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Abstract

Existing deep trackers mainly use convolutional neural

networks pre-trained for the generic object recognition task

for representations. Despite demonstrated successes for nu-

merous vision tasks, the contributions of using pre-trained

deep features for visual tracking are not as significant as

that for object recognition. The key issue is that in visual

tracking the targets of interest can be arbitrary object class

with arbitrary forms. As such, pre-trained deep features are

less effective in modeling these targets of arbitrary forms

for distinguishing them from the background. In this paper,

we propose a novel scheme to learn target-aware features,

which can better recognize the targets undergoing signifi-

cant appearance variations than pre-trained deep features.

To this end, we develop a regression loss and a ranking loss

to guide the generation of target-active and scale-sensitive

features. We identify the importance of each convolutional

filter according to the back-propagated gradients and selec-

t the target-aware features based on activations for repre-

senting the targets. The target-aware features are integrated

with a Siamese matching network for visual tracking. Ex-

tensive experimental results show that the proposed algo-

rithm performs favorably against the state-of-the-art meth-

ods in terms of accuracy and speed.

1. Introduction

Visual tracking is one of the fundamental computer vi-

sion problems with a wide range of applications. Given a

target object specified by a bounding box in the first frame,

visual tracking aims to locate the target object in the sub-

sequent frames. This is challenging as target objects of-

ten undergo significant appearance changes over time and

may temporally leave the field of the view. Conventional

trackers prior to the advances of deep learning mainly con-
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Figure 1. Tracking accuracy vs. speed on the OTB-2015

dataset. The horizontal and vertical coordinates correspond to

tracking speed and AUC overlap ratio score, respectively. The

proposed algorithm achieves a favorable performance against the

state-of-the-art trackers.

sist of a feature extraction module and a decision-making

mechanism. The recent state-of-the-art deep trackers of-

ten use deep models pre-trained for the object recognition

task to extract features, while putting more emphasis on

designing effective decision-making modules. While var-

ious decision models, such as correlation filters [15], re-

gressors [14, 35, 38, 37], and classifiers [16, 29, 32], are

extensively explored, considerably less attention is paid to

learning more discriminative deep features.

Despite the state-of-the-art performance of existing deep

trackers, we note that the contributions of pre-trained deep

features for visual tracking are not as significant as that for

object recognition. Numerous issues may arise when using

pre-trained deep features as target representation. First, a

target in visual tracking can be of arbitrary forms, e.g., an

object unseen in the training sets for the pre-trained mod-

els or one specific part, which does not contain the object-
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ness information exploited for the object recognition task.

That is, pre-trained CNN models from generic images are

agnostic of a target object of interest and less effective in

separating it from the background. Second, even if target

objects appear in the training set for pre-trained models,

deep features taken from the last convolutional layers of-

ten retain only high-level visual information that is less ef-

fective for precise localization or scale estimation. Third,

state-of-the-art deep trackers [29, 35, 36] require high com-

putational loads as deep features from pre-trained models

are high-dimensional (see Figure 1). To narrow this gap,

it is of great importance to exploit deep features pertaining

specifically to target objects for visual tracking.

To address the above-mentioned issues, we propose a

Target-Aware Deep Tracking (TADT) model. Our work is

motivated based on the following observations. The gra-

dients obtained through back-propagating a classification

neural network indicate class-specific saliency well [33].

With the use of global average pooling, the gradients gen-

erated by a convolutional filter can determine the impor-

tance of a filter for representing target objects. To select

the most effective convolutional filters, we design two type-

s of objective losses to perform back-propagation on top

of a pre-trained deep model in the first frame. We use a

hinge loss to regress pre-trained deep features to soft label-

s generated by a Gaussian function and use the gradients

to select the target-active convolutional filters. We use a

ranking loss with pair-wise distance to search for the scale-

aware convolutional filters. The activations of the selected

most important filters are the target-aware features in this

work. Figure 2 shows the target-aware features using the t-

SNE method [27]. Note that the target-aware deep features

are more effective in separating different target objects with

a same semantic label than the pre-trained deep features,

which are agnostic of the objectness of the targets. As we

exploit a small set of convolutional filters to generate target-

aware features, the feature number is significantly reduced,

which can reduce computational loads.

