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Abstract

Human-Object Interaction (HOI) Detection is an impor-

tant problem to understand how humans interact with ob-

jects. In this paper, we explore Interactiveness Knowl-

edge which indicates whether human and object inter-

act with each other or not. We found that interactive-

ness knowledge can be learned across HOI datasets, re-

gardless of HOI category settings. Our core idea is

to exploit an Interactiveness Network to learn the gen-

eral interactiveness knowledge from multiple HOI datasets

and perform Non-Interaction Suppression before HOI clas-

sification in inference. On account of the generaliza-

tion of interactiveness, interactiveness network is a trans-

ferable knowledge learner and can be cooperated with

any HOI detection models to achieve desirable results.

We extensively evaluate the proposed method on HICO-

DET and V-COCO datasets. Our framework outperforms

state-of-the-art HOI detection results by a great mar-

gin, verifying its efficacy and flexibility. Code is avail-

able at https://github.com/DirtyHarryLYL/

Transferable-Interactiveness-Network.

1. Introduction

Human-Object Interaction (HOI) detection retrieves hu-

man and object locations and infers the interaction classes

from still image. As a sub-task of visual relationship [24,

17], HOI is strongly related to the human body and ob-

ject understanding [33, 36, 39, 11, 26, 21, 38]. It is crucial

for behavior understanding and can facilitate activity under-

standing [9, 28], imitation learning [3], etc. Recently, im-

pressive progress has been made by utilizing Deep Neural

Networks (DNNs) in this area [34, 19, 32, 31].
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Figure 1. Interactiveness Knowledge Learning. (a) HOI datasets

contain implicit interactiveness knowledge. We can learn it better

by performing explicit interactiveness discrimination, and utilize

it to improve the HOI detection performance. (b) Interactiveness

knowledge is beyond the HOI categories and can be learned across

datasets, which can bring greater performance improvement.

Generally, human and objects need to be detected first.

Given an image and its detections, human and objects are

often paired exhaustively [19, 31, 32]. HOI detection task

aims to classify these pairs as different HOI categories. Pre-

vious one-stage methods [34, 19, 31, 13, 32] directly clas-

sify a pair as specific HOIs. These methods actually predict

interactiveness implicitly at the same time, where interac-

tiveness indicates whether a human-object pair is interac-

tive. For example, when a pair is classified as HOI “eat

apple”, we can implicitly predict that it is interactive.

Though interactiveness is an essential element for HOI

detection, we neglected to study how to utilize it and im-

prove its learning. In comparison to HOI categories, in-

teractiveness conveys more basic information. Such at-

tribute makes it easier for interactiveness to transfer across

datasets.Based on this inspiration, we propose a Interac-

tiveness Knowledge learning method as seen in Figure 1.

With our framework, interactiveness can be learned across

datasets and applied to any specific dataset. By utilizing

interactiveness, we take two stages to identify HOIs: we

first discriminate a human-object pair as interactive or not
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and then classify it as specific HOIs. Compared to previous

one-stage method [34, 19, 31, 13, 32], we take advantage of

powerful interactiveness knowledge that incorporates more

information from other datasets. Thus our method can de-

crease the false positives significantly. Additionally, after

the interactiveness filtering in the first stage, we do not need

to handle a large number of non-interactive pairs which are

overwhelmingly more than interactive ones.

In this paper, we proposed a novel two-stage method to

classify pairs hierarchically as shown in Figure 2. We in-

troduce an interactiveness network which can be combined

with any HOI detection model. We set a hierarchical logical

strategy: by utilizing binary interactiveness labels, interac-

tiveness network will bring in a strong supervised constraint

which refines the framework in training and learns the in-

teractiveness from multiple datasets. In testing, interactive-

ness network performs Non-Interaction Suppression (NIS)

first. Then the HOI detection model will classify the re-

maining pairs as specific HOIs, where non-interactive pairs

have been decreased significantly. Moreover, if the model

classifies a pair as specific HOIs, it should figure out that

the pair is interactive simultaneously. Such two-stage pre-

diction will alleviate the learning difficulty and bring in hi-

erarchical predictions. For special attention, interactiveness

offers extra information to help HOI classification and is

independent of HOI category settings. That means it can

be transferred across datasets and utilized to enhance HOI

models designed for different HOI settings.

