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Abstract

Path forecasting is a pivotal step toward understanding

dynamic scenes, and it is an emerging topic in the computer

vision field. This task is challenging due to the multimodal

nature of the future, namely, there is more than one plausi-

ble prediction given histories. Yet, the state-of-the-art meth-

ods do not seem to be adequately responsive to this innate

variability. Hence, how to better foresee the forthcoming

trajectories in dynamic scenes has to be more thoroughly

pursued. To this end, we propose a novel Imitative Decision

Learning (IDL) approach. It delves deeper into the key that

inherently characterizes the multimodality – the latent deci-

sion. The proposed IDL first infers the distribution of such

latent decisions by learning from moving histories. A policy

is then generated by taking the sampled latent decision into

account to predict the future. Different plausible upcoming

paths correspond to each sampled latent decision. This ap-

proach significantly differs from the mainstream literature

that relies on a predefined latent variable to extrapolate

diverse predictions. In order to augment the understand-

ing of the latent decision and resultant multimodal future,

we investigate their connection through mutual information

optimization. Moreover, the proposed IDL integrates spa-

tial and temporal dependencies into one single framework,

in contrast to handling them with two-step settings. As a

result, our approach enables simultaneous anticipating the

paths of all pedestrians in the scene. We assess our pro-

posal on the large-scale Stanford Aerial Pedestrian (SAP),

ETH and UCY datasets. The experiments show that IDL in-

troduces considerable marginal improvements with respect

to recent leading studies.

1. Introduction

Path forecasting in dynamic scenes has surged as an in-

triguing topic because of the rising demands of emerging

applications of artificial intelligence. For instance, robots

and autonomous vehicles are required to react `̀ smartly´́ as

Possibility 1 Possibility 2 Possibility 3

Figure 1. The multimodal nature of future paths in a dynamic

scene: There are multiple plausible forthcoming paths (the dash

red and cyan lines) based on identical historical moving records

(the solid red and cyan lines). In this figure, we display three pos-

sibilities as an example.

humans to their fast evolving environments. Thus, equip-

ping them with the capability to forecast what will happen

in the near future is imperative.

Forecasting a future path refers to discerning an un-

known upcoming trajectory by accessing records of prior

movements. It entails effectively and efficiently process-

ing the complex spatial dependencies (interactions among

persons) and temporal dependencies (evolving motion pat-

terns). Therefore, path forecasting is regarded as a multi-

faceted and complicated endeavor.

One issue that has been challenging for the task of path

forecasting in dynamic scenes is the multimodal nature of

the future: Given a set of historical observations, there

will be more than one probable future (see Fig.1). Despite

tremendous accomplishments that has been made to foresee

a deterministic future[1, 44, 26, 45, 25], the majority of the

existing studies fail to consider the multiple possibilities of

future.

To date, state-of-the-art research has attempted to alle-

viate the issue of modeling this multimodality based on a

predefined latent variable z ∼ N(0, 1). For instance, So-

cial GAN [11] takes z as a part of the inputs. It encourages

a diverse set of predictions by using a random sampled z

for each forward pass. Lee et al. present the DESIRE [16]

that approximates the distribution of future trajectories to

the distribution of z. Nevertheless, to predefine z on the

basis of N(0, 1) is probably not able to fully assimilate the

various factors affect the human trajectories within the dy-

namic scenes, such as the spatial and temporal dependen-
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cies. The multimodal predictions of aforementioned studies

might be compromised due to this point. Hence, the ques-

tion of how to construct a framework that can better foresee

the multimodal future remains an open challenge. Address-

ing this issue, rather than merely evoking a latent variable,

we propose delving deeper into the substantial factor char-

acterizing the multimodal future that has largely been ne-

glected by previous works:

• Latent decision: The latent human decision internally

determines the motion pattern of a person step by step to

carve out the trajectory.

Our key insight is that the trajectory of a person is the

outcome of his/her decisions, which are made upon all the

related elements in dynamic scenes (e.g. the spatiotempo-

ral dependencies). Exploring the latent decision leads to a

richer understanding concerning the multimodality of future

paths at a certain semantic level: The different plausible fu-

ture moving course essentially accounts for each decision.

