
Convolutional Recurrent Network for Road Boundary Extraction

Justin Liang1∗ Namdar Homayounfar1,2∗

Wei-Chiu Ma1,3 Shenlong Wang1,2 Raquel Urtasun1,2

1Uber Advanced Technologies Group 2University of Toronto 3 MIT

{justin.liang,namdar,weichiu,slwang,urtasun}@uber.com

Abstract

Creating high definition maps that contain precise in-

formation of static elements of the scene is of utmost im-

portance for enabling self driving cars to drive safely. In

this paper, we tackle the problem of drivable road bound-

ary extraction from LiDAR and camera imagery. Towards

this goal, we design a structured model where a fully con-

volutional network obtains deep features encoding the loca-

tion and direction of road boundaries and then, a convolu-

tional recurrent network outputs a polyline representation

for each one of them. Importantly, our method is fully auto-

matic and does not require a user in the loop. We showcase

the effectiveness of our method on a large North American

city where we obtain perfect topology of road boundaries

99.3% of the time at a high precision and recall.

1. Introduction

High definition maps (HD maps) contain useful informa-

tion about the semantics of the static part of the scene. They

are employed by most self-driving cars as an additional sen-

sor in order to help localization, [9, 30], perception [27, 12]

and motion planning. Drawing the maps, is however, a la-

borious process where annotators look at overhead views of

the cities and draw one by one all the elements of the scene.

This is an expensive and time consuming process prevent-

ing mapping from being done at scale.

Crowd-source efforts such as OpenStreetMaps provide

scale, but are not very reliable or precise enough for the

safe navigation of the self driving cars. Although they cover

most of the globe and provide valuable data such as the road

network topology, speed limits, traffic signals, building con-

tours, etc, they suffer from low resolution and are not per-

fectly aligned with respect to the actual physical clues in

the world. This is due to the nature of the map topology

creation process which is obtained from GPS trajectories

or satellite imagery that could have errors in meters as it is

∗Equal contribution.

Figure 1. Overview: Our Convolutional Reccurrent Network takes

as input overhead camera and LiDAR imagery (left) and outputs a

structured polyline for each road boundary (right) that is utilized

in creating HD maps for autonomous driving.

typically very low resolution.

Many efforts have been devoted to automate the map cre-

ation process to achieve scale. Most early approaches treat

the problem as semantic segmentation, either from aerial

images [40, 41, 34, 33] or from first person views, where the

goal is to capture free space [22, 15, 54, 2, 23]. However,

these techniques do not provide a structured representation

that is required in order to be consumed by most self driving

software stacks.

Automatically estimating the road topology from aerial

imagery has been tackled in [35, 52, 10]. In these works,

a graph of the road network with nodes being intersections

and edges corresponding to the streets connecting them is

extracted. Although very useful for routing purposes, these

graphs still lack the fine detail and accuracy needed for a

safe localization and motion planning of an autonomous car.

In contrast, in this paper we tackle the problem of es-

timating drivable regions from both LiDAR and camera

data, which provide a very high definition information of

the surroundings. Towards this goal, we employ convolu-

tional neural networks to predict a set of visual cues that are

employed by a convolutional recurrent network to output a

variable number of boundary regions of variable size. Im-

9512

Figure 2. Model: Our model takes as input overhead LiDAR and camera imagery as well as the gradient of the LiDAR’s elevation

value. Next, a convolutional network outputs three feature maps: A truncated inverse distance transform of the location of road boundaries

(Detection Map), their endpoints (Endpoints) and the vector field of normalized normals to the road boundaries (Direction Map) shown

here as a flow field [7]. Finally, a convolutional recurrent network (cSnake) takes these deep features and outputs a structured polyline

corresponding to each road boundary.

portantly, our approach is fully automatic and does not re-

quire a user in the loop. Inspired by how humans performed

this task, our convolutional recurrent network outputs a

structured polyline corresponding to each road boundary

one vertex at a time.