We perform extensive experiments on HICO-DET [34],

V-COCO [13] datasets. Our method cooperated with trans-

ferred interactiveness outperforms the state-of-the-art meth-

ods by 2.38, 3.06, and 2.17 mAP on three Default category

sets on HICO-DET, 4.0 and 3.4 mAP on V-COCO.

2. Related Works

Visual Relationship Detection. Visual relationship detec-

tion [6, 17, 24, 16] aims to detect the objects and classify

their relationships simultaneously. In [17], Lu et al. pro-

posed a relationship dataset VRD and an approach com-

bined with language priors. Predicates within relationship

triplet 〈subject, predicate, object〉 include actions, verbs,

spatial and preposition vocabularies. Such vocabulary set-

ting and severe long-tail issue within the dataset make this

task quite difficult. Large-scale dataset Visual Genome [24]

is then proposed to promote studies in this problem. Recent

works [23, 25, 40, 30] put attention on more effective and

efficient visual feature extraction and try to exploit semantic

information to refine the relationship detection.

Human-Object Interaction Detection. Human-Object

Interaction [1, 4, 2] is essential to understand human-

centric interaction with objects. Recently several large-

scale datasets, such as V-COCO [13], HICO-DET [34],

HCVRD [18], were proposed for the exploration of HOI

…

HOI Detection 
Model

HOIs

Non-Interaction 
Suppression

HOIsHOI Detection 
Model

Dense HOI Graph

Sparse HOI Graph
Human Node
Object   Node
Predicate Edge

Exhaustive Pairing

(a) One-Stage Inference

(b) Two-Stage Inference

Human-Object Pair

InteractiveNon-Interactive

HOI 1 … HOI n

Figure 2. HOIs within an image can be represented as a HOI graph.

Human and object can be seen as nodes, whilst the interactions are

represented as edges. Exhaustive pairing of all nodes would im-

port overmuch non-interactive edges and do damage to detection

performance. Our Non-Interaction Suppression can effectively re-

duce non-interactive pairs. Thus the dense graph would be con-

verted to a sparse graph and then be classified.

detection. Different from HOI recognition [35, 5, 12, 8, 15]

which is an image level classification problem, HOI de-

tection needs to detect interactive human-object pairs and

classify their interactions at instance level. With the assis-

tance of DNNs and large-scale datasets, recently methods

have made significant progress. Chao et al. [34] proposed

a multi-stream model combining visual features, spatial lo-

cations to help tackle this problem. To address the long tail

issue, Shen et al. [37] studied zero-shot learning problem

and predicted the verb and object separately. In [19], an ac-

tion specific density map estimation method is introduced

to locate objects interacted with human. In [32], Qi et al.

proposed GPNN incorporating DNN and graphical model,

which uses message parsing to iteratively update states and

classifies all possible pairs/edges. Gao et al. [31] exploited

an instance centric attention module to enhance the infor-

mation from the interest region and facilitate the HOI clas-

sification. Generally, these methods inference in one-stage

and may suffer from severe non-interactive pair domination

problem. To address this issue, we utilize interactiveness

to explicitly discriminate non-interactive pairs and suppress

them before HOI classification.

3. Preliminary

HOI representation can be described as a graph

model [32, 23] as seen in Figure 2. Instances and relations

are expressed as nodes and edges respectively. With ex-

haustive pairing [19, 31], HOI graph G = (V, E) is dense

connected, where V includes human node Vh and object

node Vo. Let vh ∈ Vh and vo ∈ Vo denote the human

and object nodes. Thus edges e ∈ E are expressed as

e = (vh, vo) ∈ Vh × Vo. With n nodes, exhaustive par-

ing will generate a mass of edges. We aim to assign HOI

(including no HOI) labels on those edges. Considering that

a vast majority of non-interactive edges existing in E should

be discarded, our goal is to seek a sparse G∗ with corrected
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Figure 3. Overview of our framework. Interactiveness network P can cooperate with any HOI models (referred as C). P employs human,

object and spatial-pose streams to extract features from human and object appearance, spatial locations and human pose information. The

outputs of three streams are concatenated and inputted to the interactiveness discriminator. When cooperated with multi-stream C such

as [34, 31] (human, object, and spatial streams), HP and O
P in P can share weights (dotted lines) with H

C and O
C in C during joint

training. In this work, these four blocks are all residual blocks [14]. LIS and NIS will be detailed in Section 4.3 and Section 4.5.

