acquire the ge-

ometry and context information.

2D Feature Extractor To extract features from a 2D

depth and color image, a 2D point-wise convolution is

firstly used to increase the channels of feature maps. Then

two 2D DDR blocks are stacked for residual learning.

Through the process, the resolution of the output feature

map keeps the same as the input image. Please note, in our

network, the number of parameters for 2D DDR blocks is

192, which is insignificant when compared with the 195k

parameters for 3D DDR blocks. Therefore, we mainly fo-

cus on the light-weight operations of 3D DDR blocks.

Projection Layer Since each pixel in the depth map cor-

responding to a tensor in the 2D feature map, every fea-

ture tensor can be projected into the 3D volume at the lo-

cation with the same depth value. This step yields an in-

complete 3D volume that assigns to every surface voxel its

corresponding feature tensor. For the voxels that are not

occupied by any depth values, their feature vectors are set

to zeros. The mapping index Tu,v at (u, v) can be com-

puted using the depth value Iu,v and camera pose C which

are provided along with each image. Because the feature

volume resolution is lower than the feature map resolution,

several neighboring features will be projected into the same

voxel, and we use max-pooling to simulate this step. With

the feature projection layer, the 2D feature maps extracted

by the 2D CNN are converted to a view-independent 3D

feature volume. During training, the mapping indexes T
between feature map tensors and voxels are recorded in a

table for gradient back-propagation.

3D Feature Extractor After the feature projection layer,
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scene completion semantic scene completion

Methods prec. recall IoU ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

Lin et al. [23] 58.5 49.9 36.4 0.0 11.7 13.3 14.1 9.4 29.0 24.0 6.0 7.0 16.2 1.1 12.0

Geiger et al. [8] 65.7 58.0 44.4 10.2 62.5 19.1 5.8 8.5 40.6 27.7 7.0 6.0 22.6 5.9 19.6

SSCNet [36] 57.0 94.5 55.1 15.1 94.7 24.4 0.0 12.6 32.1 35.0 13.0 7.8 27.1 10.1 24.7

EsscNet [42] 71.9 71.9 56.2 17.5 75.4 25.8 6.7 15.3 53.8 42.4 11.2 0 33.4 11.8 26.7

ours 71.5 80.8 61.0 21.1 92.2 33.5 6.8 14.8 48.3 42.3 13.2 13.9 35.3 13.2 30.4

Table 1. Results on the NYU dataset. Bold numbers represent the best scores.

a view-independent 3D feature volume is acquired. In this

step, we further extract features using two 3D DDR blocks.

A down-sample block is added in front of each DDR blocks

to reduce the size of the feature maps and increase the di-

mension of its channel. Figure 1(c) shows the structure of

the down-sample block. A pooling layer and a pointwise

convolution layer are concatenated to increase the channels

of the output feature map of the down-sample block.

3.3.2 Multi-level Feature Fusion

One primary challenge of 3D RGBD based semantic seg-

mentation is how to effectively extract the color features

along with depth features and to utilize those features for

the labeling. To fully use the multi-modal features, we pro-

pose a novel feature fusion strategy which is inspired by

[24, 27]. We employ multi-modal CNN feature fusion while

preserving the lower computational cost. In specific, differ-

ent levels of features are extracted through multiple DDR

modules, and then these features are merged together by

element-wise add. The reason for using element-wise add

rather than other operations is because it can fuse the fea-

tures neatly with insignificant computation costs.

Through the cascaded DDR blocks, both low-level fea-

tures and high-level features are captured, which enhance

the representation ability of the network and is beneficial

for the performance of semantic scene completion task.

3.4. Light­weight ASPP Module

Different object categories have various physical 3D

sizes in indoor scenes. This requires the network to capture

information at different scales in order to recognize the ob-

jects reliably. Atrous spatial pyramid pooling (ASPP) [3, 4]

exploits multi-scale features by employing multiple parallel

filters with different dilatation rates and has been proved to

be powerful to improve the CNN’s ability to handle objects

with various sizes. However, directly applying ASPP in 3D

semantic scene completion would bring in tremendous pa-

rameters as well as large computations.

Based on this consideration, we introduce a light-weight

ASPP (LW-ASPP) which is capable of handling scale vari-

ability while requiring fewer computations. In specific,

LW-ASPP uses multiple parallel DDR blocks with different

sampling (dilation) rates. The dilated DDR is implemented

by setting a dilation rate in the three-dimensional decompo-

sition convolutions within the DDR block. The dilated DDR

explicitly adjusts the field-of-view of filters as well as con-

trols the resolution of the feature responses. The features

extracted from different sampling rates are further concate-

nated and fused to generate the final result with the output

layer, which is constructed by the three 3D point-wise con-

volution layers as shown in Figure 1.