We integrate the proposed target-aware features with a

Siamese matching network [2] for visual tracking. We e-

valuate the proposed tracker on five benchmark datasets in-

cluding OTB-2013 [45], OTB-2015 [46], VOT-2015 [19,

20], VOT-2016 [18], and Temple Color-128 [24]. Exten-

sive experiments with ablation studies demonstrate that the

proposed target-aware features are more effective than those

from pre-trained models for the Siamese trackers in terms of

accuracy and tracking speed.

The main contributions of this work are summarized as

follows:

• We propose to learn target-aware deep features for vi-

sual tracking. We develop a regression loss and a rank-

ing loss for selecting the most effective convolutional

filters to generate target-aware features. We narrow the
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Figure 2. Pre-trained classification CNNs features and target-

aware features using the t-SNE method. In this example, we

randomly select 20 frames from each video. Each point in the

figure denotes a target in one frame. (a) All points belong to the

pedestrian class but in different videos. The target-aware features

are more sensitive to intra-class differences for each video, which

are crucial for distinguishing the target from distractors. (b) Points

of different colors belong to different object classes. The target-

aware features separate objects of different categories more effec-

tively, which can be used to remove unrelated filters and retaining

target-active filters.

gap between the pre-trained deep models and target ob-

jects of arbitrary forms for visual tracking.

• We integrate the target-aware features with a Siamese

matching network for visual tracking. The target-

aware features with reduced number of features can

accelerate Siamese trackers as well.

• We evaluate the proposed method extensively on five

benchmark datasets. We show that the Siamese tracker

with the proposed target-aware features performs well

against the state-of-the-art methods in terms of effec-

tiveness and efficiency.

2. Related Work

Visual tracking has been an active research topic in the

literature. In the following, we mainly discuss the represen-

tative deep trackers and related issues on the gradient-based

deep models.

Deep trackers. One notable issue of applying deep learn-

ing models to visual tracking is that there are limited train-

ing samples and only the ground truth visual appearance

of the target object in the first frame is available. On one
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hand, most existing deep trackers use deep models pre-

trained for the object classification task for feature repre-

sentations. Several trackers [26, 42] exploit the complemen-

tary characteristics of shallow and deep layer features to en-

able the abilities of robustness and accuracy. Deep features

from multiple layers have also integrated for visual track-

ing [10, 32, 7, 3]. However, the combination of pre-trained

deep features may not always bring performance gains, due

to issues of unseen targets, incompatible resolutions, and in-

creasing dimensions, as demonstrated by Bhat et al. [3]. On

the other hand, numerous trackers [16, 6, 28, 17, 35, 47, 12]

are developed by improving the decision models includ-

ing support vector machines, correlation filters, deep clas-

sifiers, and deep regressors. Nam and Han [29] propose a

multi-domain deep classifier combined with the hard neg-

ative mining, bounding box regression, and online sample

collection modules for visual tracking. The VITAL track-

er [36] exploits adversarial learning to generate effective

samples and addresses class imbalance with a cost-sensitive

loss. However, these models may drift from target object in

the presence of noisy updates and require high computa-

tional loads, which is caused by the limited online training

samples to a large extent.