HOI labeling on its edges.

4. Our Method

4.1. Overview

As aforementioned, we introduce Interactiveness

Knowledge to advance HOI detection performance. That

is, explicitly discriminate the non-interactive pairs and sup-

press them before HOI classification. From the semantic

point of view, interactiveness provides more general in-

formation than conventional HOI categories. Since any

human-object pair can be assigned binary interactiveness la-

bels according to the HOI annotations, i.e. “interactive” or

“non-interactive”, interactiveness knowledge can be learned

from multiple datasets with different HOI category settings

and transferred to any specific datasets.

To exploit this cue, we proposed interactiveness network

(interactiveness predictor, referred as P) which utilizes in-

teractiveness to reduce false positives caused by overmuch

non-interactive pair candidates. Some conventional mod-

ules are also included, namely, Representation Network

R (feature extractor) and Classification Network C (HOI

classifier). R is responsible for feature extraction from

detected instances. C utilizes node and edge features to

perform HOI classification. Figure 3 is an overview of

our framework which follows the hierarchical classification

paradigm. Specifically, we first train P and C jointly to

learn the interactiveness and HOIs knowledge. Under usual

circumstances, the ratio of non-interactive edges is domi-

nant within inputs. Hence P will bring a strong supervised

signal to refine the framework. In testing, P is utilized in

two stages. First, P evaluates the interactiveness of edges

by exploiting the learned interactiveness knowledge, so we

can convert the dense HOI graph to a sparse one. Second,

combined with interactiveness score from P, C will process

the sparse graph and classify the remaining edges.

In addition, on account of the generalization ability of in-

teractiveness knowledge, it can be transferred with P across

datasets (Section 4.4). Details of the framework architec-

ture are illustrated in Section 4.2 and 4.3. The process of

training and testing will be detailed in Section 4.4.

4.2. Representation and Classification Networks

Human and Object Detection. In HOI detection, human

and object need to be detected first. In this work, we fol-

low the setting of [31] and employ the Detectron [29] with

ResNet-50-FPN [20] to prepare bounding boxes and detec-

tion scores. Before post-processing, detection results will

be filtered by the detection score thresholds first.

Representation Network. In previous methods [34, 19,

31], R is often modified from object detector such as Fast

R-CNN [10] or Faster R-CNN [11]. We also exploited

a Faster R-CNN [11] with ResNet-50 [14] based R here.

During training and testing, R is frozen and acts as a feature

extractor. Given the detected bounding boxes, we produce

human and object features by cropping ROI pooling feature

maps according to box coordinates.

HOI Classification Network. As for C, multi-stream ar-

chitecture and late fusion strategy are frequently used and

approved effective [34, 31]. Follow [34, 31], for our classi-

fication network C, we utilize a human stream and an ob-

ject stream to extract human, object and context features.

Within each stream, a residual block [14] (denoted as HC ,

OC , seen in Figure 3) with pooling layer and fully con-

nected layers (FCs) are adopted. Moreover, an extra spa-
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Figure 4. Inputs of the spatial-pose stream. Three kinds of maps

are included: pose map, human map and object map. Person 2

in two images both have interaction “feed” with giraffes. But two

pairs of Person 1 and giraffe are all non-interactive. Their poses

and locations are helpful for the interactiveness discrimination.

tial stream [34] is adopted to encode the spatial locations

of instances. Its input is a two-channel tensor consisting of

a human map and an object map, shown in Figure 4. Hu-

man and object maps are all 64x64 and obtained from the

human-object union box. In the human channel, the value

is 1 in the human bounding box and 0 in other areas. The

object channel is similar which has value 1 in the object

bounding box and 0 elsewhere. Following the late fusion

strategy, each stream will first perform HOI classification,

then three prediction scores will be fused by element-wise

sum in the same proportion to produce the final result of C.