Fig.1 presents an example to support our claim – a pedes-

trian may make different decisions and choose one route

among all the possibilities. Thus, we propose investigat-

ing and mimicking the underlying human decision-making

process to foresee the probable upcoming paths in dynamic

scenes. Toward this end, we present a novel approach to the

path forecasting problem, namely Imitative Decision Learn-

ing (IDL) based on the perspective of Generative Adversar-

ial Imitation Learning (GAIL) [13]. Specifically, we first

infer the distribution that corresponds to the latent decisions

from historical observations, which consist of abundant in-

formation of how human decisions were made in dynamic

scenes. The policy generating process then takes the sam-

pled latent decision into consideration to perform forecast-

ing. The connection of the latent decision to generated pol-

icy is augmented with the aid of optimizing their mutual in-

formation [5, 7]. Consequently, this optimization will yield

informative feedback that highlights the intrinsic impact of

the latent decision on the multimodal future paths. It is also

noteworthy that the latent decision is learned in an unsuper-

vised manner without any annotations.

Additionally, another common denominator of ap-

proaches with a predefined latent variable [11, 16] is that

spatial and temporal dependencies are independently han-

dled. These approaches assign a Long-short Term Memory

(LSTM) to each person to obtain temporal information, and

subsequently assign a social pooling term for spatial infor-

mation. These methods overlook the fact that spatial and

temporal information generally co-occur and affect each

other. For example, in a dynamic scene, one person chang-

ing the direction of moving might cause another person fol-

lowing him/her to change direction or slow down to avoid

collision. Therefore, these two parts are better jointly tied

into a single model. In this study, our work enables pro-

cessing the spatiotemporal dependencies at one shot. This

setting also offers the capability of forecasting the paths of

all people in dynamic scenes simultaneously.

In summary, the contributions of our work are:

1. We introduce a novel Imitative Decision Learning to

the task of path forecasting in dynamic scenes. The

proposed IDL delves deeper into the latent human de-

cision to cover the space of diverse plausible future

paths.

2. Our IDL can accommodate spatio-temporal dependen-

cies in a single pass. Further, it allows to simultane-

ously predict the future trajectories for all persons in

dynamic scenes.

3. We evaluate the proposed model on challenging large-

scale video datasets, and show that significant gains

can be attained with respect to trending works.

To the best of our knowledge, our work is the first study to

imitate the underlying human decision-making process to

uncover multimodality in the context of anticipating future

paths in dynamic scenes.

The remainder of this paper is organized as follows:

First, relevant works are discussed in Section 2. Section 3

details the framework of the proposed IDL. Section 4 con-

ducts the experimental findings and discussions. Finally, we

conclude in Section 5.

2. Related Work

The relevant literature has accumulated some efforts to

overcome the challenges of path forecasting. The pioneer-

ing work [15] exploited the semantics of a single-person

scenario in order to build a trajectory forecasting model.

This work inspired some early studies that tried to solve the

problem of path forecasting with scene-dependent motion

patterns and handcrafted features, such as [2, 42, 47, 3, 35].

However, this raises a question about the applicability of

these algorithms to different scenes.

Some studies focus on building a generalized predic-

tive network for dynamic scenes motivated by data driven

deep neural networks [8]. For instance, Behavior CNN

[46] and FaF CNN [26] developed 3D Convolutional Neural

Network (CNN) [14] based approaches for path predicting.

Alahi et al. [1] proposed modeling the individual motion

dynamic by assigning one LSTM [38] per pedestrian. Fur-

thermore, a social pooling layer was adopted for processing

spatial dependencies. The similar ideas are considered by

the authors of [39, 45] with more sophisticated spatial in-

formation handling layers. Li. et al. [18, 19] attempted

to processing the spatiotemporal information at the same

time. The works of [22, 40, 48, 27] built networks upon

ResNet [12, 50] and LSTM to predict highway traffic flow

for preventing potential accidents. The methods presented

in [28, 34] learned a reward correlated to the scene layout

to find the best strategy for future trajectory constructions.
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Nevertheless, a shared deficiency of these studies is that

they are only able to predict a deterministic future path. In

other words, the multimodal nature has not been taken into

their considerations.