To exploit datasets with general objects for tracking, nu-

merous Siamese based trackers [2, 39, 11, 21, 14] cast track-

ing as a matching problem and learn a similarity measure-

ment network. Tracking is carried out by comparing the

features of the initial target template and search regions in

the current frame. A number of trackers [44, 52, 13] have

since been developed by introducing attention mechanisms

for better matching between templates and search region-

s. Although these Siamese frameworks are pre-trained on

large video datasets, the pair-wise training sample only tells

whether the two samples belong to the same target or not

without category information. That is, the Siamese tracker-

s do not fully exploit semantic and objectness information

pertaining to specific target objects. In this work, we selec-

t the most discriminative and scale-sensitive convolutional

filters from a pre-trained CNN to generate target-aware deep

features. The proposed features enhance the discriminative

representation strength of the targets regarding semantics

and objectness, which facilitate the Siamese tracking frame-

work to perform well against the state-of-the-art methods in

terms of robustness and accuracy.

Gradient-based deep models. Several gradient-based

models [49, 33] are developed to determine the importance

of each channel of CNN features in describing a specific ob-

ject class. The GCAM model [49] generates a class-active

map by computing a weighted sum along the feature chan-

nels based on the observation that the gradient at each in-

put pixel indicates the corresponding importance belonging

to given class labeling. The weight of a feature channel

is computed by globally average pooling of all the gradi-

ents in this channel. Unlike these gradient-based models

using classification losses, we specifically design a regres-

sion loss and a ranking loss for the tracking task to identify

which convolutional filters are active to describe targets and

sensitive to scale changes.

3. Target-Aware Features

In this section, we present how to learn target-aware

features for visual tracking. We first analyze the gap be-

tween the features from pre-trained classification deep mod-

els and effective representations for visual tracking. Then,

we present the target-aware feature model including a dis-

criminative feature generation model and a scale-sensitive

feature generation component based on the gradients of re-

gression and ranking losses.

3.1. Features of pretrained CNNs

The gap between the features effective for generic vi-

sual recognition and object-specific tracking is caused by

the following issues. First, the pre-trained CNN features

are agnostic of the semantic and objectness information of

the target, which most likely does not appear in the offline

training data. Different from other vision tasks (e.g., classi-

fication, detection, and segmentation), where the class cate-

gories for training and testing are pre-defined and consisten-

t, online visual tracking needs to deal targets of any object

labels. Second, the pre-trained CNNs focus on increasing

inter-class differences and the extracted deep features are

insensitive to intra-class variations. As such, these features

are less effective for trackers to accurately estimate scale

changes and distinguish the targets from distractors with the

same class label. Third, the pre-trained deep features are

sparsely activated by each category label (i.e., inter-class

difference are mainly related to a few feature channels) es-

pecially in a deeper convolutional network. When applied

to the tracking task, only a few convolutional filters are ac-

tive in describing the target. A large portion of the con-

volutional filters contain redundancy and irrelevant infor-

mation, which leads to high computational loads and over-

fitting. Figure 2 shows the distributions of the pre-trained

deep features and the proposed target-aware features using

the t-SNE method [27].

Several methods on interpretation of neural networks

demonstrate that the importance of convolutional filters on

capturing the category-level object information can be com-

puted through the corresponding gradients [49, 33]. Based

on the gradient-based guidance, we construct a target-aware

feature model with losses designed specifically for visual

tracking. Given a pre-trained CNN feature extractor with

the output feature space χ, a subspace χ′ can be generated

based on the channel importance ∆ as

χ′ = ϕ(χ; ∆), (1)
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Figure 3. Framework of the proposed algorithm. This framework consists of a general CNN feature backbone network, a target-aware

model, and a correlation matching module. The target-aware model, constructed with a regression loss part (i.e., Ridge loss) and a ranking

loss part, selects the target-aware filters with target-active and scale-sensitive information from the pre-trained CNNs for object recognition.

The correlation matching module computes the similarity score between the template and the search region. The maximum of the score

map indicates the target position.

where ϕ is a mapping function selecting the most important

channels. The importance of the i-th channel ∆i is comput-

ed by

∆i = GAP (
∂L

∂zi
), (2)

where GAP (·) denotes the global average pooling function,

L is the designed loss, and zi indicates the output feature

of the i-th filter. For visual tracking, we exploit the gra-

dients of a regression loss (Section 3.2) and a ranking loss

(Section 3.3) to extract target-aware features.