4.3. Interactiveness Network

Interactiveness needs to be learned by extracting and

combining essential information. The visual appearance of

human and object are obviously required. Besides, interac-

tive and non-interactive pairs also have other distinguishing

features, e.g. spatial location and human pose information.

For example, in the upper image of Figure 4, Person 1 and

the giraffe far from him are not interactive. Their spatial

maps [34] can provide pieces of evidence to help with clas-

sification. Furthermore, pose information is also helpful. In

the lower image, although two people are both close to the

giraffe, only Person 2 and the giraffe are interactive. The

arm of Person 2 is uplift and touching the giraffe. Whilst

Person 1 is back on to the giraffe, and his pose is quite dif-

ferent from the typical pose of “feed”.

Based on these reasons, the combination of visual ap-

pearance, spatial location and human pose information is

key to interactiveness discrimination. Hence P needs to en-

code these key elements together to learn the interactiveness

knowledge. A natural choice is the multi-stream architec-

ture as presented: human, object and spatial-pose streams.

Human and Object stream. For human and object appear-
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Figure 5. The illustration of P(·) within Low-grade Suppressive

Function. Its input is object detection score. High-grade detected

objects will be emphasized and distinguished with low-grade ones.

In addition, P(0) = 5.15E − 05 and P(1) = 9.99E − 01.

ance, we extract ROI pooling features from representation

network R, then input them into residual blocks HP and

OP, respectively. The architecture of HP and OP are same

as HC and OC (Figure 3). Through subsequent global av-

erage pooling and FCs, the output features of two streams

are denoted as fh and fo, respectively.

Spatial-Pose Stream. Different from [34], our spatial-pose

stream input includes a special 64x64 pose map. Given the

union box of each human and his/her paired object, we em-

ploy pose estimation [22, 27] to estimate his/her 17 key-

points (in COCO format [7]). Then, we link the keypoints

with lines of different gray value ranging from 0.15 to 0.95

to represent different body parts, which implicitly encodes

the pose features. Whilst the other area is set as 0. Finally,

we reshape the union box to 64x64 to construct the pose

map. We concatenate the pose map with human and object

maps which are the same as those in the spatial stream of

C. This forms the input for our spatial-pose stream. Next,

we exploit two convolutional layers with max pooling and

two 1024 sized FCs to extract the feature fsp of three maps.

Last, the output will be concatenated with the outputs of hu-

man and object streams for interactiveness discrimination.

Given a HOI graph G with all possible edges, P will

evaluate the interactiveness of pair (vh, vo) based on learned

knowledge, and gives confidence:

sP(h,o) = fP(fh, fo, fsp) ∗ L(sh, so), (1)

where L(sh, so) is a novel weight function named Low-

grade Instance Suppressive Function (LIS). It takes the hu-

man and object detection scores sh, so as inputs:

L(sh, so) = P(sh) ∗ P(so), (2)
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where

P(x) =
T

1 + e(k−wx)
, (3)

P(·) is a part of the logistic function, the value of T, k

and w will be determined by data-driven manner. Fig-

ure 5 depicts the curve of P(·) whose domain definition is

(0, 1). Bounding boxes will have low weight till their score

is higher than a threshold. Previous works [31, 19] often

directly multiply detection scores by the final classification

score. But they cannot notably emphasize the differentia-

tion between high quality and inaccurate detection results.

LIS has the ability to enhance the differentiation between

high and low grade object detections as shown in Figure 5.

Weights Sharing Strategy. An additional benefit of our

interactiveness network is that, if cooperated with multi-

stream HOI detection model C, P can share the weights

of convolutional blocks with the ones in C. As shown in

Figure 3, blocks HP and OP can share weights with HC

and OC in the joint training. This weights sharing strategy

can guarantee information sharing and better optimization

of P and C in the multi-task training.

