
Supervised Fitting of Geometric Primitives to 3D Point Clouds

Lingxiao Li*1 Minhyuk Sung*1 Anastasia Dubrovina1 Li Yi1 Leonidas Guibas1,2

1Stanford University 2Facebook AI Research

Abstract

Fitting geometric primitives to 3D point cloud data

bridges a gap between low-level digitized 3D data and high-

level structural information on the underlying 3D shapes.

As such, it enables many downstream applications in 3D

data processing. For a long time, RANSAC-based methods

have been the gold standard for such primitive fitting prob-

lems, but they require careful per-input parameter tuning

and thus do not scale well for large datasets with diverse

shapes. In this work, we introduce Supervised Primitive

Fitting Network (SPFN), an end-to-end neural network that

can robustly detect a varying number of primitives at differ-

ent scales without any user control. The network is super-

vised using ground truth primitive surfaces and primitive

membership for the input points. Instead of directly predict-

ing the primitives, our architecture first predicts per-point

properties and then uses a differential model estimation

module to compute the primitive type and parameters. We

evaluate our approach on a novel benchmark of ANSI 3D

mechanical component models and demonstrate a signifi-

cant improvement over both the state-of-the-art RANSAC-

based methods and the direct neural prediction.

1. Introduction

Recent 3D scanning techniques and large-scale 3D

repositories have widened opportunities for 3D geometric

data processing. However, most of the scanned data and

the models in these repositories are represented as digitized

point clouds or meshes. Such low-level representations of

3D data limit our ability to geometrically manipulate them

due to the lack of structural information aligned with the

shape semantics. For example, when editing a shape built

from geometric primitives, the knowledge of the type and

parameters of each primitive can greatly aid the manipula-

tion in producing a plausible result (Figure 1). To address

the absence of such structural information in digitized data,

in this work we consider the conversion problem of map-

ping a 3D point cloud to a number of geometric primitives

that best fit the underlying shape.

*equal contribution

SPFN

Editing

Figure 1: Our network SPFN generates a collection of geo-
metric primitives that fit precisely to the input point cloud,
even for tiny segments. The predicted primitives can then
be used for structure understanding or shape editing.

Representing an object with a set of simple geometric

components is a long-standing problem in computer vision.

Since the 1970s [3, 19], the fundamental ideas for tackling

the problem have been revised by many researchers, even

until recently [31, 34, 9]. However, most of these previous

work aimed at solving perceptual learning tasks; the main

focus was on parsing shapes, or generating a rough abstrac-

tion of the geometry with bounding primitives. In contrast,

our goal is set at precisely fitting geometric primitives to the

shape surface, even with the presence of noise in the input.

For this primitive fitting problem, RANSAC-based

methods [28] remain the standard. The main drawback of

these approaches is the difficulty of finding suitable algo-

rithm parameters. For example, if the threshold of fitting

residual for accepting a candidate primitive is smaller than

the noise level, over-segmentation may occur, whereas a too

large threshold will cause the algorithm to miss small pieces

primitives. This problem happens not only when process-

ing noisy scanned data, but also when parsing meshes in 3D

repositories because the discretization of the original shape

into the mesh obscures the accurate local geometry of the

shape surface. The demand for careful user control prevents

RANSAC-based methods to scale up to a large number of

categories of diverse shapes.

Such drawback motivates us to consider a supervised

deep learning framework. The primitive fitting problem can

2652

be viewed as a model prediction problem, and the simplest

approach would be directly regressing the parameters in the

parameter space using a neural network. However, the re-

gression loss based on direct measurement of the parameter

difference does not reflect the actual fitting error – the dis-

tances between input points and the primitives. Such mis-

informed loss function can significantly limit prediction ac-

curacy. To overcome this, Brachmann et al. [4] integrated

the RANSAC pipeline into an end-to-end neural network

by replacing the hypothesis selection step with a differen-

tiable procedure. However, their framework predicts only

a single model, and it is not straightforward to extend it to

predict multiple models (primitives in our case). Ranftl et

al. [26] also introduced a deep learning framework to per-

form model fitting via inlier weight prediction. We extend

this idea to predict weights representing per-point member-

ship for multiple primitive models in our setting.

In this work, we propose Supervised Primitive Fitting

Network (SPFN) that takes point clouds as input and pre-

dicts a varying number of primitives of different types with

accurate parameters. For robust estimation, SPFN does not

directly output primitive parameters, but instead predicts

three kinds of per-point properties: point-to-primitive mem-

bership, surface normal, and the type of the primitive the

point belongs to. Our framework supports four types of

primitives: plane, sphere, cylinder, and cones. These types

form the most major components in CAD models. Given

these per-point properties, our differentiable model estima-

tor computes the primitive parameters in an algebraic way,

making the fitting loss fully backpropable. The advantage

of our approach is that the network can leverage the read-

ily available supervisions of per-point properties in train-

ing. It has been shown that per-point classification prob-

lems (membership, type) are suitable to address using a

neural network that directly consumes a point cloud as in-

put [24, 25]. Normal prediction can also be handled effec-

tively with a similar neural network [2, 10].

We train and evaluate the proposed method using our

novel dataset, ANSI 3D mechanical component models

with 17k CAD models. The supervision in training is

provided by parsing the CAD models and extracting the

primitive information. In our comparison experiments, we

demonstrate that our supervised approach outperforms the

widely used RANSAC-based approach [28] with a big mar-

gin, despite using models from separate categories in train-

ing and testing. Our method shows better fitting accuracy

compared to [28] even when we provide the latter with

much higher-resolution point clouds as input.

