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Abstract

To simultaneously estimate head counts and localize

heads with bounding boxes, a regression guided detection

network (RDNet) is proposed for RGB-D crowd counting.

Specifically, to improve the robustness of detection-based

approaches for small/tiny heads, we leverage density map to

improve the head/non-head classification in detection net-

work where density map serves as the probability of a pixel

being a head. A depth-adaptive kernel that considers the

variances in head sizes is also introduced to generate high-

fidelity density map for more robust density map regression.

Further, a depth-aware anchor is designed for better initial-

ization of anchor sizes in detection framework. Then we use

the bounding boxes whose sizes are estimated with depth

to train our RDNet. The existing RGB-D datasets are too

small and not suitable for performance evaluation on data-

driven based approaches, we collect a large-scale RGB-D

crowd counting dataset. Experiments on both our RGB-

D dataset and the MICC RGB-D counting dataset show

that our method achieves the best performance for RGB-

D crowd counting and localization. Further, our method

can be readily extended to RGB image based crowd count-

ing and achieves comparable performance on the Shang-

haiTech Part B dataset for both counting and localization.

1. Introduction

Crowd counting is a task of estimating the number of

persons in images or surveillance videos, and it has drawn

a lot of attention in computer vision community due to its

potential applications in security-related scenarios. Almost

all previous works target at RGB image based crowd count-

ing [37, 21, 25, 17] and achieve satisfactory performance

on this task. With the popularity of depth sensor, people

also propose to study RGB-D crowd counting [36, 1, 4] in
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surveillance scenarios. Compared with RGB image, depth

map provides additional information about the localization

of heads [5, 33]. In this paper, we propose to simultaneously

count and localize heads with RGB-D data.

Crowd counting methods can be roughly categorized

into regression-based approaches and detection-based ap-

proaches. Recent works have shown the success of

regression-based approaches [37, 18, 21, 25, 17] for den-

sity map estimation in crowd counting. However, a crucial

issue in these regression-based approaches is that the posi-

tion of each head is not explicitly given, which restricts the

application of regression-based approaches in some related

video surveillance tasks, including pedestrian detection

[22], anomaly detection [16] and person re-identification

[23], etc.. In contrast, detection-based crowd counting ap-

proaches [29, 30, 31] can provide such head localization

information. However, detection-based approaches usually

encounter underestimation issues because of the low re-

call rate for small/tiny heads. Motivated by the success of

regression-based approaches as well as advantages of RGB-

D data for object detection [5, 33], we propose to leverage

density map for more robust detection-based crowd count-

ing with RGB-D data. Next we will analyze the challenges

in detection-based approaches, and give our solutions by

leveraging RGB-D data.

Challenge 1: Underestimation. Underestimation,

which means the number of detected heads is much smaller

than the total number of heads (i.e. low recall), is a com-

mon problem in detection-based approaches. Especially

when the heads are small/tiny or occluded, detection-based

approaches usually fail to detect them [15]. However,

small/tiny heads are very common in real scenarios. For

example, about 23% of heads are smaller than 8×8 pixels

in ShanghaiTech Part B as shown in Figure 1 (a).

Our solution. We alleviate this underestimation prob-

lem from the following aspects: i) a density map provides

a prior about the probability of a pixel being a head. Exist-

ing work [37, 12] has shown that the effectiveness of density

map estimation for those small/tiny even occluded heads (as

shown in Figure 1 (c)), which motivates us to leverage den-
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sity map to facilitate the classification branch in detection-

based approaches. Thus we propose a regression guided de-

tection network (RDNet) for crowd counting; ii) regression

methods would greatly benefit from high-fidelity ground-

truth density map in training phase. However, ground-truth

density map is usually generated based on a Gaussian kernel

with a fixed bandwidth centered at each head without con-

sidering the changes of head sizes, whereas such changes

can be very significant even within each image, as shown in

Figure 1 (b). Obviously such density map generation is not

desirable. As depth helps the estimation of head sizes, we

propose a depth-adaptive kernel for Gaussian based ground-

truth density map generation. Our depth-adaptive kernel

generates a high-quality density map for training a more ro-

bust regression network, which consequently boosts the per-

formance of detection-based crowd counting; iii) RetinaNet

[14] is used for head detection in our paper. One reason for

RetinaNet failing to detect small heads is that the anchors

are set in higher layers, while for those small/tiny heads,

the anchor should be set in lower layers. Luckily, depth

provides a prior for estimating the size of heads, which is

helpful to determine in which layers we should set anchors

as well as the initialization of anchor sizes. We term the

strategy of leveraging depth for anchor sizes initialization

as depth-aware anchor.

Challenge 2: ground-truth annotation. Detection-

based approaches need the annotations of bounding boxes

for all heads, but the bounding box annotation is extremely

time-consuming compared with point annotation at head

center. Besides, occlusion is common in the crowded

scenes, such the annotation for those occluded heads with

bounding boxes is also much difficult.

Our solution. We propose to estimate size of a bound-

ing box based on depth of the head center, and use the es-

timated bounding box as ground-truth to train our network.