Recent generative models [9, 37] achieve cutting-edge

performances on the task of synthesizing diverse images

[29, 43, 6, 41, 20]. Inspired by these models, several

recent approaches mitigated the issue of capturing multi-

ple possibilities by harnessing a predefined latent variable

z ∼ N(0, 1), then incorporating it with generative net-

works. Gupta et al. [11] developed an approach to simu-

late multiple possible predictions based on perceiving the z

along with past moving records. The authors of [16] con-

sidered deriving the distribution of the future path that is an

approximation of N(0, 1). A major shortcoming of the re-

search mentioned earlier is that z is predefined by N(0, 1)
in the absence of proper reasoning and justification. There-

fore, the prior works might inadequately fully digest the

context of dynamic scenes and might fail to model the in-

herent multimodality of future.

Moreover, previous research involving z separately pro-

cessed the spatial and temporal information. Their out-

comes might be affected by not considering that these two

components are dependent on each other. Thus, it is better

to handle the spatiotemporal dependencies together.

In this study, we propose a novel IDL framework for path

forecasting in dynamic scenes, which explores the latent de-

cision to anticipate future paths. We would like to stress

that our work significantly differs from the existing studies

on path forecasting with following facts: (1) With respect to

[11, 16], explicitly exploring the latent decision enables our

approach better capturing mutimodality, rather than utiliz-

ing a predefined latent variable. (2) Unlike previous studies,

our IDL accommodates the spatial and temporal factors in

a single pass. We learn a single architecture for all persons

in a scene instead of assigning one model per person.

3. Methodology

We carry out the path forecasting concern by mimicking

the underlying human decision-making process. Subsection

3.1 introduces the problem formulation. We elaborate our

framework outlining and formally deriving our objective in

subsection 3.2. Subsection 3.3 details the implementation.

3.1. Problem Formulation

We map the labeled coordinates into a set of motion fea-

tures Xt ((t ∈ [t1, tk])) and GT t′ ((t′ ∈ [tk+1, tk+k′ ])). Xt

and GT t′ refer to the moving histories and the ground truth

future, respectively. These motion features encapsulate all

individual motion patterns through displacement informa-

tion 1. Our proposed IDL proceeds by recovering a policy π

1Please refer to the supplementary material for a detailed description of

the motion feature construction.

from Xt ((t ∈ [t1, tk])) to generate Xt′ ((t′ ∈ [tk+1, tk+k′ ]).
We produce future multimodal paths via incorporating the

latent decision S in the process of recovering policy π.

Formally, we consider IDL by extending GAIL [13].

Borrowing the notations from GAIL, our states and actions

correspond to Xt and Xt′ , respectively. The numerous la-

beled ground truth GT t′ are treated as the demonstration

from experts. The latent decision S ∼ p(S|Xt) is unknown

and needs to be inferred. p(S|Xt) denotes the distribution

from which S is sampled. In the context of GAIL, the gen-

erator can be viewed as policy. Instead of solely obtaining

a policy/generator π from the states Xt, we propose to also

learn from S for modeling the multimodality aspect. IDL

quantifies the impact of S on predictions through optimiz-

ing the mutual information between π and S without super-

vision.

3.2. Imitative Decision Learning

As mentioned previously, our work focuses on under-

standing and imitating the underlying human decision-

making process to anticipate future paths in dynamic

scenes. Fundamentally, our IDL can be viewed as jointly

training (1) an inference sub-network L that extrapolates the

latent decision, (2) a policy/generator π that recovers a pol-

icy to generate upcoming paths, (3) a statistics sub-network

Q that discovers the impact of latent decision on predic-

tions, and (4) a discriminator D that attempts to differenti-

ate our generated outcomes from the expert demonstrations.

We depict the structure and workflow of our proposed IDL

framework in Figure 2. In what follows, we provide detailed

descriptions of each part.

Latent Decision Inference: We invoke the point that the

latent decision is the key behind the multimodal nature of

the future. In order to grasp this point, we propose to

first uncover the distribution of the latent decisions through

learning from prior moving histories. It is owing to that the

moving histories have a wealth of records on how human

decisions were made under a highly complex dynamic sce-

nario. In practice, we parameterize the distribution of latent

decisions by means of the inference sub-network L.