Key contributions

• We propose SPFN, an end-to-end supervised neural

network that takes a point cloud as input and detects

a varying number of primitives with different scales.

• Our differentiable primitive model estimator solves a

series of linear least-square problems, thus making the

whole pipeline end-to-end trainable.

• We demonstrate the performance of our network us-

ing a novel CAD model dataset of mechanical compo-

nents.

2. Related Work

Among a large body of previous work on fitting prim-

itives to 3D data, we review only methods that fit primi-

tives to objects instead of scenes, as our target use cases are

scanned point clouds of individual mechanical parts. For a

more comprehensive review, see survey [13].

RANSAC-based Primitive Fitting. RANSAC [8] and its

variants [30, 20, 6, 14] are the most widely used methods for

primitive detection in computer vision. A significant recent

paper by Schnabel et al. [28] introduced a robust RANSAC-

based framework for detecting multiple primitives of differ-

ent types in a dense point cloud. Li et al. [17] extended

[28] by introducing a follow-up optimization that refines

the extracted primitives based on the relations among them.

As a downstream application of the RANSAC-based meth-

ods, Wu et al. [32] and Du et al. [7] proposed a proce-

dure to reverse-engineer the Constructive Solid Geometry

(CSG) model from an input point cloud or mesh. While

these RANSAC variants showed state-of-the-art results in

their respective fields, their performance typically depends

on careful and laborious parameter tuning for each category

of shapes. In addition, point normals are required, which are

not readily available from 3D scans. In contrast, our super-

vised deep learning architecture requires only point cloud

data as input and does not need any user control at test time.

Network-based Primitive Fitting. Neural networks have

been used in recent approaches to solve the primitive fitting

problem in both supervised [34] and unsupervised [31, 29]

settings. However, these methods are limited in accuracy

with a restricted number of supported types. In the work

of Zou et al. [34] and Tulsiani et al. [31], only cuboids are

predicted and therefore can only serve as a rough abstrac-

tion of the input shape or image. CSGNet [29] is capable

of predicting more variety of primitives but with low ac-

curacy, as the parameter extraction is done by performing

classification on a discretized parameter space. In addition,

their reinforcement learning step requires rendering a CSG

model to generate visual feedback for every training itera-

tion, making the computation demanding. Our framework

can be trained end-to-end and thus does not need expensive

external procedures.

3. Supervised Primitive Fitting Network

We propose Supervised Primitive Fitting Network

(SPFN) that takes an input shape represented by a point

2653

Input
Point Cloud

P ∈ ℝ$×&

Network

Variables

Differentiable
module

External
solver

Inputs

Supervision

PointNet++

'W ∈ [0,1]$×.

'N ∈ ℝ$×&

'T ∈ [0,1]$×1

Softmax

22-normalize

Softmax

Primitives
Reordering
(Sec. 3.1)

GT Surfaces S

Primitives A

MembershipsW

Normals N

Types T

Model
Estimation
(Sec. 3.2)

'A

ℒ

ℒres

ℒaxis

ℒseg

ℒnor

ℒtype

Losses
(Sec. 3.3)

'W 'NP

C : Number of points

D : Number of primitives

E : Number of primitive types

Supervision

Memberships

Normals

Types

Figure 2: Network architecture. PointNet++ [25] takes input point cloud P and outputs three per-point properties: point-to-

primitive membership Ŵ, normals N̂, and associated primitive type T̂. The order of ground truth primitives are matched
with the output in the primitive reordering step (Section 3.1). Then, the output primitive parameters are estimated from the
point properties in the model estimations step (Section 3.2). The loss is defined as the sum of five loss terms (Section 3.3).

cloud P ∈ R
N×3, where N is number of points, and pre-

dicts a set of geometric primitives that best fit the input. The

output of SPFN contains the type and parameters for every

primitive, plus a list of input points assigned to it. Our net-

work supports L = 4 types of primitives: plane, sphere,

cylinder, and cone (Figure 3), and we index these types by

0, 1, 2, 3 accordingly. Throughout the paper, we will use no-

tations {·}i,: and {·}:,k to denote i-th row and k-th column

of a matrix, respectively.

During training, for each input shape with K primitives,

SPFN leverages the following ground truth information as

supervision: point-to-primitive membership matrix W ∈
{0, 1}N×K , unoriented point normals N ∈ R

N×3, and

bounded primitive surfaces {Sk}k=1,...,K . For the member-

ship matrix, Wi,k indicates if point i belongs to primitive k

so that
∑K

k=1 Wi,k ≤ 1. Notice that W:,k, the k-th column

of W, indicates the point segment assigned to primitive k.

We allow K to vary for each shape, and W can have zero

rows indicating unassigned points (points not belonging to

any of the K primitives; e.g. it belongs to a primitive of

unknown type). Each Sk contains information about the

type, parameters, and boundary of the k-th primitive sur-

face, and we denote its type by tk ∈ {0, 1, . . . , L − 1} and

its type-specific parameters by Ak. We include the bound-

ary of Sk in the supervision besides P because P can be

noisy, and we do not discriminate against small surfaces in

evaluating per-primitive losses (see Equation 17). For con-

venience, we define per-point type matrix T ∈ {0, 1}N×L

by Ti,l =
∑K

k=1 1(Wi,k = 1)1(tk = l), where 1(·) is the

indicator function.