3.2. TargetActive Features via Regression

In a pre-trained classification network, each convolution-

al filter captures a specific feature pattern and all the filters

construct a feature space containing different objectness pri-

ors. A trained network recognizes a specific object catego-

ry mainly based on a subset of these filters. For the visual

tracking task, we can obtain the filters with objectness in-

formation pertaining to the target by identifying those ac-

tive to the target area while inactive to the backgrounds.

To this end, we regress all the samples Xi,j in an image

patch aligned with the target center to a Gaussian label map

Y (i, j) = e−
i2+j2

2σ2 , where (i, j) is the offset against the tar-

get and σ is the kernel width. For computational efficiency,

we formulate the problem as the ridge regression loss,

Lreg = ‖Y (i, j)−W ∗Xi,j‖
2 + λ‖W‖2, (3)

where ∗ denotes the convolution operation and W is the

regressor weight. The importance of each filter can be com-

puted based on its contribution to fitting the label map, i.e.,

the derivation of Lreg with respect to the input feature Xin.

With the chain rule and Eq. 3, the gradient of the regression

loss is computed by

∂Lreg

∂Xin

=
∑

i,j

∂Lreg

∂Xo(i, j)
×

∂Xo(i, j)

∂Xin(i, j)

=
∑

i,j

2(Y (i, j)−Xo(i, j))×W,

(4)

where Xo is the output prediction. With the gradient of

the regression loss and Eq. 2, we find the target-active fil-

ters that are able to discriminate the target from the back-

ground. The generated features have the following merits

compared to the pre-trained deep features. We select a por-

tion of target-specific filters to generate discriminative deep

features. This not only alleviates the model over-fitting is-

sue but also reduces the number of features. The target-

aware features are effective for representing an arbitrary tar-

get or an unseen object in the training set. Figure 4(c) vi-

sually compares the deep features learned with and without

regression-loss by averaging all channels.

3.3. ScaleSensitive Features via Ranking

To generate scale-sensitive features, we need to find the

filters that are most active to the target scale changes. The

exact scale of the target is hard to compute as target pre-

sentation is not continuous, but we can get the closest s-

cale with a model that tells which one has a closer size of

a paired sample. As such, we formulate the problem as a
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(a) Input images (b) Conv4-1 w/o and w/ ranking+regression loss (c) Conv4-3 w/o and w/ regression loss (d) Target-aware

Figure 4. Visualization of the original and the learned target-aware features. The visualized images are generated by averaging all

channels. From left to right on each row are the input images, pre-trained deep features (Conv4-1) without and with ranking and regression

losses for learning scale-sensitive features, pre-trained deep features (Conv4-3) without and with a regression loss for learning objectness-

sensitive features, and the overall target-aware deep features. Notice that the original pre-trained features are not effective in describing the

targets, while the target-aware features can readily separate the targets from the background.

ranking model and rank the training sample whose size is

closer to the target size higher. The gradients of the rank-

ing loss indicate the importance of the filters to be sensitive

to scale changes. For ease of implementation, we exploit a

smooth approximated ranking loss [23] defined by

Lrank = log
(

1 +
∑

(xi,xj)∈Ω

exp (f(xi)− f(xj))
)

, (5)

where (xi, xj) is a pair-wise training sample and the size

of xj is closer to the target size comparing with xi, and

f(x;w) is the prediction model. In addition, Ω is the set of

training pairs. The derivation of Lrank with respect to f(x)
is computed as [23]:

∂Lrank

∂f(x)
= −

1

Lrank

∑

Ω

∆zi,j exp(−f(x)∆zi,j), (6)

where ∆zi,j = zi − zj and zi is a one-hot vector with

the i-th element being 1 while others being 0. By back-

propagation, the gradients of ranking loss with respect to

the features can be computed by

∂Lrank

∂xin

=
∂Lrank

∂xo

×
∂xo

∂xin

=
∂Lrank

∂f(xin)
×W, (7)

where W is the filter weights of the convolutional layer.