We demonstrate the effectiveness of our work on a large

dataset of a North American city composed of overhead Li-

DAR and camera imagery of streets and intersections. In

comparison to the baselines where a road boundary could be

estimated with multiple smaller segments, we predict per-

fect topology for a road boundary 99.3% of the time with

high precision and recall of 87.3% and 87.1% respectively

at 5 pixels away. We also perform extensive ablation stud-

ies that justify our choices of input representations, train-

ing regimes and network architecture. Finally, we propose

a novel metric that captures not only precision and recall

but also a measure of connectivity of the predictions corre-

sponding to a road boundary.

2. Related Work

In the past few decades the computer vision and sensing

communities have actively developed a myriad of methods

that perform semantic segmentation tasks from aerial and

satellite imagery. We refer the reader to [48] for a complete

introduction of classical approaches. More recently, deep

neural networks [39, 40, 41, 34, 33] have been applied to

this task with considerable success. Such output is however

not directly usable by self driving vehicles which require a

structured representation instead.

Research extracting structured semantic and topological

information from satellite and aerial imagery, mainly for

consumption in geographic information systems, goes back

decades to the earliest works of [50, 6] in the 70s. In these

works, the authors grow a road from pixels to edges to line

segments iteratively by using thresholds on simple features

obtained from geometric and spectral properties of roads.

[4] compiles a comprehensive survey of these earlier ap-

proaches. Later on, active contour models (ACM) [20, 11]

were applied to the task of road extraction from aerial im-

agery [38, 24, 49, 32]. Here, the authors evolve a snake

that captures a road network by minimizing an energy func-

tion that specifies geometric and appearance constraints of

the roads. The authors in [31] use a deep learning model

to define the energy function of an ACM to generate build-

ing polygons from aerial imagery but not the road network.

[36, 37] apply graphical models on top of deep features in

order to enhance Open Street Maps with semantic informa-

tion such as the location of sidewalks, parking spots and the

number and location of lanes. In other work [55, 56, 43]

extract the road network from aerial images using a condi-

tional random field, while the works of [35, 52] perform

this task by first segmenting the image to road/non-road

pixels using a deep network and then performing post pro-

cess graph optimization. In [10] the authors iteratively grow

the road network topology by mixing neural networks and

graph search procedures. These approaches extract the road

network at a coarser scale and are useful for routing applica-

tions, however they lack the fine detail of the surroundings

required for the safe navigation of a self driving vehicle.

Predicting the drivable surface is very important for safe

navigation of an autonomous vehicle. [42, 25, 57] use

graphical models to predict the free space and the road

while [51, 28, 45, 3, 22, 15, 54, 2, 23] detect the road using

appearance and geometric priors in unsupervised and self-

supervised settings.

More recent line of research and industrial work lever-

age sensors such as camera and LiDAR [44, 19] mounted

on cars to create HD maps of the environment. In [47, 46,

9513

Precision at (px) Recall at (px) F1 score at (px) Conn

2 3 5 10 2 3 5 10 2 3 5 10

DT 47.5 66.0 85.9 96.2 47.6 65.8 84.7 93.8 47.4 65.6 85.0 94.6 89.1
Ours 57.3 72.9 87.3 94.5 57.1 72.6 87.1 94.3 57.2 72.7 87.2 94.4 99.2

Table 1. This compares the distance transform (DT) baseline with our model. We show the results for all the models at precision, recall

and F1 score thresholds of 2, 3, 5, 10 (4cm/px).

16, 8], multiview and fisheye cameras are used for dense

mapping of the static environment using stereo reconstruc-

tion and structure from motion techniques. In other work

[17, 26] extracted semantic information of the scene such as

the precise location and number of the lane boundaries and

the crosswalks. These semantics aid the autonomous agent

in precise localization and safe navigation. In [17], the au-

thors predict a structured representation of lane boundaries

in the form of polylines directly from LiDAR point clouds

using a recurrent hierarchical network and in [26], cross-

walks are detected using a deep structured model from top

down camera and LiDAR imagery. [5] fuses LiDAR and

camera to perform dense online lane detection.