The pipeline of SPFN at training time is illustrated in

Figure 2. We use PointNet++ [25] segmentation architec-

ture to consume the input point cloud P. A slight modifi-

cation is that we add three separate fully-connected layers

to the end of the PointNet++ pipeline in order to predict

the following per-point properties: point-to-primitive mem-

bership matrix Ŵ ∈ [0, 1]N×K1, unoriented point normals

N̂ ∈ R
N×3, and per-point primitive types T̂ ∈ [0, 1]N×L.

We use softmax activation to obtain membership probabil-

ities in the rows of Ŵ and T̂, and we normalize the rows

of the N̂ to constrain normals to have l2-norm 1. We then

feed these per-point quantities to our differentiable model

estimator (Section 3.2) that computes primitive parameters

{Âk} based on the per-point information. Since this last

step is differentiable, we are able to backpropagate any kind

of per-primitive loss through the PointNet++, and thus the

training can be done end-to-end.

Notice that we do not assume a consistent ordering of

ground truth primitives, so we do not assume any order-

ing of the columns of our predicted Ŵ. In Section 3.1, we

describe the primitive reordering step used to handle such

mismatch of orderings. In Section 3.2, we present our dif-

ferential model estimator for predicting primitive parame-

ters {Âk}. In Section 3.3, we define each term in our loss

function. Lastly, in Section 3.4, we describe implementa-

tion details.

3.1. Primitives Reordering

Inspired by Yi et al. [33], we compute Relaxed Intersec-

tion over Union (RIoU) [15] for all pairs of columns from

the membership matrices W and Ŵ. The RIoU for two

indicator vectors w and ŵ is defined as follows:

RIoU(w, ŵ) =
wTŵ

‖w‖1 + ‖ŵ‖1 −wTŵ
. (1)

The best one-to-one correspondence (determined by RIoU)

between columns of the two matrices is then given by Hun-

garian matching [16]. We reorder the ground truth primi-

1For notational clarity, for now we assume the number of predicted

primitives equals K, the number of ground truth primitives. See Section

3.4 for how to predict Ŵ without prior knowledge of K.

2654

!

"

#

!

"

!

"

#

!

"

#

Figure 3: Primitive types and parameters. The boundary in-
formation in each Sk, together with parameters Ak, defines
the (bounded) region of the primitive k. On the other hand,
the point segment W:,k provides an approximation to this
bounded region.

tives according to this correspondence, so that ground truth

primitive k is matched with the predicted primitive k. Since

the set of inputs where a small perturbation will lead to a

change of the matching result has measure zero, the overall

pipeline remains differentiable almost everywhere. Hence

we use an external Hungarian matching solver to obtain

optimal matching indices, and then inject these back into

our network to allow further loss computation and gradient

propagation.

3.2. Primitive Model Estimation

In the model estimation module, primitive parameters

{Ak} are obtained from the predicted per-point properties

in a differentiable manner. As the parameter estimation for

each primitive is independent, in this section we will assume

k is a fixed index of a primitive. The input to the model es-

timation module consists of P, the input point cloud, N̂,

the predicted unoriented point normals, and Ŵ:,k, the k-th

column of the predicted membership matrix Ŵ. For sim-

plicity, we write w = Ŵ:,k ∈ [0, 1]N and Â = Âk. For

p ∈ R
3, let Dl(p,A) denote the distance from p to the

primitive of type l and parameters A. The differentiable

module for computing Â, given the primitive type, is illus-

trated below.

Plane. A plane is represented by A = (a, d) where a is

the normal of the plane, with ‖a‖ = 1, and the points on the

plane are {p ∈ R
3 : aTp = d}. Then

D2
plane(p,A) = (aTp− d)2. (2)

We can then define Â as the minimizer to the weighted sum

of squared distances as a function of A:

Eplane(A;P,w) =

N
∑

i=1

wi(a
TPi,: − d)2. (3)

By solving
∂Eplane

∂d
= 0, we obtain d =

∑N
i=1

wia
TPi,:∑

N
i=1

wi
. Plug-

ging this into Equation 3 gives:

Eplane(a;P,w) = ‖diag (w)Xa‖
2
, (4)

where Xi,: = Pi,: −
∑N

i=1
wiPi,:∑

N
i=1

wi
. Hence minimiz-

ing Eplane(A;P,w) over a becomes a homogeneous least

square problem subject to ‖a‖ = 1, and its solution is

given as the right singular vector v corresponding to the

smallest singular value of matrix diag (w)X. As shown by

Ionescu et al. [11, 12], the gradient with respect to v can be

backpropagated through the SVD computation.