The existence of spatiotemporal dependencies suggests

the fact that a person cannot decide his/her behavior without

considering his/her neighbors in dynamic scenes. Hence,

it is necessary to learn that a distribution can represent all

individuals in the scene. To achieve this goal, we first in-

put the motion features Xt into a pre-trained fully convolu-

tional sub-module [24, 49] to extract a higher-level repre-

sentation of Xt at time instance t (t ∈ [t1, tk]). A set of

higher-level representations from t1 to tk are then fed into

a temporal convolutional sub-module [33, 17] to produce a

two-unit vector. We subsequently append a deconvolutional

[30, 23] sub-module and a softmax layer on each unit of

this two-unit vector. The final outcomes are treated as the
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Figure 2. The detailed schematic diagram of our proposed IDL for forecasting future paths. The red arrows indicate the direction of

information flow between each module. The black arrows suggest the direction of information flow inside a module. The historical

trajectories are firstly input into the inference sub-network to infer the distribution of latent decisions. The temporal convolutional sub-

module receives the output from the pre-trained convolutional sub-module and produces a two-unit vector. A pre-trained deconvolutional

sub-module and a softmax layer read each unit to form the mean and derivation of a Gaussian distribution of latent decisions. Meanwhile,

the encoder of our policy/generator π processes the historical trajectories by a ConvGRU layer. An element-wise addition product on the

encoded hidden states henc

tk
((t ∈ [t1, tk])) and sampled latent decision S initializes the decoder. The final predictions are generated from

the decoded hidden states hdec

t′
(t′ ∈ [tk+1, tk+k′ ) through a deconvolutional layer. The statistics sub-network reads prediction and latent

decision to measure the significance of S on multimodal predictions. The discriminator distinguishes the predictions from the ground truth

future paths (expert demonstrations).

mean µXt
and variance σXt

of a conditional Gaussian dis-

tribution from which the latent decision S samples. It can

be formulated as:

µXt
, σXt

= Softmax(L(Xt), t ∈ [t1, tk]) (1)

S ∼ p(S|Xt) = N (µXt
, σXt

) (2)
During our experiments, we sample the latent decision

S via the reparametrization trick. The process of inference

offers the capability of attaining a profound comprehension

of how human decisions handle the relevant factors, such as

spatiotemporal information.

Policy/Generator: Given the sequential characteris-

tics of human decision-making process, we leverage an

encoder-decoder structure based upon Convolutional Gated

Recurrent Units (ConvGRU) [4] to implement our pol-

icy/generator π. ConvGRU is able to capture temporal in-

formation along with spatial context.

The definition of the encoding is as follows:

henc
t = Enc(Conv(Xt), h

enc
t−1), t ∈ [t1, tk] (3)

where Enc is the encoder sub-network and henc
t denotes

the hidden states at time instance t (t ∈ [t1, tk]). Conv

pertains to a single convolutional layer that serves to remove

the sparsity, which Xt might present.

Simply passing henc
tk

to the decoder sub-network does

not take into account the latent decision. This fails to ex-

pose the innate multimodality to predictions. To tackle this

issue, we propose incorporating the henc
tk

with the latent de-

cision S , which has a vital impact on policy/generator π

for multimodal path forecasting. More specifically, the de-

coder reads the element-wise addition product henc
tk

⊕S for

initialization. Accordingly, each sample of the latent deci-

sion S eventually poses a different plausible prediction. We

formulate the decoding process as:

hdec
t′ = Dec(hdec

t′−1), t
′ ∈ [tk+1, tk+k′ ] (4)

where Dec stands for decoder and t′ (t′ ∈ [tk+1, tk+k′ ) is

the future time step. The hidden state hdec
t′ at time instance

t′ is only determined upon the previous hidden state hdec
t′−1 .

In order to obtain Xt′ , we append a single deconvolutional

layer with a stride of 2. It serves to transform hdec
t′ into the

same size as the inputs:

Xt′ = Deconv(hdec
t′ ), t′ ∈ [tk+1, tk+k′ ] (5)

The hidden states hdec
t′ and pre-specified logarithmic

standard deviations are set to form a Gaussian for the Prox-

imal Policy Optimization (PPO) [36]. The objective of up-

dating our policy/generator π will be described later.
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Mutual Information Optimization: In this section, we ex-

plicitly delve into the essence that binds latent decision S to

the policy/generator π to gain a clearer insight into the cor-

relation between S and the multimodal future.