In contrast to the aforementioned approaches, in this

work we extract road boundaries from LiDAR and cam-

era imagery to create HD maps. Similar to [13, 1], we

use a structured output representation in the form of poly-

lines. However, unlike them we propose a fully automatic

approach and we tackle a very different setting with differ-

ent sensors and visual cues.

3. Convolutional Recurrent Road Extraction

High definition maps (HD maps) contain useful infor-

mation encoding the semantics of the static scene. These

maps are typically created by having hundreds of annota-

tors manually label the elements on bird’s eye view (BEV)

representations of the world. Automating this process is key

for achieving self driving cars at scale.

In this paper we go one step further in this direction,

and tackle the problem of estimating drivable regions from

both LiDAR and camera data. We encode these drivable re-

gions with polylines delimiting the road boundaries, as this

is the typical representations utilized by commercial HD

maps. Towards this goal, we employ convolutional neural

networks to predict a set of visual cues that are employed

by a convolutional recurrent network to output a variable

number of road boundaries of variable size. In particular,

our recurrent network attends to rotated regions of interest

in the feature maps and outputs a structured polyline cap-

turing the global topology as well as the fine details of each

road boundary. Next, we first describe the specifics of the

feature maps, followed by our convolutional recurrent net-

work.

3.1. Deep Visual Features

We now describe how we obtain deep features that are

useful for extracting a globally precise structured polyline

representation of the road boundary. As input to our sys-

tem, we take advantage of different sensors such as camera

and LiDAR to create a BEV representation of the area of

interest. Note that this can contain intersections or straight

portions of the road. We also input as an extra channel the

gradient of the LiDAR’s height value. This input channel

is very informative since the drivable and non-drivable re-

gions of the road in a city are mostly flat surfaces at different

heights that are separated by a curb. As shown in our exper-

imental section, these sources of data are complementary

and help the road boundary prediction problem. This results

in a 5-channel input tensor of size I ∈ R5×H×W that is fed

to the multi-task CNN that predicts three types of feature

maps: the location of the road boundaries encoded as a dis-

tance transform, a heatmap encoding the possible location

of the endpoints as well as a direction map encoding the

direction pointing towards the closest road boundary. We

refer the reader to Fig. 2 for an illustration of these visual

cues, which are explained in detail below.

Road Boundary Dense Detection Map: To obtain a

dense representation of the location of the road boundaries

in I , we output an inverse truncated distance transform im-

age S ∈ R
1×H×W that encodes the relative distance of each

pixel in I to the closest road boundary [5, 26], with the road

boundary pixels having the highest value and decreasing as

we move away. In contrast to predicting binary outputs at

the road boundary pixels which are very sparse, the trun-

cated inverse distance transforms encodes more information

about the locations of the road boundaries.

Endpoints Heatmap: We output a heatmap image E ∈
R

1×H×W encoding the probability of the location of the

endpoints of the road boundaries. Note that this typically

happens at the edges of the image.

Road Boundary Direction Map: Finally, we also pre-

dict a vector field D ∈ R
2×H×W of normal directions to

the road boundaries. We obtain the ground truth by taking

the Sobel derivative of the road boundaries’ distance trans-

form image followed by a normalization step. This feature

map specifies at each pixel the normal direction towards the

closest road boundary. The normalization step relieves the

network from predicting vectors of arbitrary magnitude. We

utilize the direction map as an input to our convolutional re-

current network, as it encourages the polyline vertices to

be pulled towards the road boundaries. The direction map

9514

Precision at (px) Recall at (px) F1 Score at (px) Conn

L E C 2 3 5 10 2 3 5 10 2 3 5 10

- - X 42.9 57.6 74.3 86.7 42.8 57.4 74.0 86.4 42.9 57.5 74.3 86.6 98.8
X - - 44.0 62.2 82.8 93.4 43.9 62.0 82.7 93.3 44.0 62.1 82.8 93.3 99.2
X X - 51.4 69.1 86.4 94.8 51.3 68.9 86.2 94.6 51.3 69.0 86.2 94.7 99.2
X X X 57.3 72.9 87.3 94.5 57.1 72.6 87.1 94.3 57.2 72.7 87.2 94.4 99.2

Table 2. The abbreviated columns are: L (lidar input), E (elevation input), C (camera input). We show the results for all the models at

precision, recall and F1 score thresholded at 2, 3, 5, 10px (4cm/px).

is also used in providing the direction of next rotated ROI

when evolving the road boundary polyline as we shall ex-

plain in section 3.2.