Sphere. A sphere is parameterized by A = (c, r), where

c ∈ R
3 is the center and r ∈ R is the radius. Hence

D2
sphere(p,A) = (‖p− c‖ − r)2. (5)

In the sphere case (also in the cases of cylinder and cone),

the squared distance is not quadratic. Hence minimizing

the weighted sum of squared distances over parameters as

done in the plane is only available via nonlinear iterative

solvers [18]. Instead, we consider minimizing over the

weighted sum of a different notion of distance:

Esphere(A;P,w) =
N
∑

i=1

wi(‖Pi,: − c‖
2
− r2)2. (6)

Solving
∂Esphere

∂r2
= 0 gives r2 = 1∑

N
i=1

wi

∑N
j=1 wj‖Pj −

c‖2. Putting this back in Equation 6, we end up with a

quadratic expression in c as a least square:

Esphere(c;P,w,a) = ‖diag (w) (Xc− y)‖
2
, (7)

where Xi,: = 2

(

−Pi,: +
∑N

j=1
wjPj,:

∑
N
j=1

wj

)

and yi =

PT
i,:Pi,: −

∑N
j=1

wjP
T

j,:Pj,:
∑

N
j=1

wj
. This least square can be solved

via Cholesky factorization in a differentiable way [21].

Cylinder. A cylinder is parameterized by A = (a, c, r)
where a ∈ R

3 is a unit vector of the axis, c ∈ R
3 is the

center, and r ∈ R is the radius. We have

D2
cylinder(p,A) =

(

√

vTv − (aTv)2 − r

)2

, (8)

where v = p−c. As in the sphere case, directly minimizing

over squared true distance is challenging. Instead, inspired

by Nurunnabi et. al. [22], we first estimate the axis a and

then solve a circle fitting to obtain the rest of the parameters.

Observe that the normals of points on the cylinder must be

perpendicular to a, so we choose a to minimize:

Ecylinder(a; N̂,w) =
∥

∥

∥
diag (w) N̂a

∥

∥

∥

2

, (9)

which is a homogeneous least square problem same as

Equation 4, and can be solved in the same way.

Once obtaining the axis a, we consider a plane P with

normal a that passes through the origin, and notice the pro-

jection of the cylinder onto P should form a circle. Thus

we can choose c and r to be the circle that best fits the pro-

jected points {Proja(Pi,:)}
N
i=1, where Proja(·) denotes the

projection onto P . This is exactly the same formulation

as in the sphere case (Equation 6), and can thus be solved

similarly.

2655

Cone. A cone is parameterized by A = (a, c, θ) where

c ∈ R
3 is the apex, a ∈ R

3 is a unit vector of the axis from

the apex into the cone, and θ ∈ (0, π
2) is the half angle.

Then

D2
cone(p,A)2 =

(

‖v‖ sin
(

min
(

|α− θ| ,
π

2

)))2

, (10)

where v = p − c, α = arccos
(

aTv
‖v‖

)

. Similarly with the

cylinder case, we use a multi-stage algorithm: first we esti-

mate a and c separately, and then we estimate the half-angle

θ.

We utilize the fact that the apex c must be the intersec-

tion point of all tangent planes on the cone surface. Using

the predicted point normals N̂, the multi-plane intersection

problem is formulated as a least square similar with Equa-

tion 7 by minimizing

Econe(c; N̂) =
∥

∥

∥
diag (w)

(

N̂c− y
)
∥

∥

∥

2

, (11)

where yi = N̂T
i,:Pi,:. To get the axis direction a, observe

that a should be the normal of the plane passing through

all Ni if point i belongs to the cone. This is just a plane

fitting problem, and we can compute a as the unit normal

that minimizes Equation 3, where we replace Pi,: by N̂i,:.

We flip the sign of a if it is not going from c into the cone.

Finally, using the apex c and the axis a, the half-angle θ is

simply computed as a weighted average:

θ = 1∑
N
i=1

wi

∑N
i=1 wi arccos

∣

∣

∣
aT

Pi,:−c

‖Pi,:−c‖

∣

∣

∣
. (12)

3.3. Loss Function

We define our loss function L as the sum of the following

five terms without weights:

L = Lseg + Lnorm + Ltype + Lres + Laxis. (13)

Each loss term is described below for a single input shape.

Segmentation Loss. The primitive parameters can be

more accurately estimated when the segmentation of the in-

put point cloud is close to the ground truth. Thus, we min-

imize (1 − RIoU) for each pair of a ground truth primitive

and its correspondence in the prediction:

Lseg =
1

K

K
∑

k=1

(

1− RIoU(W:,k,Ŵ:,k)
)

. (14)

Point Normal Angle Loss. For predicting the point nor-

mals N̂ accurately, we minimize the absolute cosine angle

between ground truth and predicted normals:

Lnorm =
1

N

N
∑

i=1

(

1− |NT
i,:N̂i,:|

)

. (15)

The absolute value is taken since our predicted normals are

unoriented.

Per-point Primitive Type Loss. We minimize cross en-

tropy H for the per-point primitive types T̂ (unassigned

points are ignored):

Ltype =
1

N

N
∑

i=1

1(Wi,: 6= 0)H(Ti,:, T̂i,:), (16)

where 1(·) is the indicator function.

Fitting Residual Loss. Most importantly, we minimize

the expected squared distance between Sk and the predicted

primitive k parameterized by Âk across all k = 1, . . . ,K:

Lres =
1

K

K
∑

k=1

Ep∼U(Sk)D
2
tk
(p, Âk), (17)

where p ∼ U(S) means p is sampled uniformly on

the bounded surface S when taking the expectation, and

D2
l (p, Â) is the squared distance from p to a primitive of

type l with parameter Â, as defined in Section 3.2. Note that

every Sk is weighted equally in Equation 17 regardless of

its scale, the surface area relative to the entire shape. This

allows us to detect small primitives that can be missed by

other unsupervised methods.