We proceed by optimizing the mutual information be-

tween S and π to establish their connection. As a result, we

are able to quantitatively measure the significance of latent

decision on predictions. The mutual information I(S, π) is

termed as:

I(S, π) = H(S)−H(S|π) (6)
where H(·) denotes the Shannon entropy. A larger value of

I(S, π) refers to a larger influence of the latent decision.

Optimizing Eq.6 thereby incentivizes S and consolidates

its impact on the predictions. Moreover, such optimization

strengthens our semantic understanding of the impact of la-

tent decision on multimodal future paths. With the assis-

tance of the Mutual Information Neural Estimator [5], opti-

mizing I(S, π) is equivalent to maximizing its lower bound

LI . Toward this end, we introduce a statistics sub-network

Q to approximate LI :

I(S, π) ≥ LI = EX
t′
∼π,S∼p(S|Xt)Q(Xt′ ,S)

− logEX
t′
∼π,Ŝ∼p(S|Xt)

(eQ(X
t′
,Ŝ))

(7)

where S and Ŝ are i.i.d. samples from p(S|Xt). Xt′ is

the corresponding prediction of the sampled latent decision

S . We display the structure of statistics sub-network Q
in Fig.2. The final result of LI is obtained from a fully

connected layer by reading the concatenation of the rep-

resentations of predictions Xt′ and the representations of

S . They are outputs from the temporal convolutional sub-

module and pre-trained fully convolutonal sub-module, re-

spectively.

Discriminator and Objective: We advocate applying

GAIL [13, 21] to train our framework. Thus our IDL re-

tains the efficiency of gradient-based learning while formu-

lating path forecasting as an occupancy measure matching

problem. We propose using a discriminator D to distin-

guish [Xt,Xt′ ] from [Xt,GT t′ ] to guide π. [Xt,Xt′ ] and

[Xt,GT t′ ] pertain to the combination of the past records

and the predictions/ground truth, respectively. As a result,

the discriminator can only be fooled if Xt′ is consistent with

Xt. The objective of discriminator is as follows:

LD =D([Xt,Xt′ ])−D([Xt,GT t′ ])

+ λ(‖ ▽D(ǫGT t′ + (1− ǫ)Xt′) ‖2 −1)2
(8)

(‖ ▽D(ǫGT t′ +(1− ǫ)Xt′) ‖2 −1)2 is the gradient penalty

term following Wasserstein GAN with Gradient Penalty

(WGAN-GP) [10]. λ > 0 is a coefficient, and ǫ ∼ U [0, 1]
is a random parameter. The discriminator D consists of a

single ConvGRU layer. We top four stacked convolutional

layers upon the ConvGRU layer to obtain a score that re-

flects either [Xt,Xt′ ] or [Xt,GT t′ ].

The policy/generator π receives the gradient from D
through PPO [36] by maximizing the following objective:

Lπ = D([Xt,Xt′ ]) + ηLI (9)

where η is the parameter of LI .

Algorithm 1 Imitative Decision Learning

Input:

1. Historical records for i-th sequence X i
t (t ∈ [t1, tk]);

2. Ground truth future for i-th sequence GT i
t′ (t′ ∈

[t1, tk+k′ ]);
3. The initial parameters of inference sub-network, pol-

icy/generator, statistics sub-network and discriminator.

Output: Learned policy/generator π

for i = 0,1,2... do
1. Sample and fix Si ∼ N (µX i

t
, σX i

t
) (Eq.2) for each

rollout.

2. Generate future paths X i
t′ (t′ ∈ [t1, tk+k′ ]) (Eq.5).

3. Gradient descent on D to minimize D([X i
t ,X

i
t′ ])−

D([X i
t ,GT

i
t′ ]) + λ(‖ ▽D(ǫGT i

t′ + (1 − ǫ)X i
t′) ‖2

−1)2

4. Sample and fix Ŝi ∼ N (µX i

t
, σX i

t
) independent of

Si for each rollout. Updating Q and L by maximiz-

ing EX
t′
,si(Q(X i

t′ , s
i))− logEX i

t′
,Ŝi(eQ(X i

t′
,Ŝi))

5. Maximize D([X i
t ,X

i
t′ ])+ηLI with PPO [36] to up-

date policy/generator π.

end for

3.3. Implementations

Training Strategy: Among the variants of GAN [9],

WGAN-GP [10] stands out due to its ability to overcome

the weaknesses of mode collapse and unstable convergence.