4.4. Interactiveness Knowledge Transfer Training

With R, P and C, our framework has two modes of uti-

lization: hierarchical joint training in Default Mode, and in-

teractiveness transfer training in Transfer Learning Mode.

Hierarchical Joint Training. In Default Mode, we intro-

duce our hierarchical joint training scheme, as illustrated

in Figure 6 (a). By adding a supervisor P, our frame-

work works in an unconventional training mode. To be

specific, the framework is trained with hierarchical classifi-

cation tasks, i.e. explicit interactiveness discrimination and

HOI classification. The objective function of the framework

can be expressed as:

L = LC + LP, (4)

where LC denotes the HOI classification cross entropy loss,

while LP is the binary classification cross entropy loss.

Different from one-stage methods, additional interac-

tiveness discrimination enforces the model to learn inter-

activeness knowledge, which can bring more powerful su-

pervised constraints. Namely, when a pair is predicted as

specific HOIs such as “cut cake”, P must give the predic-

tion “interactive” simultaneously. Experiment results (Sec-

tion 5.4) prove that interactiveness knowledge learning can

effectively refine the training and improve the performance.

The framework in Default Mode is called “RPDCD” in the

following, where “D” indicates “Default”.

Interactiveness Knowledge Transfer Training. Noting

that P only needs binary labels which are beyond the HOI

classes, so interactiveness is transferable and reusable. In

Transfer Learning Mode, P can be used as a transferable
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Figure 6. The schemes for training and testing. (a) In Default

Mode, P and C are first trained jointly with weights sharing on

the same dataset. (b) In Transfer Learning Mode, P can learn in-

teractiveness knowledge across datasets and cooperates with mul-

tiple Cs trained on different datasets. In testing, our framework

infers in two stages, i.e. P performs interactiveness discrimination

at first, then C classifies the remaining edges/pairs.

knowledge learner to learn interactiveness from multiple

datasets and be applied to each of them respectively, as

illustrated in Figure 6 (b). On the contrary, C must be

trained on a single dataset once a time considering the va-

riety of HOI category settings in different datasets. There-

fore, knowledge of the specific HOIs is difficult to transfer.

We will compare and evaluate the transferability of interac-

tiveness knowledge and HOI knowledge in Section 5.

For better representation of the transferability and perfor-

mance enhancement of interactiveness, we set several trans-

fer learning modes, referred as “RPTnCD”, where “T” in-

dicates “Transfer”, and “n” means P learns interactiveness

knowledge from “n” datasets: 1) RPT1CD: train P on 1

dataset and apply P to another dataset. 2) RPT2CD: train

P on 2 datasets and apply P to them respectively.

To compare the transferability of interactiveness knowl-

edge and HOIs knowledge, we set a transfer learning mode

“RCT ” for C: 3) RCT : train C (without P) on one dataset

and apply it to another dataset. For example, we first train

and test C on HICO-DET (referred as “RCD”). Second,

we replace the last FC layer of C with a FC layer that fits

the number of V-COCO HOIs, then finetune C for 1 epoch

on V-COCO train set. Last, we test this new C on V-COCO

test set. Details of the above modes can be found in Table 1.

4.5. Testing with NonInteraction Suppression

After the interactiveness learning, we further utilize P to

suppress the non-interactive pair candidates in testing, i.e.

Non-Interaction Suppression (NIS). The inference process

is based on tree structure as shown in Figure 2. Detected

instances in test set will be paired exhaustively, so a dense

graph G of human and objects is generated. First, we em-

ploy P to compute the interactiveness score of all edges.

Next, we suppress the edges that meet NIS conditions, i.e.

interaction score sP(h,o) smaller than a certain threshold α.
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Through NIS, we can convert G to G
′

where G
′

denotes

the approximate sparse HOI graph. The HOI classification

score vector SC

(h,o) of (vh, vo) from C is:

SC

(h,o) = FC[Γ
′

;G
′

(vh, vo)], (5)

where Γ
′

are input features. The final HOI score vector of a

pair (vh, vo) can be obtained by:

S(h,o) = SC

(h,o) ∗ s
P

(h,o). (6)

Here we multiply interactiveness score sP(h,o) from P by the

output of C.