3.5. Training and Loss

Training Given the training dataset (i.e. the RGBD images

and ground truth volumetric object labels of 3D scenes), our

method can be trained end-to-end. SSCNet [36] sets a small

value (0.05) as the weight of the voxels in free space for

data balancing in the training process. We adopt the same

strategy in our early training process. With each additional

50 training epochs, the weight of empty voxels is gradually

doubled until it is set to be the same as the other occupied

voxels. All the experiments are conducted using the py-

Torch framework on GPU. Our model is trained using the

SGD optimizer with a momentum of 0.9, weight decay of

10−4 and batch size is 2, the initial learning rate is 0.01 and

divided by a factor of 10 when the training loss changes less

than 1e-4 within 5 consecutive epochs.

Loss For training the network, we employ the softmax

cross entropy loss on the unnormalized network outputs y:

L = −

N
∑

c=1

wcŷi,c log

(

eyic

∑N

c′ e
y
ic′

)

(2)

where ŷi,c are the binary ground truth vectors, i.e. ŷi,c = 1
if voxel i is labeled by class c, N is the number of classes,

and wc is the loss weight. To compute the loss function, we

remove all voxels outside the field of view and the room and

include all non-empty voxels plus occluded voxels.

4. Experiments

In this section, we evaluate and compare the proposed

method with the state-of-the-art approaches on two public

datasets, i.e. NYU [35] and NYUCAD [6]. Both the quanti-

tative and qualitative results demonstrate the superiority of

our algorithm on SSC task.

4.1. Dataset and Metrics

Dataset We evaluate the proposed method on the NYUv2

dataset [35], which is in the following denoted as NYU.

NYU consists of 1449 indoor scenes that are captured via
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scene completion semantic scene completion

Methods prec. recall IoU ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

Zheng et al. [44] 60.1 46.7 34.6 - - - - - - - - - - - -

Firman et al. [6] 66.5 69.7 50.8 - - - - - - - - - - - -

SSCNet [36] 75.4 96.3 73.2 32.5 92.6 40.2 8.9 33.9 57.0 59.5 28.3 8.1 44.8 25.1 40.0

TS3D [7] 80.2 91.0 74.2 33.8 92.9 46.8 27.0 27.9 61.6 51.6 27.6 26.9 44.5 22.0 42.1

ours 88.7 88.5 79.4 54.1 91.5 56.4 14.9 37.0 55.7 51.0 28.8 9.2 44.1 27.8 42.8

Table 2. Results on the NYUCAD dataset. Bold numbers represent the best scores.

Methods Params/k FLOPs/G ceil. floor wall win. chair bed sofa table tvs furn. objs. avg.

Ours-Depth 155.0 20.6 30.6 93.0 28.6 6.7 13.6 60.3 20.0 12.3 0. 30.9 12.0 28.9

Ours-RGB 155.0 20.6 19.3 91.8 30.5 3.7 13.1 44.4 37.1 10.6 5.5 31.0 11.9 27.2

Ours-RGBD 195.0 27.2 21.1 92.2 33.5 6.8 14.8 48.3 42.3 13.2 13.9 35.3 13.2 30.4

Table 3. Ablation experiments of RGB and Depth fusion.

a Kinect sensor. Following SSCNet [36], we use the 3D

annotated labels provided by [32] for semantic scene com-

pletion task. NYUCAD [6] uses the depth maps generated

from the projections of the 3D annotations to reduce the

misalignment of depths and the annotations. We compare

our method with the state-of-the-art methods on both NYU

and NYUCAD datasets.

Metrics As the evaluation metric, the voxel-level intersec-

tion over union (IoU) between the predicted voxel label and

ground truth label is used. For the task of semantic scene

completion, we evaluate the IoU of each object classes on

both the observed and occluded voxels. For the task of

scene completion, we treat all non-empty object class as one

category and evaluate IoU of the binary predictions on the

occluded voxels.

4.2. Comparisons with the State­of­the­art Methods

Table 1 shows the results on NYU dataset acquired by

our method and the state-of-the-art methods. We achieve

state-of-the-art performance regarding different metrics.

Specifically, we achieve the best performance for both the

tasks of scene completion and semantic scene completion

and also rank the second best of recall and precision for

scene completion. We outperform the previous SSCNet by

a significant margin in overall performance, that are 5.7%

gains in semantic scene completion and 5.9% gains in scene

completion. The proposed network demonstrate the supe-

rior performance in some categories such as ceil., table, tvs,

furn. etc. We inspect this improvement due to the novel ar-

chitecture, that makes use of the robust features from multi-

level and multi-modalities, and data fusion, which effec-

tively complement the details from the color image to these

textureless objects.

To validate the robustness and generalization of the pro-

posed network, we also conduct experiments on NYUCAD

dataset as shown in Table 2. The comparison results with

the state-of-the-art methods present the same trend. Among

all of the methods, we achieve the best performance for se-

mantic scene completion and scene completion.