With the above gradients of the ranking loss and Eq. 2, we

find the filters that are sensitive to scale changes. Consid-

ering we only need the scale-sensitive features of the target

object, we combine the regression and ranking losses to find

the filters that are both active to the target and sensitive to

scale changes. Figure 4(b) visually compares deep features

generated with and without the proposed model by averag-

ing all channels.

4. Tracking Process

Figure 3 shows the overall framework of the proposed

tracker. We integrate the target-aware feature generation

model with the Siamese framework due to the following

two reasons. First, the Siamese framework is concise and

efficient as it performs tracking by comparing the features

of the target and the search region. Second, the Siamese

framework can highlight the effectiveness of the proposed

feature model, as its performance solely hinges on the ef-

fectiveness of features. We briefly introduce the tracking

process with the following modules.

Tracker initialization. The proposed tracking framework

comprises a pre-trained feature extractor, the target-aware

feature module, and a Siamese matching module. The pre-

trained feature extractor is offline trained on the classifica-

tion task and the target-aware part is only trained in the first

frame. In initial training, the regression loss and the rank-

ing loss parts are trained separately and we compute the

gradients from each loss once the networks are converged.

With the gradients, the feature generation model selects a

fixed number of the filters with the highest importance s-

cores from the pre-trained CNNs. The final target-aware

features are obtained by stacking these two types of feature

filters. Considering the scalar difference, these two types

of features are re-scaled by dividing their maximal channel

summation (summation of all the values in one channel).

Online detection. At the inference stage, we directly com-

pute the similarity scores between the initial target and the

search region in the current frame using the target-aware

features. This is achieved by a convolution operation (i.e.,

the correlation layer in the Siamese framework) and output-
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s a response map. The value in the response map indicates

the confidence of its corresponding position to be the real

target. Given the initial target x1, and the search region in

the current frame zt, the predicted target position in frame t

is computed as

p̂ = argmax
p

χ′(x1) ∗ χ
′(zt), (8)

where * denotes the convolution operation.

Scale evaluation. To evaluate the scale change of the tar-

get, we fix the size of the template and re-scale the feature

map of the search region in the current frame to smaller,

larger, and fixed ones. During tracking, all these three fea-

ture maps are compared with the target template. The scale

evaluation is performed by finding the score map containing

the highest response.

5. Experimental Results

In this section, we first introduce the implementation de-

tails of the proposed tracker. Then, we evaluate the pro-

posed algorithm on five benchmark datasets and compare it

with the state-of-the-art methods. In addition, we conduct

ablation studies to analyze the effectiveness of each module.

Source code and more results can be found at https://xinli-

zn.github.io/TADT-project-page/.

5.1. Implementation Details

We implement the proposed tracker in Matlab with the

MatConvNet toolbox [41] on a PC with 32G memory, an i7

3.6GHz CPU, and a GTX-1080 GPU. The average tracking

speed is 33.7 FPS. We use the VGG-16 model [34] as the

base network. To maintain more fine-grained spatial detail-

s, we use the activation outputs of the Conv4-3 and Conv4-

1 layers as the base deep features. In the initial training,

the convergence loss threshold is set to 0.02 and the max-

imum iteration number is 50. We select the top 250 im-

portant filters from the Conv4-3 layer for learning target-

active features and select the top 80 important filters from

the Conv4-1 layers for learning scale-sensitive features. For

the Siamese framework, we use the initial target as the tem-

plate and crop the search region with 3 times of the target

size from the current frame. We resize the target template

into a proper size if it is too large or small. For the scale

evaluation, we generate a proposal pyramid with three s-

cales, i.e., 45/47, 1, and 45/43 times of the previous target

size. We set the corresponding changing penalties to the

pyramid to 0.990, 1, and 1.005.