5. Experiments

In this section, we first introduce datasets and metrics

adopted and then give implementation details of our frame-

work. Next, we report our HOI detection results quantita-

tively and qualitatively compared with state-of-the-art ap-

proaches. Finally, we conduct ablation studies to validate

the validity of the components in our framework.

5.1. Datasets and Metrics

Datasets. We adopt two HOI datasets HICO-DET [34] and

V-COCO [13]. HICO-DET [34] includes 47,776 images

(38,118 in train set and 9658 in test set), 600 HOI categories

on 80 object categories (same with [7]) and 117 verbs, and

provides more than 150k annotated human-object pairs. V-

COCO [13] provides 10,346 images (2,533 for training,

2,867 for validating and 4,946 for testing) and 16,199 per-

son instances. Each person has annotations for 29 action

categories (five of them have no paired object). The objects

are divided into two types: “object” and “instrument”.

Metrics. We follow the settings adopted in [34], i.e. a pre-

diction is a true positive only when the human and object

bounding boxes both have IoUs larger than 0.5 with ref-

erence to ground truth, and the HOI classification result is

accurate. The role mean average precision [13] is used to

measure the performance.

5.2. Implementation Details

We employ a Faster R-CNN [11] with ResNet-50 [14]

as R and keep it frozen. C consists of three streams similar

to [34, 31], extracting features Γ
′

from instance appearance,

spatial location as well as context. Within human and object

streams, a residual block [14] with global average pooling

and four 1024 sized FCs are used. Relatively, the spatial

stream is composed of two convolutional layers with max

pooling, and two 1024 sized FCs. Following [34, 31], we

use the late fusion strategy in C. P also consists of three

streams (seen in Figure 3). A residual block [14] with global

average pooling, and two 1024 sized FCs are adopted in hu-

man and object streams. Residual blocks within these two

Test Set Method P-Train Set C-Train Set

HICO-DET

RPDCD HICO-DET HICO-DET

RPT1CD V-COCO HICO-DET

RPT2CD HICO-DET, V-COCO HICO-DET

HICO-DET
RCD - HICO-DET

RCT - V-COCO

V-COCO

RPDCD V-COCO V-COCO

RPT1CD HICO-DET V-COCO

RPT2CD HICO-DET, V-COCO V-COCO

V-COCO
RCD - V-COCO

RCT - HICO-DET

Table 1. Mode settings in experiments.

streams will share weights with those in C. Spatial-Pose

stream consists of two convolutional layers with max pool-

ing and two 1024 sized FCs. The outputs of three streams

are concatenated and passed through two 1024 sized FCs to

perform interactiveness discrimination.

For a fair comparison, we adopt the object detection re-

sults and COCO [7] pre-trained weights from [31] which

are provided by authors. Since NIS and LIS can suppress

non-interactive pairs, we set detection confidence thresh-

olds lower than [31], i.e. 0.6 for human and 0.4 for object.

The image-centric training strategy [11] is also applied. In

other words, pair candidates from one image make up the

mini-batch. We adopt SGD and set an initial learning rate

as 1e-4, weight decay as 1e-4, momentum as 0.9. In train-

ing, the ratio of positive and negative samples is 1:3. We

jointly train the framework for 25 epochs. In LIS mentioned

in Equation 3, we set T = 8.4, k = 12.0, w = 10.0. In test-

ing, the interactiveness threshold α in NIS is set as 0.1. All

experiments are conducted on a single Nvidia Titan X GPU.

5.3. Results and Comparisons

We compare our method with five state-of-the-art HOI

detection methods [34, 37, 19, 32, 31] on HICO-DET, and

four methods [13, 19, 32, 31] on V-COCO. The HOI de-

tection result is evaluated with mean average precision. For

HICO-DET, we follow the settings in [34]: Full (600 HOIs),

Rare (138 HOIs), Non-Rare (462 HOIs) in Default and

Known Object mode. For V-COCO, we evaluate AProle (24

actions with roles). More details can be found in [34, 13].

Default Mode. From Table 2, we can find that the

RPDCD has already outperformed compared methods.