Note that in Equation 17, we use the ground truth type

tk instead of inferring the predicted type based on T̂ and

then properly weighted by Ŵ. We do this because coupling

multiple predictions can make loss functions more compli-

cated, resulting in unstable training. At test time, however,

the type of primitive k is predicted as

t̂k = argmax
l

N
∑

i=1

T̂i,lŴi,k. (18)

Axis Angle Loss. Estimating plane normal and cylin-

der/cone axis using SVD can become numerically unstable

when the predicted Ŵ leads to degenerate cases, such as

when the number of points with a nonzero weight is too

small, or when the points with substantial weights form a

narrow plane close to a line during plane normal estimation

(Equation 4). Thus, we regularize the axis parameters with

a cosine angle loss:

Laxis =
1

K

K
∑

k=1

(

1−Θtk(Ak, Âk)
)

, (19)

where Θt(A, Â) denotes |aTâ| for plane (normal), cylin-

der (axis), and cone (axis), and 1 for sphere (so the loss

becomes zero).

3.4. Implementation Details

In our implementation, we assume a fixed number N of

input points for all shapes. While the number of ground

truth primitives varies across the input shapes, we choose

an integer Kmax in prediction to fix the size the output mem-

bership matrix Ŵ ∈ R
N×Kmax so that Kmax is no less than

2656

the maximum primitive numbers in input shapes. After the

Hungarian matching in Section 3.1, unmatched columns in

Ŵ are ignored in the loss computation. At test time, we dis-

card a predicted primitive k if
∑N

i=1
Ŵi,k

N
> ǫdiscard, where

ǫdiscard = 0.005N for all experiments. This is just a rather

arbitrary small threshold to weed out unused segments.

When evaluating the expectation Ep∼U(Sk)(·) in Equa-

tion 17, on-the-fly point sampling takes very long time in

training. Hence the expectation is approximated as the av-

erage for M points on Sk that are sampled uniformly when

preprocessing the data.

4. Experiments

4.1. ANSI Mechanical Component Dataset

For training and evaluating the proposed network, we

use CAD models from American National Standards Insti-

tute (ANSI) [1] mechanical components provided by Tra-

ceParts [27]. Since there is no existing scanned 3D dataset

for this type of objects, we train and test our network by

generating noisy samples on these models. From 504 cat-

egories, we randomly select up to 100 models in each cat-

egory for balance and diversity, and split training/test sets

by categories so that training and test models are from dis-

joint categories, resulting in 13,831/3,366 models in train-

ing/test sets. We remark that the four types of primitives we

consider (plane, sphere, cylinder, cone) cover 94.0% per-

centage of area per-model on average in our dataset. When

generating the point samples from models, we still include

surfaces that are not one of the four types. The maximum

number of primitives per shape does not exceed 20 in all our

models. We set Kmax = 24 where we add 4 extra columns

in Ŵ to allow the neural net to assign a small number of

points to the extra columns, effectively marking those points

unassigned because of the threshold ǫdiscard.

From the CAD models, we extract primitives informa-

tion including their boundaries. We then merge adjacent

pieces of primitive surfaces sharing exactly the same pa-

rameters; this happens because of the difficulty of repre-

senting boundaries in CAD models, so for instance a com-

plete cylinder will be split into a disjoint union of two mir-

rored half cylinders. We discard tiny pieces of primitives

(less than 2% of the entire area). Each shape is normal-

ized so that its center of mass is at the origin, and the axis-

aligned bounding box for the shape is included in [−1, 1]
range along every axis. In experiments, we first uniformly

sample 8192 points over the entire surface of each shape as

the input point cloud (N = 8192). This is done by first

sampling on the discretized mesh of the shape and then pro-

jecting all points onto its geometric surface. Then we ran-

domly apply noise to the point cloud along the surface nor-

mal direction in [−0.01, 0.01] range. To evaluate the fitting

residual loss Lres, we also uniformly sample 512 points per

primitive surface for approximating Sk (M = 512).

4.2. Evaluation Metrics

We design our evaluation metrics as below. Each quan-

tity is described for a single shape, and the numbers are

reported as the average of these quantities across all test

shapes. For per-primitive metrics, we first perform primi-

tive reordering as in Section 3.1 so the indices for predicted

and ground truth primitives are matched.

• Segmentation Mean IoU:
1
K

∑K
k=1 IoU(W:,k, I(Ŵ:,k)), where I(·) is the one-

hot conversion.

• Mean primitive type accuracy:
1
K

∑K
k=1 1(tk = t̂k), where t̂k is in Equation 18.

• Mean point normal difference:
1
N

∑N
i=1 arccos

(

|NT
i,:N̂i,:|

)

.

• Mean primitive axis difference:
1∑

K
k=1

1(tk=t̂k)

∑K
k=1 1(tk = t̂k) arccos

(

Θtk(Ak, Âk)
)

.

It is measured only when the predicted type is correct.

• Mean/Std. {Sk} residual:

1
K

∑K
k=1 Ep∼U(Sk)

√

D2
t̂k
(p, Âk). In contrast to the

expression for loss Lres, predicted type t̂k is used. The

{Sk} residual standard deviation is defined accord-

ingly.

• {Sk} coverage:

1
K

∑K
k=1 Ep∼U(Sk)1

(√

D2
t̂k
(p, Âk) < ǫ

)

, where ǫ

is a threshold.