5.2. Overall Performance

We evaluate the proposed algorithm on five benchmark

datasets, including OTB-2013, OTB-2015, VOT-2015,

VOT-2016, and Temple color-128. The proposed algorith-

m is compared with the state-of-the-art trackers, including

Table 1. Experimental results on the OTB datasets. The AUC

scores on the OTB-2013 and OTB-2015 datasets are presented.

The notation * denotes the running speed is reported by the au-

thors as the source code is not available. From top to bottom,

the trackers are broadly categorized into three classes: correlation

filters based trackers, non-real-time deep trackers, and real-time

deep trackers.

Tracker OTB-2013 OTB-2015 Real-time FPS

BACF [17] 0.657 0.621 Y 30

MCPF [48] 0.677 0.628 N 1.8

MCCT-H [43] 0.664 0.642 N 10

CCOT [10] 0.672 0.671 N 0.2

STRCF [22] 0.683 0.683 N 3.1

ECO [7] 0.702 0.694 N 3.1

DRT [38] 0.720 0.699 N 1.0*

DSiamM [11] 0.656 0.605 N 18

ACT [4] 0.657 0.625 N 15

CREST [35] 0.673 0.623 N 2.4

FlowT [52] 0.689 0.655 N 12*

DSLT [25] 0.683 0.660 N 2.5

DAT [31] 0.704 0.668 N 0.79

LSART [37] 0.677 0.672 N 1.0*

MDNet [29] 0.708 0.678 N 1.1

VITAL [36] 0.710 0.682 N 1.2

SiamRPN [21] 0.658 0.637 Y 71*

RASNet [44] 0.670 0.642 Y 83*

SA-Siam [13] 0.676 0.656 Y 50*

CFNet [40] 0.611 0.586 Y 41

SiamFC [2] 0.607 0.582 Y 49

TRACA [5] 0.652 0.602 Y 65

DaSiamRPN [51] 0.668 0.654 Y 97

TADT 0.680 0.660 Y 33.7

the correlation filters based trackers, such as SRDCF [9],

Staple [1], MCPF [48], CCOT [10], ECO [7], BACF [17],

DRT [38], STRCF [22], and MCCT-H [43]; the non-real-

time deep trackers such as MDNet [29], CREST [35], L-

SART [37], FlowT [52], DSLT [25], MetaSDNet [30], VI-

TAL [36], and DAT [31]; and the real-time deep trackers

such as ACT [4], TRACA [5], SiamFC [2], CFNet [40], D-

SiamM [11], RASNet [44], SA-Siam [13], SiamRPN [21],

and DaSiamRPN [51]. In the following, we will present the

results and analyses on each dataset.

OTB dataset. The OTB-2013 dataset with 50 sequences

and the extended OTB-2015 dataset with additional 50 se-

quences are two widely used tracking benchmarks. The

sequences in the OTB datasets are with a wide variety of

tracking challenging, such as illumination variation, scale

variation, deformation, occlusion, fast motion, rotation, and

background clutters. The OTB benchmark adopts Center

Location Error (CLE) and Overlap Ratio (OR) as the base

metrics [45]. Based on CLE and OR, the precision and

success plots are used to evaluate the overall tracking per-
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(b) Results on the OTB-2015 dataset

Figure 5. Success and precision plots on the OTB-2013 and

OTB-2015 datasets.

formance. The precision plot measures the percentage of

frames whose CLE is within a given threshold, which is

usually set to 20 pixels. The success plot computes the per-

centage of the successful frames whose OR is larger than

a given threshold. The area under the curve (AUC) of the

success plot is mainly used to rank tracking algorithms.