Hence, we form the objective of our proposed IDL by fol-

lowing WGAN-GP. η in Eq.9 λ in Eq.8 are empirically set

as 0.1 and 10, respectively. We summarize the training strat-

egy of our proposed IDL in Algorithm 1. The backpropa-

gation through time and RMSProp [8] is adopted to opti-

mize D with the learning rate initialized at 5× 10−5, and at

3× 10−5 for updating L and Q, respectively. To accelerate

training, we initialize our policy/generator π from behavior

cloning as [13, 21] suggest.

Network Configurations: An inference sub-network L, a

statistics sub-network Q, a policy/generator π and a dis-

criminator D form our proposed IDL approach. Please refer

to the supplementary material for the details.

Our implementation is based on the PyTorch library [31].

The experiments were carried out on two Nvidia GeForce

GTX 1080 Ti, supplied with 22 GB of memory in total.
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Figure 3. The stochasticity of results from different methods on SAP dataset. Each line presents the result with best ADE (top) and best

FDE (bottom). The numbers on X-axis indicate the number of predictions, and the numbers on Y-axis denote the scores.
G.T. Example 1 Example 2

Example 3 Example 4 Example 5

Figure 4. Qualitative comparisons on SAP dataset. The top left shows the observed records and the matching ground truth (G.T.). In

order to have a clear visualization for better understanding the multimodality, we separately illustrate several trajectories and the diverse

predicted paths apart from others from example 1 to example 5.

4. Experimental Analysis

4.1. Datasets and Experimental Settings

Three large-scale benchmark datasets are exploited to

validate the performance of the proposed IDL on the task

of path forecasting in dynamic scenes. Namely Stanford

Aerial Pedestrian (SAP) dataset [35], ETH dataset and UCY

dataset [32] are selected. The SAP dataset comprises long

video sequences for eight scenes in total. It labels complete

trajectories of different categorized moving objects from the

time they enter the scene to the exit time, for instance the

pedestrians, bicyclists and vehicles. The SAP dataset makes

a reasonable foundation for realistically evaluating our ex-

perimental results as it manifests a highly dynamic scenario.

The ETH dataset contains two scenes with 750 different

pedestrians and is split into two sub-datasets (ETH and Ho-

tel). The UCY dataset contains three sub-scenes with 786

people: UCY, ZARA-01 and ZARA-02. Both the ETH and

the UCY datasets are uniformly annotated at a 0.4 second

rate. The spatial coordinates of the annotations provided by

all datasets are embedded to a dimension of 256 × 256 to

feed into our network.

To ensure a fair comparison on the SAP dataset, we fol-

low the experimental settings opted in DESIRE [16]. The

entire SAP dataset is divided into 16,000 short video clips

across scenes for our experiments. We train and test by ob-

serving past k = 60 frames (2 seconds), and forecasting

subsequent k′ = 120 frames (4 seconds). The evaluation

criterion follows a randomized 5-fold cross-validation strat-

egy on nonoverlapping videos clips. In the second part of

our experiments on the ETH and UCY dataset, following

[11], we extend the value of k to 8 time steps and k′ to

12 time steps. This is equivalent to observing 3.2 seconds

and predicting next 4.8 seconds. We utilize the leave-one-

out cross-validation to evaluate our performance, which is

training on 4 sub-datasets and testing on the remaining one

as [1, 11].

As per comparing approaches, we assess the perfor-
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mance of our IDL versus the two most recent state-of-the-

art studies of the path forecasting task. Specifically, we

select DESIRE [16], which performs the best on the SAP

dataset, and Social GAN [11], which achieves cutting-edge

results on the ETH and UCY datasets. The classic Social

LSTM [1] is employed for comparisons as well. We also

study the effectiveness of each part of our IDL through anal-

yses against the following baselines:

1. IDL-NL: In order to highlight the merit of our latent

decision inference, we use a predefined S ∼ N (0, 1)
rather than inducing the distribution from histories.