• P coverage:
1
N

∑N
i=1 1

(

minKk=1

(√

D2
t̂k
(Pi,:, Âk)

)

< ǫ
)

, where

ǫ is a threshold.

When the predicted primitive numbers is less than K, there

will be less than K matched pairs in the output of the Hun-

garian matching. In this case, we modify the metrics of

primitive type accuracy, axis difference, and {Sk} residual

mean/std. to average only over matched pairs.

4.3. Comparison to Efficient RANSAC [28]

We compare the performance of SPFN with Efficient

RANSAC [28] and also hybrid versions where we bring in

predictions from neural networks as RANSAC input. We

use the CGAL [23] implementation of Efficient RANSAC

with its default adaptive algorithm parameters. Following

common practice, we run the algorithm multiple times (3 in

our all experiments), and pick the result with highest input

coverage. Different from our pipeline, Efficient RANSAC

requires point normals as input. We use the standard jet-

fitting algorithm [5] to estimate the point normals from the

input point cloud before feeding to RANSAC.

2657

Ind Method Seg.

(Mean IoU)

Primitive

Type (%)

Point

Normal (◦)

Primitive

Axis (◦)

{Sk} Residual

Mean ± Std.

{Sk} Coverage P Coverage
ǫ = 0.01 ǫ = 0.02 ǫ = 0.01 ǫ = 0.02

1 Eff. RANSAC [28]+J 43.68 52.92 11.42 7.54 0.072 ± 0.361 43.42 63.16 65.74 88.63
2 Eff. RANSAC [28]*+J* 56.07 43.90 6.92 2.42 0.067 ± 0.352 56.95 72.74 68.58 92.41
3 Eff. RANSAC [28]+J* 45.90 46.99 6.87 5.85 0.080 ± 0.390 51.59 67.12 72.11 92.58

4 Eff. RANSAC [28]+J*+Ŵ 69.91 60.56 6.87 2.90 0.029 ± 0.234 74.32 83.27 78.79 94.58

5 Eff. RANSAC [28]+J*+Ŵ+t̂ 60.68 92.76 6.87 6.21 0.036 ± 0.251 65.31 73.69 77.01 92.57

6 Eff. RANSAC [28]+N̂+Ŵ+t̂ 60.56 93.13 8.15 7.02 0.054 ± 0.307 61.94 70.38 74.80 90.83

7 DPPN (Sec. 4.4) 44.05 51.33 - 3.68 0.021 ± 0.158 46.99 71.02 59.74 84.37

8 SPFN-Lseg 41.61 92.40 8.25 1.70 0.029 ± 0.178 50.04 62.74 62.23 77.74
9 SPFN-Lnorm+J* 71.18 95.44 6.87 4.20 0.022 ± 0.188 76.47 81.49 83.21 91.73
10 SPFN-Lres 72.70 96.66 8.74 1.87 0.017 ± 0.162 79.81 85.57 81.32 91.52
11 SPFN-Laxis 77.31 96.47 8.28 6.27 0.019 ± 0.188 80.80 86.11 86.46 94.43

12 SPFN (̂t → Est.) 75.71 95.95 8.54 1.71 0.013 ± 0.140 85.25 90.13 86.67 94.91

13 SPFN 77.14 96.93 8.66 1.51 0.011 ± 0.131 86.63 91.64 88.31 96.30

Table 1: Results of all experiments. +J indicates using point normals computed by jet fitting [5] from the input point clouds.
The asterisk * indicates using high resolution (64k) point clouds. See Section 4.2 for the details of evaluation metrics, and
Sections 4.3 to 4.5 for the description of each experiment. Lower is better in 3-5th metrics, and higher is better in the rest.

Ground

Truth

Eff.RAN.

+J

Eff.RAN.*

+J*

Eff.RAN+

N̂+Ŵ+t̂

DPPN

SPFN

-Lseg

SPFN

-Lnorm+J*

SPFN

-Lres

SPFN

-Laxis

SPFN

Figure 4: Primitive fitting results with different methods. The results are rendered with meshes generated by projecting point
segments to output primitives and then triangulating them. Refer to Sections 4.3 to 4.5 for the details of each method.

We report the results of SPFN and Efficient RANSAC in

Table 1. Since Efficient RANSAC can afford point clouds

of higher resolution, we test it both with the identical 8k in-

put point cloud as in SPFN (row 1), and with another 64k
input point cloud sampled and perturbed in the same way

(row 2). Even compared to results from high-resolution

point clouds, SPFN outperforms Efficient RANSAC in all

metrics. Specifically, both {Sk} and P coverage numbers

with threshold ǫ = 0.01 show big margins, demonstrating

that our SPFN fits primitives more precisely.

We also test Efficient RANSAC by bringing in per-point

properties predicted by SPFN. We first train SPFN with only

Lseg loss, and then for each segment in the predicted mem-

bership matrix Ŵ we use Efficient RANSAC to predict a

single primitive (Table 1, row 4). We further add Ltype

and Lnorm losses in training sequentially, and use the pre-

dicted primitive types t̂ and point normals N̂ in Efficient

RANSAC (row 5-6). When the input point cloud is first

segmented with a neural network, both {Sk} and P cover-

age numbers for Efficient RANSAC increase significantly,

yet still lower than SPFN. Notice that the point normals and

primitive types predicted by a neural network do not im-

2658

Figure 5: {Sk} coverage against scales of primitives.

prove the {Sk} and P coverage in RANSAC.