Methods Params/k FLOPs/G SC-IoU SSC-IoU

SSCNet [36] 930.0 163.8 55.1 24.7

EsscNet [42] - 22.0 56.2 26.7

Ours-Depth 155.0 20.6 59.0 28.9

Ours-RGBD 195.0 27.2 61.0 30.4

Table 4. Params, FLOPs and Performance of our approach com-

pared with other methods.

4.3. Quantitative Analysis

Since we target at a light-weight 3D network for seman-

tic scene completion, in this section, we list the params

and FLOPs of the proposed method as well as the base-

line method. As shown in Table 4. In specific, compared

with the state-of-the-art method SSCNet, the parameters in

our method is 21.0% of that in SSCNet, and the FLOPs is

16.6% of that SSCNet. However, the performance of both

scene completion and semantic scene completion is around

6% higher than that of SSCNet. Compared with the Essc-

Net [42], depth solely is used as the input for a fair compar-

ison, our method is computationally cheaper than EsscNet

with 6% reduction in FLOPS and increased performance.

For SC and SSC tasks, EsscNet reaches the accuracies of

56.2% (SC) and 26.7% (SSC), and we achieve 59.0% (SC)

and 28.9% (SSC).

4.4. Qualitative Analysis

Figure 3.4 shows visualized results (in different scenar-

ios) of the scene segmentation generated by the proposed

method (c) and SSCNet (d), ground truth (b) are also pro-

vided as a reference. All the results are acquired on the

NYUCAD validation set. As can be seen, compared with

SSCNet, the scene completion results of our method is

much more abundant in detail and less error-prone.

It can be easily seen that our method performs better for

objects such as furn, wall, and floor. For example, in the

second and third rows, SSC will cause some missing in the

details of the wall, which is rarely happening in our algo-

rithm. Part of the reason that our method is better for han-

dling the texture-less and small objects we attribute which

come from the incorporated color features. In row(1), our
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(a) RGB and Depth images (b) Ground truth (c) Ours (d) Results of SSCNet

Ceil floor wall window Chair bed sofa table tvs furn objects

(5)

(6)

(4)

(3)

(2)

(1)

Figure 3. Qualitative results on NYUCAD. From left to right: Input RGB-D image, ground truth, results obtained by our approach, and

results obtained by SSCNet [36]. Overall, our completed semantic 3D scenes are less cluttered and show a higher voxel class accuracy

compared to SSCNet. Refer to Section 4.4 for the detailed analysis.
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Method Params/k FLOPs/G SC-IoU SSC-IoU

Without ASPP 132.0 21.13 56.8 26.8

3D-ASPP 431.0 63.28 62.7 30.8

LW-ASPP 195.0 27.22 61.0 30.4

Table 5. Params, FLOPs and Performance with/without ASPP.

method effectively captures the detail information about the

leg of the chair. In addition, compared with SSCNet, the

proposed method maintains the segmentation consistency

for objects with big sizes, such as the wall and floor in

the row(2) and ceiling in the row(4). And row(3) shows

a much challenging instance, i.e. the window, both SSCNet

and our method cannot acquire satisfied results. However,

our method can recognize part of the information. Row(5)

and row(6) show the failure cases in our methods, specif-

ically, in the row(5), the fresco on the wall has the simi-

lar texture with the stuff on the bookshelf, it thus wrongly

classified into the category of the bookshelf. In row(6), the

ground-truth furniture circled by the red dashed rectangle,

SSCNet wrongly predicts it into the object category, and our

network wrongly classifies it as a chair, which may due to

the quite similar shape and color information between the

furniture and the chair category. In supplementary materi-

als, more visualized results are provided.

5. Ablation Study

RGB and Depth Fusion Both RGB and Depth information

are important for 3D scene understanding. To verify the ef-

fectiveness of the proposed multi-level fusion strategy, we

evaluate the performance of our method with only depth or

RGB image as the input. As can be seen in Table 3, and the

performance on SSC of our method for only using depth

or color image as input are 28.9% and 27.2%, respectively.

Since RGB images carry more details such as color and

texture, which is beneficial for the semantic information,

this can be seen from the results of category tvs and cate-

gory sofa. However, the advantage of using depth lies on

it carries more geometry information, for the objects which

are difficult to differentiate through color information, it is

much easier to tell the difference according to their shapes.

Such as table and floor. Moreover, depth is less sensitive

regarding illumination changes and the dramatic color vari-

ation within the same category, which may explain for the

indoor scene, the result of using depth is a bit better than

that of using a color image as input.

Meanwhile, merging depth and color features in our

method significantly improve the SSC performance, which

proves the two-modality information can be an excellent

complement to each other. And benefit from the light-

weight DDR block applied in the network, the overall com-

putations and parameters remain small.