The rest of the framework remains unchanged.

2. IDL-NQ: We evaluate the necessity of mutual infor-

mation optimization by comparing with IDL-NQ. This

baseline drops the statistics sub-network from the IDL

framework.

3. IDL-NL2: To test the impact of the latent decision on

the forecasting of future paths, we construct the IDL-

NL2 baseline by discarding both the inference sub-

network and statistics sub-network.

4. IDL-IN: We term our last baseline as IDL-IN to vali-

date the effectiveness of joint processing spatiotempo-

ral dependencies. This baseline replaces the ConvGRU

with vanilla GRU, and replaces the convolutional lay-

ers with fully connected layers in our IDL.

4.2. Quantitative Evaluation

We carry out the experiments by drawing samples of

the latent decision S 50 times for each sequence of the

SAP dataset, and 20 times for each sequence of the ETH

and UCY datasets. In other words, we generate 50 pre-

dictions/rollouts on each sequence of the SAP dataset, and

20 predictions/rollouts for each sequence of the ETH and

UCY datasets. In our quantitative evaluation, we aim to de-

termine whether the extensive range of possible predictions

produced by our proposed IDL includes the true future. We

judge our experiments with the best Average Displacement

Error (best ADE) and the best Final Displacement Error

(best FDE) of the various approaches. Lower values suggest

better results for both measurements. These two metrics are

reasonable since they address to measure if the ground truth

is approximated within a diverse set of multiple predictions.

Fig.3 suggests that the probability of forecasting the true fu-

ture ascends by creating more plausible upcoming futures,

as it is likely to obtain a prediction that is closer to ground

truth.

Table 1 summarizes the quantitative results of the best

ADE and best FDE following [11, 16]. Our proposed IDL

manifests the best performance against other approaches

often by a considerable margin for both criteria. For in-

stance, the reported best ADE and best FDE rate of IDL

amount to 2.25 and 3.82 on SAP dataset. These scores out-

perform Social GAN [11] (by 1.32 and 2.03, respectively),

Best ADE / FDE on SAP dataset

ADE FDE

Social GAN[11] 3.57 5.85

DESIRE[16] 3.11 5.33

IDL-IN 4.49 6.14

IDL-NQ 3.08 5.36

IDL-NL2 3.04 5.27

IDL-NL 2.76 4.90

IDL (Ours) 2.25 3.82

Best ADE / FDE on ETH and UCY datasets

ETH HOTEL UNIV ZARA1 ZARA2

ADE/FDE ADE/FDE ADE/FDE ADE/FDE ADE/FDE

Social LSTM[1] 1.09/2.35 0.79/1.76 0.67/1.40 0.47/1.00 0.56/1.17

Social GAN[11] 0.87/1.62 0.67/1.37 0.76/1.52 0.35/0.68 0.42/0.84

IDL-IN 1.24/2.61 1.06/2.04 0.92/1.87 0.64/1.16 0.77/1.39

IDL-NQ 0.83/1.57 0.66/1.25 0.74/1.50 0.33/0.67 0.41/0.82

IDL-NL2 0.81/1.59 0.65/1.22 0.74/1.48 0.31/0.64 0.39/0.80

IDL-NL 0.75/1.51 0.60/1.06 0.69/1.42 0.28/0.61 0.35/0.73

IDL (Ours) 0.59/1.30 0.46/0.83 0.51/1.27 0.22/0.49 0.23/0.55

Table 1. The quantitative comparisons.

DESIRE [16] (by 0.86 and 1.51, respectively), IDL-IN (by

2.24 and 2.32, respectively), IDL-NQ (by 0.83 and 1.54, re-

spectively), IDL-NL2 (by 0.79 and 1.45) and IDL-NL (by

0.51 and 1.08, respectively). The significant superiorities

of our proposed IDL compared with other methods on the

ETH and UCY datasets speak to its advantages.