Network Architecture: We use an encoder decoder ar-

chitecture similar to the feature pyramid networks in [29,

14]. This network was chosen for its efficiency and abil-

ity to keep spatial information. In particular, there are skip

connections between the encoder and decoder that allows

for the recovery of lost spatial information which is useful

as we use large images in our application. In the encoder

stage, each encoder block contains two residual blocks and

each residual block contains three dilated convolutional lay-

ers. This effectively increases the receptive field to help

the network deal with large imagery. In the decoder stage,

we have four convolutional layers and a nearest neighbor

upsampling of 2x. Prior to each convolutional layer we

perform instance normalization followed by a ReLU non-

linearity . Our network has three output branches perform-

ing pixel wise prediction to output our distance transform,

endpoints and direction features. These features all have the

same spatial resolution as the input image I .

3.2. Convolutional Snake (cSnake)

In this section, we describe the mechanics of our mod-

ule that captures the precise topology of a road boundary.

In the following we refer to this module as cSnake. Note

that our module is fully automatic and does not require any

user in the loop. At a high level, drawing on the deep detec-

tion and directional features obtained from the input image

and the location of the endpoints, the cSnake iteratively at-

tends to rotated regions of interest in the image and outputs

the vertices of a polyline corresponding to a road boundary.

The direction of travel of the cSnake is obtained from the

direction map D.

In particular, we first compute the local maxima of the

endpoints heatmap E to find the initial vertices of the road

boundaries.Then for each endpoint we draw a separate poly-

line as follows: Given an initial vertex x0 of the endpoint

and a direction vector v0, we use the Spatial Transformer

Network [18] to crop a rotated ROI from the concatenation

of the detection and direction maps S and D. Intuitively,

the detection distance map S and the direction map D en-

courage the cSnake module to pull and place a vertex on

the road boundaries. The direction v0 runs in parallel to the

road boundary at position x0 and is obtained by first look-

ing up the vector from the closest pixel in the direction map

D and then rotating it by 90 degrees pointing away from the

image boundary. This rotated ROI is fed to a CNN that out-

puts an argmax of the next vertex x1 in the image. The next

direction vector v1 is obtained similarly by looking up the

direction map D and rotating it by 90 degrees to be in the

same direction of v0. We repeat this process until the end

of the road boundary where we fall outside of the image.

At the end we obtain a polyline prediction x = (xi) with

vertices in R
2 that captures the global topology of the road

boundary.

Thus for each input I , we obtain a set of polylines em-

anating from the predicted endpoints. Note that we can as-

sign a score to each polyline by taking the average of the

detection scores on its vertex pixels. We use this score for

two minimal post-processing steps: i) We remove the low

scoring polylines protruding from potentially false negative

endpoints. ii) Two predicted endpoints could correspond to

the same road boundary giving rise to two different poly-

lines. Thus, we look at all pairs of polylines and if they

overlap by more than 30% in a dilated region around them,

we only keep the highest scoring one.

Network Architecture: For each cropped ROI, we feed it

through a CNN. We use the same encoder decoder backbone

that we used to predict the deep features but with one less

convolutional layer in both the encoder and decoder blocks.

The output is a score map that we can take argmax of to

obtain the next vertex for cropping.

3.3. Learning

Deep visual features: To learn the deep visual features,

we use a multi-task objective, where the regression loss is

used for the distance transform feature maps S and E and

the cosine similarity loss is used for the direction map D.