As shown in Figure 1 (b), our estimated bounding boxes

can well locate heads. Experiments also show that our strat-

egy achieves state-of-the-art performance for crowd count-

ing and localization.

In view of the importance of RGB-D for detection-based

approaches, it is highly demanded to have a large-scale

RGB-D crowd counting dataset. However, existing RGB-

D dataset is too small [1] for data-driven approaches. Thus

we introduce a large-scale RGB-D dataset by capturing im-

ages from crowded scenes at different places. Our dataset

contains 2,193 images and 144,512 head counts in total. As

far as we know, it is the largest RGB-D dataset for crowd

counting. In our dataset, each head is annotated with a point

at head center, and the bounding box of each head is also

provided in test set to facilitate the evaluation of head de-

tection.

Our main contributions are summarized as follows: i) we

propose a regression guided detection network (RDNet) for
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Figure 1. (a) shows the range of bounding boxes width in Shang-

haiTech Part B training data (We generate these bounding boxes

with nearest neighbors.). (b) shows the estimated bounding boxes

using depth information. (c) is the density map.

RGB-D crowd counting and localization; ii) depth-adaptive

kernel and depth-aware anchor are designed to facilitate

density map generation in regression and anchor initializa-

tion in detection. We further leverage depth to estimate the

bounding box sizes of all heads and use them as the ground-

truth to train RDNet; iii) we introduce a large-scale RGB-

D crowd counting dataset named ShanghaiTechRGBD for

performance evaluation, and such a dataset would accel-

erate the study of detection-based approaches for crowd

counting; iv) our method can be easily extended to RGB

image based crowd counting and localization. Extensive ex-

periments validate the effectiveness of our method for both

RGB-D and RGB crowd counting.

2. Related Work

2.1. Detection­based Crowd Counting

Early detection-based approaches [20, 29, 30, 31, 11]

mainly rely on hand-crafted features, whose performance

usually decays seriously for those very crowded scenes

with occlusions. Recently, deep learning based approaches

have demonstrated their performance for object detection

[13, 14]. Thus people attempt to leverage these more ad-

vanced detection framework for crowd counting. One ex-

ample is that Stewart et al. [28] proposed an end-to-end

people detector for crowded scenes. In very crowd scenes,

the head sizes can be extremely small, consequently bound-

ing box annotations may be very difficult sometimes. Thus

the ground-truth for crowd counting is usually annotated

with a dot at head center, which restricts the exploration

of detection-based approaches for crowd counting. Fur-

thermore, most previous objects detection methods cannot

well handle the small/tiny objects, which are common in

crowd counting. Thus the performance of detection-based

approaches are usually inferior to that of regression-based

approaches. In this paper, we will show that detection-based

approaches can also achieve comparable even better perfor-

mance by leveraging RGB-D data.

2.2. Regression­based Crowd Counting

Regression-based approaches map an image to its den-

sity map where the integration is total number of heads.
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Recently, CNN based approaches [37, 18, 21, 25, 17] have

shown their advantages over hand-crafted features [10, 3] in

learning this nonlinear mapping. According to the change

of view angles as well as the change in density at differ-

ent regions, many networks [37, 21, 25, 12] have been care-

fully designed and shown their good performance for crowd

counting, such as MCNN [37], switch-CNN [21], CSRNet

[12], etc. We refer readers to a survey paper [26] for more

details about CNN based crowd counting. Recently, Liu et

al. [15] also propose to take advantage of the results of de-

tection for density map regression. In contrast, we leverage

regression to improve the detection for crowd counting, and

our solution can also provide the location information of

heads. To achieve this aim, Idrees et al. [7] also propose

to simultaneously solve counting, density map regression

and localization in recent work. Specifically, their method

estimates a binary localization map where head centers cor-

respond to 1’s, and all the rest are 0’s, but its optimization

is not easy, and the estimated locations are coarse due to the

downsampling layer in CNN.

2.3. RGB­D Crowd Counting

Although the depth sensors are very popular, only a few

works focus on RGB-D crowd counting [32, 1, 36] due to

the lack of RGB-D crowd counting dataset. In these works,

the depth information was usually used to segment the fore-

ground/background in RGB image or detect the position of

head directly. Bondi et al. [1] leveraged depth image to

help detect the position of head and a RGB-D dataset was

proposed in their work. Similarly, Zhang et al. [36] pro-

posed an unsupervised water filling method to count people.

Song et al. [27] utilized the deep region proposal network

to perform head detection on the depth images collected by

an overhead vertical Kinect sensor. In [4], Fu et al. uti-

lized RGB-D information and detected head-shoulder for

final crowd counting. However, there are only two RGB-D

datasets, and the amount of people is small in both datasets,

as shown in Table 1. In this paper, we introduce a large-

scale RGB-D dataset, and we leverage depth for design-

ing anchors, generating more accurate ground-truth density

maps and estimating bounding boxes for detection-based

crowd counting.

3. Method

The overall network architecture of our regression

guided detection network (RDNet) for crowd counting is

shown in Figure 2. It contains two modules: a density map

regression module and a head detection module. In the den-

sity map regression module, depth-adaptive kernel is intro-

duced to generate high-fidelity ground-truth density map.