Table 1 shows the AUC score and the running speed of

the three categories of trackers on the OTB-2013 and OTB-

2015 datasets. In the group of real-time trackers, the pro-

posed algorithm achieves the best performance on both the

OTB-2013 dataset (AUC score: 0.680) and the OTB-2015

dataset (AUC score: 0.660). Compared with the state-of-

the-art Siamese trackers with offline training, the proposed

algorithm achieves the best performance on the OTB-2015

dataset. This is because the proposed target-aware deep fea-

tures best exploits the objectness and semantic information

of the targets and are robust to their appearance variations

as well as scale changes. The correlation filters based track-

ers (DRT and ECO) achieve top performance among all the

compared trackers due to the benefits from the multi-feature

fusion and online updating schemes. Non-real-time deep

trackers all achieve good AUC scores. However, they suf-

fer from time-consuming online training and model overfit-

ting. Equipped with the concise Siamese framework and a

small set of deep features, the proposed algorithm achieves

a real-time tracking speed (33.7 FPS). This demonstrates

the effectiveness of the proposed target-aware features, as

the performance of the Siamese tracking framework sole-

ly hinges on the discriminative power of features. Figure 5

shows the favorable performance of the proposed tracker

against the state-of-the-art real-time trackers. For concise

Table 2. Experimental results on the VOT-2015 dataset. The

notation (*) indicates the number is reported by the authors.

Tracker EAO ↑ Accuracy ↑ Failure↓ FPS

SiamFC [2] 0.292 0.54 1.42 49

Staple [1] 0.30 0.57 1.39 50

SA-Siam [13] 0.31 0.59 1.26 50*

EBT [50] 0.313 0.45 1.02 4.4*

DeepSRDCF [8] 0.318 0.56 1.0 1*

FlowT [52] 0.341 0.57 0.95 12*

TADT 0.327 0.59 1.09 33.7

Table 3. Experimental results on the VOT-2016 dataset. The

notation (*) indicates the number is reported by the authors.

Tracker EAO ↑ Accuracy ↑ Failure↓ FPS

SA-Siam [13] 0.291 0.54 1.08 50*

EBT [50] 0.291 0.47 0.9 4.4*

Staple [1] 0.295 0.54 1.2 50

C-COT [10] 0.331 0.53 0.85 0.3

TADT 0.299 0.55 1.17 33.7

representation, we only show the real-time trackers (≥25 F-

PS) in this figure, and the complete results of other trackers

can be found in Table 1.

VOT dataset. We validate the proposed tracker on the

VOT-2015 dataset. The dataset contains 60 short sequences

with various challenges. The VOT benchmark evaluates a

tracker from two aspects: robustness and accuracy, which

are different from the OTB benchmark. The robustness of a

tracker is measured by the failure times. A failure is detect-

ed when the overlap ratio between the prediction and the

ground truth becomes zero. After 5 frames of the failure,

the tracker is re-initialized to track the targets. The accu-

racy of a tracker is measured by the average overlap ratio

between the predicted results and the ground truths. Based

on these two metrics, Expected Average Overlap (EAO) is

used for overall performance ranking.

Table 2 shows the experimental results on the VOT-2015

dataset. The proposed tracker performs favorably against

the state-of-the-art trackers on this dataset. We achieves

the second-best EAO score (0.327) with the best accura-

cy (0.59) and a favorable robustness score (1.09) close to

the best one (0.95). FlowTrack equipped with optical flow

achieves the best EAO score (0.341). However, it runs at a s-

low speed (12 FPS) when compared to the proposed tracker

(33.7 FPS). For the VOT-2016 dataset, the proposed track-

er obtains the best accuracy score (0.55) and the second-

best EAO score (0.299). Compared with the C-COT track-

er, which achieves the best EAO score (0.331) and the best

robustness (0.85), the proposed algorithm runs faster (33.7

vs. 0.3 FPS). Overall, the proposed tracker performs well

in terms of accuracy, robustness, and running speed. It
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is worth noting that the favorable performance is achieved

without an online update or offline training. This demon-

strates the effectiveness of the proposed deep features with

target-active and scale-sensitive information, which helps to

distinguish between the target objects and the background.