Thus:

ℓ(S,E,D) = ℓdet(S) + λ1ℓend(E) + λ2ℓdir(D) (1)

In our experiments we set the loss weighting parameters λ1

and λ2 to be 10.

Convolutional Snake: Similar to [17], in order to match

the edges of a predicted polyline P to its corresponding

ground truth road boundary Q, we use the Chamfer Dis-

9515

Figure 3. Amortized learning: In this figure we show the percent difference between our models for precision, recall and F1 score

trained with and without amortized learning. We see amortized learning significantly improves the result at all thresholds of our metric.

Connectivity is the same for both models.

Figure 4. In this figure we show the percent difference between our models trained to predict the direction map versus predicting the dilated

normals. We report the difference for precision, recall and F1 score. We see using the direction map significantly improves the result at all

thresholds of our metric. Furthermore, the direction map method improves the connectivity by 1%.

tance defined as:

L(P,Q) =
∑

i

min
q∈Q

‖pi − q‖
2
+
∑

j

min
p∈P

‖p− qj‖2 (2)

where p and q are the rasterized edge pixels of the poly-

lines P and Q respectively. This loss function encourages

the edges of the predicted polyline to fall completely on

its ground truth and vice versa. This is a more suitable

loss function for matching two polylines rather than one

penalizing the position of vertices. For example a ground

truth straight line segment can be redundantly represented

by three vertices rather than two and thus misleading the

neural network when using a vertex based loss.

4. Experimental Evaluation

4.1. Experimental Details

Dataset: Our dataset consists of BEV projected LiDAR

point clouds and camera imagery of intersections and other

regions of the road from multiple passes of a self-driving ve-

hicle in a major north American city. In total, 4750km were

driven to collect this data from a 50 km2 area with a total of

approximately 540 billion LiDAR points. We then tile and

split the dataset into 2500, 1000, 1250 train/val/test BEV

images that are separated based on 2 longitudinal lines di-

viding the city. On average, our images are 1927px (±893)

x 2162px (±712) with 4cm/px resolution.

In more detail, to create our dataset, we first drive around

the areas we want to map several times. We exploit an ef-

ficient deep-learning based pointcloud segmentation algo-

rithm [58] to remove moving objects and register the point-

clouds using ICP. We then generate a very high resolution

bird’s eye view image given the pointcloud (i.e., 4cm/pixel).

This process allows us to have views of the world without

occlusion. We also generate panoramas using the camera

rig in a similar fashion. To compute the elevation gradient

image, we simply apply a sobel filter on the LiDAR eleva-

tion for both x and y directions and then take its magnitude.

9516

Figure 5. In this figure we show the cumulative percentage of GT

boundaries with X number of predicted segments. For our model,

we see that 99.3% of the GT boundaries have a single predicted

boundary.

Baseline: Since this is a new task, we cannot compare to

prior work. To create a competitive baseline, we first bina-

rize the distance transform output of our method at a thresh-

old and then skeletonize. For a fair comparison, we use grid

search to find the threshold that gives us the best results.

Next, we find the connected components and consider each

as a predicted polyline.

Implementation Details: We trained our deep feature

prediction model distributed over 16 Titan 1080 Ti GPUs

each with a batch size of 1 using ADAM [21] with a learn-

ing rate of 1e-4 and a weight decay of 5e-4. We perform

data augmentation by randomly flipping and rotating the

images during training. The model is trained for 250 epochs

over the entire dataset and takes 12 hours. The cSnake

is also trained distributed on 16 Titan 1080 Ti GPUs each

with a batch size of 1, ADAM, a learning rate of 5e-4 and

a weight decay of 1e-4. The model is trained for 60 epochs

over the entire dataset. During training, we give the network

the ground truth end points and add ±16 pixels of noise.

We also use amortized learning and train with ground truth

direction and distance transform features 50% of the time.

During training, we give the network the number of steps

based on the length of the ground truth boundary plus 5 ex-

tra steps.