In the detection module, we leverage a RetinaNet [14] for

detection in view of its advantages in both speed and perfor-

mance. We feed the estimated density map to the classifica-

tion branch in the detection network to facilitate the classi-

fication of heads, meanwhile, the depth-aware anchor strat-

egy is also proposed to initialize appropriate anchor, which

also helps the improvement of detection performance.

3.1. Density Map Regression Module

Density map regression module takes an image as input

and leverages CNN for density map estimation. The most

commonly used ground-truth density map generation strat-

egy utilizes a Gaussian with fixed bandwidth for approxi-

mating the density map. Given a head with location xi, and

if the image contains N heads in total, then the density map

of this image can be written as:

D(x) =

N
∑

i=1

δ(x− xi) ∗Gσ(x). (1)

Gσ(x) is a 2D Gaussian kernel with fixed bandwidth σ.

Therefore, the crowd counting problem is converted to the

following problem: F : I(x) → D(x), which learns a

mapping from an image space I(x) to a density map space

D(x). Once the mapping function F is learnt, the density

map of any given image can be obtained and the integration

over the whole image is an estimation of total head counts.

A high-fidelity ground-truth density map is desired. Ac-

tually, the sizes of heads vary significantly, even for the

heads within an image, as shown in Figure 1 (b). There-

fore, it is desirable to design different σ’s for different heads

other than using the same σ for all heads. Bounding box

annotation can provide such information, but it is time-

consuming than point annotation and it is also hard to an-

notate bounding boxes for those tiny or occluded heads. In

[37], a distance based strategy is used to determine σ for

each head, which sets σ linearly proportional to distance be-

tween the target head and its nearest neighbors. Such strat-

egy works well for those very crowd areas, while it fails in

the areas where people are very sparse. Considering that

depth provides information of head sizes within an image

under the assumption that all heads are of the same sizes

in the real world, we propose a depth-adaptive kernel for

density map generation.

As shown in Figure 3, the projection radius of a human

head in practice and head in an image are R and r, respec-

tively. f is the focal length of the camera, and d is the depth

of head 1. Because the distance between head and the cam-

era is much larger than the radius of head, we can approx-

imate the diameter of head as 2R shown in the Figure 3.

According to the camera projection and triangle similarity,

we have the following equations:

r

R
=

s2

s1
=

f

d
(2)

1Here, we use a stereo camera and we assume the head radius R is the

same. In fact, the height of the camera can slightly impact R. The specific

formulation can refer to [6].
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Figure 2. Our RDNet consists of two modules: regression module and detection module.
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Figure 3. The relationship between the radii of human head in

practice and head in image.

and

σ = βr = β
Rf

d
= β

γ

d
. (3)

Here we let bandwidth σ in Gaussian based density map

be proportional with the radius of head in image. We can

see that σ is inversely proportional with its depth d for a

given head. We generate the density map according to the

depths of different head centers and denote such density as

the depth-adaptive density map. Specifically, we replace

Gσ(x) in Eq. (1) with a depth-adaptive Gaussian kernel

Gσ(d)(x) and get depth-adaptive density map DA(x).

DA(x) =

N
∑

i=1

δ(x− xi) ∗Gσ(di )(x). (4)

Here di corresponds to depth of xi, and σ(di) = β γ
di

. With

depth-adaptive density map generation, we employ a CSR-

Net B [12] (dilation rate = 2) as our regression module in

light of its state-of-the-art performance for crowd counting.

3.2. Detection Module

Our detection network is based on a RetinaNet [14] be-

cause of its advantages in speed and accuracy. Specifically,

RetinaNet is based on a feature pyramid network (FPN) and

it contains multi-scale encoding and decoding layers. For

each decoding layer, it takes features from corresponding

encoding layers as well as outputs from its previous decod-

ing layers as inputs. The detection is conducted on every

scale feature map, which includes a class subnet for classi-

fying and a box subnet for regressing bounding boxes.

However, RetinaNet cannot be directly applied for head

counting because it fails to detect small/tiny heads, mean-

while crowd counting is only with point based ground-truth

annotations rather than bounding boxes. Thus we propose

to use estimated density map from regression module and

depth-aware anchor to improve the robustness of RetinaNet

for small/tiny heads detection and use depth to generate

bounding boxes for training RetinaNet.

Density map guided classification. RetinaNet fails to

detect those small/tiny heads because the class subnet fails

to classify those anchor boxes as positive. However, such

class subnet would benefit from density map. Density map

shows the distribution of heads, and its value at each pixel

is related to the probability of the pixel being a head. There-

fore we propose to feed the estimated density map into the

detection network to boost the performance of small/tiny

heads. RetinaNet detects heads of different scales at differ-

ent decoding layers. The lower layers respond to the de-

tection of smaller heads, and higher layers respond to the

detection of larger heads. We thus propose to mask density

map based on the depth map. Specifically, for a given de-

coding layer l (l=1,. . . ,L), suppose the sizes of heads to be

detected in this layer is between [r1, r2], based on Eq. 3,
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