Temple color-128 dataset. We report the results on the

Temple color-128 dataset, which includes 128 color se-

quences and uses the AUC score as the evaluation metric.

Table 4 shows that the proposed algorithm achieves the best

performance among the real-time trackers with an AUC s-

core of 0.562. The proposed tracker is not specially de-

signed for these color sequences and does not exploit ad-

ditional online adaption schemes, while it achieves a favor-

able performance and runs at real-time. This shows the gen-

eralization ability of the proposed algorithm.

Table 4. Experimental results on the Temple color-128 dataset.

The notation (*) indicates the number is reported by the authors.

Method overlap-AUC Real-time FPS

MCPF [48] 0.545 N 1*

STRCF [22] 0.553 N 6

C-COT [10] 0.567 N 1*

MDNet [29] 0.590 N 1

ECO [7] 0.600 N 3

STRCF-deep [22] 0.601 N 3

STAPLE [1] 0.498 Y 50

BACF [17] 0.52 Y 35*

ECO-HC [7] 0.552 Y 30

TADT 0.562 Y 33.7

5.3. Ablation Studies

In this section, we analyze the proposed method on

the OTB datasets, including the OTB-2013 and OTB-2015

datasets, to study the contributions of different losses and

different layer features. Table 5 presents the overlap ra-

tio in terms of AUC scores of each variation. The fea-

tures from the output of the Conv4-3 and Conv4-1 layer-

s are denoted as Conv4-3 and Conv4-1, respectively. We

compare the results of different feature layers based on re-

gression loss, ranking loss, and random selection (random-

ly selecting the same number of filters), which are denoted

as Regress, Rank, and Rand, respectively. Compared with

the random selection model, the regression loss scheme ob-

tains significant gains in AUC scores for both the Conv4-1

(+4.3% and +4.4%) and Conv4-3 (+4.9% and +3.4%) on

the OTB-2013 and OTB-2015 datasets. We attribute these

gains to the benefits from the regression loss, which helps

to select the most effective convolution filters to generate

target-aware discriminative features. By exploiting the ob-

jectness and semantic information pertaining to the target,

the generated features are effective in distinguishing the tar-

get from the background and are robust to target variation-

s. The combination of regression-loss guided features from

the Conv4-1 and Conv4-3 layers slightly improves the per-

formance (+0.7% and +0.7%) on these two datasets. This

shows that although from different layers, these filters guid-

ed with the same loss do not provide much complemen-

tary information. When combining different CNN layer

guided by different losses, the improvement becomes larg-

er (+1.8% and +1.6%). The improvement benefits from the

scale-sensitive information of the ranking-loss based fea-

tures, which puts more emphasis on spatial details. The

comparison on the last two rows in Table 5 demonstrates

the effectiveness of the ranking loss.

Table 5. Ablation studies on the OTB dataset.

Conv4-1 Conv4-3 OTB-2013 OTB-2015

Rand – 0.602 0.597

– Rand 0.618 0.610

Regress – 0.645 0.646

– Regress 0.662 0.644

Regress Regress 0.669 0.651

Regress+Rank Regress 0.680 0.660

6. Conclusions

In this paper, we propose to learn target-aware features

to narrow the gap between pre-trained classification deep

models and tracking targets of arbitrary forms. Our key in-

sight lies in that gradients induced by different losses in-

dicate the importance of the corresponding filters in recog-

nizing target objects. Therefore, we propose to learn target-

aware deep features with a regression loss and a ranking loss

by selecting the most effective filters from pre-trained CN-

N layers. We integrate the target-aware feature model with

a Siamese tracking framework and demonstrate its effec-

tiveness and efficiency for visual tracking. In summary, we

provide a novel way to handle the problems when using pre-

trained high-dimensional deep features to represent track-

ing targets. Extensive experimental results on five public

datasets demonstrate that the proposed algorithm performs

favorably against the state-of-the-art trackers.
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