4.2. Metrics

Given a set of polyline predictions, we assign each one

to a ground truth road boundary that has the smallest Haus-

dorff distance. Note that multiple predictions could be as-

signed to the same ground truth boundary but only one

ground truth road boundary can be assigned to a prediction

polyline. We now specify our metrics.

Precision and Recall: For precision and recall, we use

the definition of [53] and specify points on the predicted

Figure 6. Example of our outputs stitched together (please zoom).

polylines as either true positive or false positive if they are

within a threshold of the ground truth polyline. False neg-

atives are the points on the ground truth polyline that fall

outside that threshold. We also combine the two metrics

and report its result for harmonic mean (f1 score).

Connectivity: For each ground truth boundary, let M be

the number of its assigned predicted polylines. We define:

Connectivity =
1(M > 0)

M
(3)

This metric penalizes the assignment of multiple small

predicted segments to a ground truth road boundary.

Aggregate Metrics: We report the mean taken across the

ground truth road boundaries at different thresholds.

4.3. Results

Baseline: As shown in Table 1, our method significantly

outperforms the baseline in almost all metrics. The base-

line is better at in precision at a threshold of 10px, however,

this is because the baseline has lots of small connected com-

ponents. However, in practice, these would be thrown out

when doing actual annotation of road boundaries as they are

too small to be useful.

Sensor Modality: We explore various sensor input com-

binations for our model. In Table 2, we show in line (4) that

using every sensor input from L (lidar intensity), E (lidar

elevation gradient) and C (camera) produces the best result.

We perform an ablation studies by removing the camera in-

put and then the elevation input, and also an experiment

with camera only and show a significant performance drop.

Amortized Learning: The convolutional snake can be

trained using either the ground truth or predicted deep fea-

tures. For our best model, we train using half ground truth

and half predicted deep features. We also train a model us-

ing only predicted deep features and show the difference in

results of the two models in Figure 3. This figure shows

the percentage difference between our model trained with

9517

G
T

P
re

d
ic

ti
o

n
s

G
T

P
re

d
ic

ti
o

n
s

Figure 7. Qualitative results: (Rows 1,3) GT road boundaries displayed in red and overlaid on camera imagery. (Rows 2,4) Road boundary

prediction polylines. The blue dots correspond to the vertex outputs of the cSnake module. The yellow boxes are the rotated ROIs that the

cSnake attends to while drawing the road boundary polylines. Note that we crop our imagery for better visualization. Please refer to the

supplementary material for more complete visualization.

amortized learning and the model trained with only pre-

dicted features. At a threshold of 2px (8cm), the model

trained with amortized learning is 5% better across all our

metrics. In terms of connectivity, both methods of training

achieve around the same result.

Exploring Direction Prediction Alternatives: We ex-

plore another method to predict the direction feature used by

the convolutional snake. Here, we predict a pixel-wise di-

rection at the boundary of the road that is the normal point-

ing into the road. Since this notion only exists at the road

boundaries, we dilate the road boundary by 16 pixels and

each pixel’s direction will be equal to the normal of the clos-

est road boundary pixel. However, the problem with this is

that outside of this dilation, there will be no direction. We

show in Figure 4 that our predicted direction map performs

much better than these dilated normals. Here we show the

percentage difference between the two models for all our

metrics. Not shown in these figures is that our direction

map method also produces a connectivity score that is 1%

higher.

Cumulative Distribution of Connectivity: In Figure 5

we compare the number of predicted connected boundaries

for each ground truth boundary for our model and the base-

lines. In this figure, we plot the cumulative distribution of

the percentage of ground truth boundaries with X number of

predicted segments. We show that our model significantly

outperforms the baselines. For our model, 99.3% of the

ground truth boundaries have a single predicted boundary

whereas for the baselines this number is around 80%.

Qualitative Results: In Figure 8, we visualize the learnt

features of our network given the input modalities. In par-

ticular, given the camera, LiDAR and the elevation gradient,

our model outputs the dense location of the road boundaries,

their endpoints as well as the vector field of the normal-

9518