Light-weight ASPP The effectiveness of ASPP has been

verified in 2D semantic segmentation [3] task. However,

the direct expansion of ASPP from 2D to 3D would bring

Method
Params

(k)

FLOPs

(G)

Speed

(FPS)

Memory

(M)

Network

Depth

SSC-IoU

(%)

SSCNet [34] 930.0 163.8 0.7 5305 14 24.7

Ours-3D-ResNet 1540.5 204.7 1.3 1841 28 30.8

Ours-DDR 195.0 27.2 1.5 1829 44 30.4

Table 6. The inference speed and GPU memory usage of our DDR-

Net and the 3D-ResNet based networks. All results are acquired

on a GTX1080ti GPU and evaluated on the NYU[33] test set.

in a massive amount of parameters as well as make the net-

work cumbersome. Lightweight ASPP (LW-ASPP) using

DDR block as the primary core, which not only effectively

reduces the network parameters but also inherits the mer-

its of ASPP for capturing multi-scale information, thus is

beneficial to the 3D task.

In order to verify the validity of LW-ASPP, we design

a group of experiments in which LW-ASPP was removed

from the network or replaced with 3D ASSP directly ex-

tended from ASPP. As can be seen in Table 5, when com-

pared with the network without ASPP module, adding LW-

ASPP boosts the SC-IoU 3.2% and SSC-IoU 3.6%. When

replacing LW-ASPP with 3D-ASPP, the performance can be

further improved by a small margin but with the sacrifice of

over two times params and around three times FLOPs.

Change of speed/memory and performance As shown in

Table 6, DDRNet with quite a few parameters and FLOPs

compared to SSCNet. DDRNet has a deeper structure,

thus stronger non-linear representation ability than the 3D-

ResNet version, albeit less memory cost required. More-

over, DDRNet achieves much faster speed with an insignif-

icant performance loss.

6. Conclusion

This paper proposes a novel structure for handling the

semantic scene completion problem. Specifically, an end-

to-end light-weight Dimensional Decomposition Residual

(DDR) network is delivered for scene completion and se-

mantic scene labeling. The two contributions are the

proposed factorized convolution layer and a novel two-

modality fusion mechanism. The former is effective to re-

duce the parameters within the network, and the later can

fuse the depth and color image seamlessly in multi-level,

the state-of-the-art results are achieved for both SSC and

SC task on two public datasets. In the future, considering

to differentiate instances of the indoor scene as well as to

incorporate the shuffle layer into the proposed light-weight

network will be our research interests.

Acknowledgement

This work is supported by the National Natural Science

Foundation of China under grants 61603184 and 61773210.

We also gratefully acknowledge the support of the Aus-

tralian Research Council through grants CE140100016 and

FL130100102.

7700



References

[1] A. Chang, A. Dai, T. Funkhouser, M. Halber, M. Nießner,

M. Savva, S. Song, A. Zeng, and Y. Zhang. Matter-

port3d: Learning from rgb-d data in indoor environments.

arXiv:1709.06158, 2017.

[2] R. Q. Charles, H. Su, M. Kaichun, and L. J. Guibas. Pointnet:

Deep learning on point sets for 3d classification and segmen-

tation. In CVPR, pages 77–85, 2017.

[3] L. C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Deeplab: Semantic image segmentation with

deep convolutional nets, atrous convolution, and fully con-

nected crfs. TPAMI, 40(4):834–848, 2018.

[4] L. C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and

H. Adam. Encoder-decoder with atrous separable convo-

lution for semantic image segmentation. arXiv preprint

arXiv:1802.02611, 2018.

[5] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-

Fei. Imagenet: A large-scale hierarchical image database. In

CVPR, pages 248–255, 2009.

[6] M. Firman, O. Mac Aodha, S. Julier, and G. J. Brostow.

Structured prediction of unobserved voxels from a single

depth image. In CVPR, pages 5431–5440, 2016.

[7] M. Garbade, J. Sawatzky, A. Richard, and J. Gall. Two

stream 3d semantic scene completion. arXiv:1804.03550,

2018.

[8] A. Geiger and C. Wang. Joint 3d object and layout inference

from a single rgb-d image. In German Conference on Pattern

Recognition, pages 183–195, 2015.

[9] D. Gong, J. Yang, L. Liu, Y. Zhang, I. Reid, C. Shen, A. Van

Den Hengel, and Q. Shi. From motion blur to motion flow:

a deep learning solution for removing heterogeneous motion

blur. In CVPR, pages 2319–2328, 2017.

[10] A. B. S. Guedes, T. E. de Campos, and A. Hilton. Semantic

scene completion combining colour and depth: preliminary

experiments. arXiv preprint arXiv:1802.04735, 2018.

[11] Y. X. Guo and X. Tong. View-volume network for

semantic scene completion from a single depth image.

arXiv:1806.05361, 2018.
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