Figure 5 illustrates {Sk} coverage with ǫ = 0.01
for varying scales of ground truth primitives. Efficient

RANSAC coverage improves when leveraging the segmen-

tation results of the network, but still remains low when the

scale is small. In contrast, SPFN exhibits consistent high

coverage for all scales.

4.4. Comparison to Direct Parameter Prediction
Network (DPPN)

We also consider a simple neural network named Direct

Parameter Prediction Network (DPPN) that directly pre-

dicts primitive parameters without predicting point proper-

ties as an intermediate step. DPPN uses the same Point-

Net++ [25] architecture that consumes P, but different from

SPFN, it outputs Kmax primitive parameters for every prim-

itive type (so it gives 4Kmax sets of parameters). In training,

the Hungarian matching to the ground truth primitives (Sec-

tion 3.1) is performed with fitting residuals as in Equation

17 instead of RIoU. Since point properties are not predicted

and the matching is based solely on fitting residuals (so the

primitive type might mismatch), only Lres is used as the loss

function. At test time, we assign each input point to the

closest predicted primitive to form Ŵ.

The results are reported in row 7 of Table 1. Compared

to SPFN, both {Sk} and P coverage numbers are far lower,

particularly when the threshold is small (ǫ = 0.01). This

implies that supervising a network not only with ground

truth primitives but also with point-to-primitive associations

is crucial for more accurate predictions.

4.5. Ablation Study

We conduct ablation study to verify the effect of each

loss term. In Table 1 rows 8-11, we report the results when

we exclude Lseg, Lnorm (use jet-fitting normals computed

from 64k points), Lres, and Laxis, respectively. The cover-

age numbers drop the most when the segmentation loss Lseg

is not used (-Lseg). When using point normals computed

from 64k input point clouds instead of predicting them (-

Lnorm+J*), the coverage also drops despite more accurate

point normals. This implies that SPFN predicts point nor-

mals in a way to better fit primitives rather than to just ac-

curately predict the normals. Without including the fitting

residual loss (-Lres), we see a drop in coverage and segmen-

tation accuracy. Excluding the primitive axis loss Laxis not

Figure 6: Results with real scans. Left are the 3D-printed
CAD models from the test set.

only hurts the axis accuracy, but also gives lower coverage

numbers (especially {Sk} coverage). Row 12 (̂t → Est.)

shows results when using predicted types t̂ in the fitting

residual loss (Equation 17) instead of the ground truth types

t. The results are compatible but slightly worse than SPFN

where we decouple type and other predictions in training.

4.6. Results with Real Scans

For testing with real noise patterns, we 3D-printed some

test models and scanned the outputs using a DAVID SLS-

2 3D Scanner. Notice that SPFN trained on synthesized

noises successfully reconstructed all primitives including

the small segments (Figure 6).

5. Conclusion

We have presented Supervised Primitive Fitting Network

(SPFN), a fully differentiable network architecture that pre-

dicts a varying number of geometric primitives from a 3D

point cloud, potentially with noise. In contrast to directly

predicting primitive parameters, SPFN predicts per-point

properties and then derive the primitive parameters using

a novel differentiable model estimator. The strong super-

vision we provide allows SPFN to accurately predict prim-

itives of different scales that closely abstract the underly-

ing geometric shape surface, without any user control. We

demonstrated in experiments that this approach gives sig-

nificant better results compared to both the RANSAC-based

method [28] and direct parameters prediction. We also in-

troduced a new CAD model dataset, ANSI mechanical com-

ponent dataset, along with a set of comprehensive evalua-

tion metrics, based on which we performed our comparison

and ablation studies.

Acknowledgments. The authors wish to thank Chengtao

Wen and Mohsen Rezayat for valuable discussions and for

making relevant data available to the project. Also, the

authors thank TraceParts for providing ANSI Mechanical

Component CAD models. This project is supported by

a grant from the Siemens Corporation, NSF grant CHS-

1528025 a Vannevar Bush Faculty Fellowship, and gifts

from and Adobe and Autodesk. A. Dubrovina acknowl-

edges the support in part by The Eric and Wendy Schmidt

Postdoctoral Grant for Women in Mathematical and Com-

puting Sciences.

2659

References

[1] American National Standards Institute (ANSI). 6

[2] Aayush Bansal, Bryan Russell, and Abhinav Gupta. Marr

revisited: 2D-3D alignment via surface normal prediction.

CVPR, 2016. 2

[3] Thomas O. Binford. Visual perception by computer. In IEEE

Conference on Systems and Control, 1971. 1

[4] Eric Brachmann, Alexander Krull, Sebastian Nowozin,

Jamie Shotton, Frank Michel, Stefan Gumhold, and Carsten

Rother. DSAC - Differentiable RANSAC for camera local-

ization. In CVPR, 2017. 2

[5] F. Cazals and M. Pouget. Estimating differential quantities

using polynomial fitting of osculating jets. Symposium on

Geometry Processing (SGP), 2003. 6, 7

[6] Ondrej Chum and Jiri Matas. Matching with PROSAC - Pro-

gressive sample consensus. In CVPR, 2005. 2

[7] Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg,

Adriana Schulz, Daniela Rus, Armando Solar-Lezama, and

Wojciech Matusik. InverseCSG: Automatic conversion of

3D models to CSG trees. SIGGRAPH Asia, 2018. 2

[8] Martin A. Fischler and Robert C. Bolles. Random sample

consensus: A paradigm for model fitting with applications to

image analysis and automated cartography. Communications

of the ACM, 1981. 2

[9] Vignesh Ganapathi-Subramanian, Olga Diamanti, Soeren

Pirk, Chengcheng Tang, Matthias Niessner, and Leonidas J.