We respectively achieve 17.03 and 19.17 mAP on Default

and Know Object Full sets on HICO-DET. In particular, we

boost the performance of 2.97 and 4.18 mAP on Rare sets.

To illustrate, as the generalization ability of interactive-

ness is beyond HOI category settings, information scarcity

and learning difficulty of rare categories is alleviated. So

the performance difference between rare and non-rare cat-

egories is accordingly reduced. Results on V-COCO are

shown in Table 3. RPDCD also achieves superior perfor-

mance and outperforms state-of-the-art method [31] (late

and early fusion model), yielding 47.8 mAP, which quan-

3590



Default Known Object

Method Full Rare Non-Rare Full Rare Non-Rare

Shen et al. [37] 6.46 4.24 7.12 - - -

HO-RCNN [34] 7.81 5.37 8.54 10.41 8.94 10.85

InteractNet [19] 9.94 7.16 10.77 - - -

GPNN [32] 13.11 9.34 14.23 - - -

iCAN [31] 14.84 10.45 16.15 16.26 11.33 17.73

RCD 13.75 10.23 15.45 15.34 10.98 17.02

RPDCD 17.03 13.42 18.11 19.17 15.51 20.26

RCT 10.61 7.78 11.45 12.47 8.87 13.54

RPT1CD 16.91 13.32 17.99 19.05 15.22 20.19

RPT2CD 17.22 13.51 18.32 19.38 15.38 20.57

Table 2. Results comparison on HICO-DET [34]. D indicates the

default mode, and T means the transfer learning model.

titatively validates the efficacy of the interactiveness. No-

tably, RCD shows limited performance when compared

with other models containing P. This reveals the perfor-

mance enhancement ability of interactiveness network P.

Transfer Learning Mode. By leveraging transferred in-

teractiveness knowledge, RPT2CD presents great perfor-

mance improvement and achieves the most state-of-the-art

performance. On HICO-DET, RPT2CD surpasses [31]

by 2.38, 3.06, and 2.17 mAP on three Default category

sets. Meanwhile, it also outperforms [31] by 4.0 and 3.4

mAP on V-COCO. This indicates the good transferabil-

ity and effectiveness of interactiveness. Since HICO-DET

train set (38K) is much bigger than V-COCO train set

(2.5K), improvement is also larger when transferring is per-

formed from HICO-DET to V-COCO. As we can see, mode

RPT1CD achieves obvious improvement on V-COCO, but

it shows a relatively smaller improvement on HICO-DET

when compared with mode RPDCD.

We also evaluate the transferability of HOIs knowledge.

In comparison with RCD, RCT shows a significant per-

formance decrease of 3.14 and 4.7 mAP on two datasets,

as shown in Table 2 and 3. It proves that interactiveness is

more suitable and easier to transfer than HOIs knowledge.

Non-Interaction Reduction. The non-interactive pairs re-

duction effect after employing NIS are shown in Table

4. In default mode RPDCD, NIS shows obvious effec-

tiveness. With interactiveness transferred from multiple

datasets, RPT2CD achieves better suppressive effect and

discards 70.94% and 73.62% non-interactive pairs respec-

tively on two datasets, thus bringing more performance

gain. Meanwhile, RPT1CD also performs well and sup-

presses a certain amount of non-interactive pair candidates.

This suggests the good transferability of interactiveness.

Visualized Results. Representative predictions are shown

in Figure 7. We can find that our model is capable of de-

tecting various kinds of complicated HOIs such as multiple

interactions within one pair, one person performing multi-

ple interactions with different objects, one object interacted

with multiple persons, multiple persons performing differ-

ent interactions with multiple objects.

Figure 8 shows the visualized effects of NIS. We can

see that NIS effectively distinguish the non-interactive pairs

herd-sheep walk-sheep
carry-backpack
wear-backpack

sit_at-dining_table
eat_at-dining_table

hold-cellphone
type_on-cellphone

bicycle bicycle

hold,jump,ride,sit_on,straddle work_on_computer-instr
lay-instr

sit-instr

hold-instrread-instr

cut-instr

cut-obj

hold-obj

hit-instrhit-obj
hold-obj

Figure 7. Visualization of sample HOI detections. Subjects and

objects are represented with blue and red bounding boxes. While

interactions are marked by green lines linking the box centers.