In order to analyze the benefits of IDL in detail, we fur-

ther conduct ablation studies from the following two as-

pects:

Latent Decision Exploration: The proposed inference

sub-network investigates the latent decision from observed

records. We report that the results reflect the benefit of in-

ferring the distribution of the latent decision in Table 1. Our

proposed IDL incurs remarkable advantages, by far, ver-

sus IDL-NL, which achieves the second best performance

across the datasets. The IDL drastically advances the state-

of-the-art methods Social GAN [11] and DESIRE [16] as

well. These outcomes tip the balance steeply toward delv-

ing deeper into the latent decision in terms of forecasting

future paths and away from the use of a predefined latent

variable.

During our experiments, we find that IDL-NQ tends to

generate predictions that are insensitive to the latent deci-

sion. Furthermore, these predictions are close to determin-

istic IDL-NL2 (refer to Fig.3). This result overwhelmingly

demonstrates the value of considering the mutual informa-

tion optimization for capturing multimodality.

The scores attained by our IDL outdo those of IDL-NL2

on all datasets. This finding provides the evidence that ex-

plicitly modeling the latent decision enables a better under-

standing of the multimodal nature. In fact, even the IDL-NL

baseline yields better results than the IDL-NL2. Regarding
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G.T. Example 1 Example 2

Example 3 Example 4 Example 5

Figure 5. The visual results on ETH dataset. The top left depicts the entire trajectories combining the historical observations and ground

truth future (G.T.) in a dynamic scene. For clearer visualizations, we isolate each input and corresponding multimodal predictions produced

by our IDL and deterministic IDL-NL2 for comparison in each example.

Social LSTM [1], the second worst results are obtained on

the ETH and UCY datasets due to lack of considering the

multimodality.

Spatiotemporal Dependencies Processing: In this sec-

tion, we verify the effectiveness of jointly processing spa-

tiotemporal dependencies. A significant overall poor per-

formance of the methods with two-step settings, i.e., Social

GAN [11], DESIRE [16] and Social LSTM [1], compared

to our IDL can be observed. This finding meets our expecta-

tions that combining the spatial and temporal dependencies

into one single framework is a better strategy. Additionally,

we assign one IDL-IN framework per person as [11, 16, 1].

However, failing to consider the spatial dependencies hin-

ders IDL-IN achieving satisfactory results.

4.3. Qualitative Evaluation

Since neither of the best ADE/FDE perfectly captures the

perceptual fidelity of the multimodal nature of future paths,

we make additional qualitative evaluations.

Fig.4 and Fig.5 illustrate examples of path forecasting

of our proposed IDL on the SAP and ETH datasets. We

highlight the prediction that obtains the best ADE scores

and two randomly selected results. It is worth noting that

IDL simultaneously forecasts the future paths of all mov-

ing objects.In order to better understand the various possi-

ble future paths, we also visualize the deterministic output

from IDL-NL2 baseline and ground truth. It is evident that

our IDL generates diverse forthcoming paths. Such diver-

sity can be traced back to different latent decisions. For

instance, in example 1 of Fig.4, we observe that the pre-

dictions of `̀ random 1´́ and `̀ random 2´́ exhibit two differ-

ent types of future possibilities (going straight and turning

right, respectively). Meanwhile, IDL also successfully fore-

sees the true future path of turning left, as the result of `̀ best

ADE´́ indicates. Conversely, the IDL-NL2 produces a de-

terministic path with a large discrepancy to ground truth due

to disregard the inherent multimodality of future paths.

5. Conclusion

In this paper, we propose a novel Imitative Decision

Learning approach for multimodal path forecasting in dy-

namic scenes. Our IDL delves deeper into the latent de-

cision that shapes the multimodality to anticipate multiple

plausible outcomes. Moreover, Our approach enables the

processing of the spatiotemporal information in one unified

framework. We extensively assess the performance of the

proposed IDL on two large-scale datasets in a path fore-

casting challenge. We demonstrate that IDL is capable of

producing diverse future paths as shown in our visual exam-

ples. Additionally, our IDL outperforms the recent promi-

nent studies by quantitative justifications

We believe that our IDL can benefit future studies of real-

world applications by imitating human decision-making

process. For instance, one interesting direction would be

to extend our framework to enable a self-navigating robot

or an autonomous vehicle choosing an optimal path in dy-

namic scenes after foreseeing multiple possibilities.
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