Guibas. Parsing geometry using structure-aware shape tem-

plates. In 3DV, 2018. 1

[10] Paul Guerrero, Yanir Kleiman, Maks Ovsjanikov, and

Niloy J. Mitra. PCPNET: Learning local shape properties

from raw point cloud. Eurographics, 2018. 2

[11] Catalin Ionescu, Orestis Vantzos, and Cristian Sminchisescu.

Matrix backpropagation for deep networks with structured

layers. 2015. 4

[12] Catalin Ionescu, Orestis Vantzos, and Cristian Sminchis-

escu. Training deep networks with structured layers by ma-

trix backpropagation. CoRR, abs/1509.07838, 2015. 4

[13] Adrien Kaiser, Jose Alonso Ybanez Zepeda, and Tamy

Boubekeur. A survey of simple geometric primitives de-

tection methods for captured 3D data. Computer Graphics

Forum, 2018. 2

[14] Zhizhong Kang and Zhen Li. Primitive fitting based on the

efficient multiBaySAC algorithm. PloS one, 2015. 2

[15] Philipp Krähenbühl and Vladlen Koltun. Parameter learning

and convergent inference for dense random fields. In ICML,

2013. 3

[16] H. W. Kuhn. The hungarian method for the assignment prob-

lem. Naval Research Logistics Quarterly, 1955. 3

[17] Yangyan Li, Xiaokun Wu, Yiorgos Chrysanthou, Andrei

Sharf, Daniel Cohen-Or, and Niloy J. Mitra. Globfit: Consis-

tently fitting primitives by discovering global relations. SIG-

GRAPH, 2011. 2

[18] Gabor Lukács, Ralph Martin, and Dave Marshall. Faithful

least-squares fitting of spheres, cylinders, cones and tori for

reliable segmentation. In ECCV, 1998. 4

[19] D. Marr and H. K. Nishihara. Representation and recogni-

tion of the spatial organization of three-dimensional shapes.

Proceedings of the Royal Society of London B: Biological

Sciences, 1978. 1

[20] J. Matas and O. Chum. Randomized RANSAC with T(d,d)

test. Image and Vision Computing, 2004. 2

[21] Iain Murray. Differentiation of the Cholesky decomposition,

2016. arXiv:1602.07527. 4

[22] A. Nurunnabi, Y. Sadahiro, and R. Lindenbergh. Robust

cylinder fitting in three-dimensional point cloud data. In Int.

Arch. Photogramm. Remote Sens. Spatial Inf. Sci., 2017. 4

[23] Sven Oesau, Yannick Verdie, Clément Jamin, Pierre Alliez,

Florent Lafarge, and Simon Giraudot. Point set shape detec-

tion. In CGAL User and Reference Manual. CGAL Editorial

Board, 4.13 edition, 2018. 6

[24] Charles Ruizhongtai Qi, Hao Su, Kaichun Mo, and

Leonidas J. Guibas. Pointnet: Deep learning on point sets

for 3D classification and segmentation. In CVPR, 2017. 2

[25] Charles Ruizhongtai Qi, Ly Yi, Hao Su, and Leonidas J.

Guibas. Pointnet++: Deep hierarchical feature learning on

point sets in a metric space. In NIPS, 2017. 2, 3, 8

[26] Renè Ranftl and Vladlen Koltun. Deep fundamental matrix

estimation. In ECCV, 2018. 2

[27] TraceParts S.A.S. Traceparts. 6

[28] Ruwen Schnabel, Roland Wahl, , and Reinhard Klein. Effi-

cient RANSAC for point-cloud shape detection. Computer

graphics forum, 2007. 1, 2, 6, 7, 8

[29] Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos

Kalogerakis, and Subhransu Maji. Csgnet: Neural shape

parser for constructive solid geometry. In CVPR, 2018. 2

[30] P. H. S. Torr and A. Zisserman. MLESAC: A new robust esti-

mator with application to estimating image geometry. CVIU,

2000. 2

[31] Shubham Tulsiani, Hao Su, Leonidas J. Guibas, Alexei A.

Efros, and Jitendra Malik. Learning shape abstractions by

assembling volumetric primitives. In CVPR, 2017. 1, 2

[32] Qiaoyun Wu, Kai Xu, and Jun Wang. Constructing 3D CSG

models from 3D raw point clouds. Symposium on Geometry

Processing (SGP), 2018. 2

[33] Li Yi, Haibin Huang, Difan Liu, Evangelos Kalogerakis, Hao

Su, and Leonidas Guibas. Deep part induction from articu-

lated object pairs. SIGGRAPH Asia, 2018. 3

[34] Chuhang Zou, Ersin Yumer, Jimei Yang, Duygu Ceylan, and

Derek Hoiem. 3D-PRNN: Generating shape primitives with

recurrent neural networks. In ICCV, 2017. 1, 2

2660