Method AProle

Gupta et al. [13] 31.8

InteractNet [19] 40.0

GPNN [32] 44.0

iCAN w/ late(early) [31] 44.7 (45.3)

RCD 43.2

RPDCD 47.8

RCT 38.5

RPT1CD 48.3

RPT2CD 48.7

Table 3. Results comparison on V-COCO [13]. D indicates the

default mode, and T means the transfer learning model.

and suppress them in extremely difficult scenarios, such as

a person performing a confusing action and the tennis ball,

a crowd of people with ties. In the bottom-left corner we

show an even harder sample. When the subject and ob-

ject are the left hand and right hand, C predicts wrong HOI

“type on keyboard”. C may mistake the left hand for the

keyboard because they are too close. However, P accu-

rately figures out that two hands are non-interactive. These

results prove that the one-stage method would yield many

false positives without interactiveness and NIS.

5.4. Ablation Studies

In mode RPDCD, we analyze the significance of Low-

grade Instance Suppressive, Non-Interaction Suppression

and the three streams within P (seen in Table 5).

Non-Interaction Suppression NIS plays a key role to re-

duce the non-interactive pairs. We evaluate its impact by

removing NIS during testing. In other words, we directly

use the S(h,o) from Equation 6 as the final predictions with-

out NIS. Consequently, the model shows an obvious perfor-

mance degradation, which proves the importance of NIS.

Low-grade Instance Suppressive LIS suppress the low-

grade object detections and reward the high-grade ones. By

removing L(sh, so) in Equation 1, we observe a degradation

in Table 5. This suggests that LIS is capable of distinguish-

ing the low-grade detections and improves the performance
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hit-objskateboard-instrski-instr work_on-instr

wear-tie cut-objski-instr hit-obj

hold-appletype_on-keyboard hold-handbagsit_on-chair

Figure 8. Visualized effects of NIS. Green lines mean accurate HOIs, while purple lines mean non-interactive pairs which are suppressed.

Without NIS, C would generate false positive predictions for these non-interactive pairs in one-stage inference, which are shown by the

purple texts below the images. Even some extremely hard scenarios can be discovered and suppressed, such as mis-groupings between

person and object close to each other, person and object in clutter scene.

Test Set Method Reduction

HICO-DET

RPDCD -65.96%

RPT1CD -62.24%

RPT2CD -70.94%

V-COCO

RPDCD -65.98%

RPT1CD -59.51%

RPT2CD -73.62%

Table 4. Non-interactive pairs reduction after performing NIS.

HICO-DET V-COCO

Method Default Full KO Full AProle

RPDCD 17.03 19.17 47.8

w/o NIS 15.86 17.35 46.2

w/o LIS 16.35 18.83 47.4

w/o NIS & LIS 15.45 17.31 45.8

H Stream Only 14.91 16.21 44.5

O Stream Only 15.28 16.89 45.2

S-P Stream Only 15.73 17.46 46.0

Table 5. Results of ablation studies. Human, object, spatial-pose

stream are representated as H, O and S-P stream.

without using more costly superior object detector.

NIS & LIS Without NIS and LIS both, our method only

takes effect in the joint training of P and C. As we can

see in Table 5, performance degrades greatly but still out-

performs other methods, which indicates the enhancement

brought by P in the hierarchical joint training.

Three Streams. By keeping one stream in P each time,

we evaluate their contributions as shown in Table 5. We

can find that spatial-pose stream is the largest contributor,

but we still need appearance features from the other two

streams to achieve better performance.

6. Conclusion

In this paper, we propose a novel method to learn and

utilize the implicit interactiveness knowledge, which is gen-

eral and beyond HOI categories. Thus, it can be transferred

across datasets. With interactiveness knowledge, we exploit

an interactiveness network to perform Non-interaction Sup-

pression before HOI classification in inference. Extensive

experiment results show the efficacy of interactiveness. By

combining our method with existing detection models, we

achieve state-of-the-art results on HOI detection.
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