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Abstract

In this paper we propose to exploit multiple related tasks

for accurate multi-sensor 3D object detection. Towards this

goal we present an end-to-end learnable architecture that

reasons about 2D and 3D object detection as well as ground

estimation and depth completion. Our experiments show

that all these tasks are complementary and help the net-

work learn better representations by fusing information at

various levels. Importantly, our approach leads the KITTI

benchmark on 2D, 3D and bird’s eye view object detection,

while being real-time.

1. Introduction

Self-driving vehicles have the potential to improve

safety, reduce pollution, and provide mobility solutions for

otherwise underserved sectors of the population. Funda-

mental to its core is the ability to perceive the scene in

real-time. Most autonomous driving systems rely on 3-

dimensional perception, as it enables interpretable motion

planning in bird’s eye view.

Over the past few years we have seen a plethora of meth-

ods that tackle the problem of 3D object detection from

monocular images [2, 31], stereo cameras [4] or LiDAR

point clouds [36, 34, 16]. However, each sensor has its chal-

lenge: cameras have difficulty capturing fine-grained 3D in-

formation, while LiDAR provides very sparse observations

at long range. Recently, several attempts [5, 17, 12, 13]

have been developed to fuse information from multiple sen-

sors. Methods like [17, 6] adopt a cascade approach by us-

ing cameras in the first stage and reasoning in LiDAR point

clouds only at the second stage. However, such cascade ap-

proach suffers from the weakness of each single sensor. As

a result, it is difficult to detect objects that are occluded or

far away. Others [5, 12, 13] have proposed to fuse multi-

sensor features instead. Single-stage detectors [13] fuse

multi-sensor feature maps per LiDAR point, where local
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Figure 1. Different sensors (bottom) and tasks (top) are comple-

mentary to each other. We propose a joint model that reasons on

two sensors and four tasks, and show that the target task - 3D

object detection can benefit from multi-task learning and multi-

sensor fusion.

nearest neighbor interpolation is used to densify the cor-

respondence. However, the fusion is still limited when Li-

DAR points become extremely sparse at long range. Two-

stage detectors [5, 12] fuse multi-sensor features per object

region of interest (ROI). However, the fusion process is typ-

ically slow (as it involves thousands of ROIs) and imprecise

(either using fix-sized anchors or ignoring object orienta-

tion).

In this paper we argue that by solving multiple percep-

tion tasks jointly, we can learn better feature representations

which result in better detection performance. Towards this

goal, we develop a multi-sensor detector that reasons about

2D and 3D object detection, ground estimation and depth

completion. Importantly, our model can be learned end-to-

end and performs all these tasks at once. We refer the reader

to Figure 1 for an illustration of our approach.

We propose a new multi-sensor fusion architecture that

leverages the advantages from both point-wise and ROI-

wise feature fusion, resulting in fully fused feature repre-

sentations. Knowledge about the location of the ground can

provide useful cues for 3D object detection in the context

of self-driving vehicles, as the traffic participants of inter-

est are restrained to this plane. Our detector estimates an

accurate voxel-wise ground location online as one of its

auxiliary tasks. This in turn is used by the bird’s eye view
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(BEV) backbone network to reason about relative location.

We also exploit the task of depth completion to learn better

cross-modality feature representation and more importantly,

to achieve dense point-wise feature fusion with pseudo Li-

DAR points from dense depth.

We demonstrate the effectiveness of our approach on

the KITTI object detection benchmark [8] as well as the

more challenging TOR4D object detection benchmark [34].

On the KITTI benchmark, we show very significant per-

formance improvement over previous state-of-the-art ap-

proaches in 2D, 3D and BEV detection tasks. Meanwhile,

the proposed detector runs over 10 frames per second, mak-

ing it a practical solution for real-time application. On the

TOR4D benchmark, we show detection improvement from

multi-task learning over previous state-of-the-art detector.

2. Related Work

We review related works that exploit multi-sensor fu-

sion and multi-task learning to improve 3D object detection.

3D detection from single modality: Early approaches to

3D object detection focus on camera based solutions with

monocular or stereo images [3, 2]. However, they suffer

from the inherent difficulties of estimating depth from

images and as a result perform poorly in 3D localization.

More recent 3D object detectors rely on depth sensors

such as LiDAR [34, 36]. However, although range sensors

provide precise depth measurements, the observations

are usually sparse (particularly at long range) and lack

the information richness of images. It is thus difficult

to distinguish classes such as pedestrian and cyclist with

LiDAR-only detectors.

Multi-sensor fusion for 3D detection: Recently, a

variety of 3D detectors that exploit multiple sensors (e.g.

LiDAR and camera) have been proposed. F-PointNet

[17] uses a cascade approach to fuse multiple sensors.

Specifically, 2D object detection is done first on images,

3D frustums are then generated by projecting 2D detections

to 3D and PointNet [18, 19] is applied to regress the 3D

position and shape of the bounding box. In this framework

the overall performance is bounded by each stage which is

still using single sensor. Furthermore, object localization

from a frustum in LiDAR point cloud has difficulty dealing

with occluded or far away objects as LiDAR observation

can be very sparse (often with a single point on the far away

object). MV3D [5] generates 3D proposals from LiDAR

features, and refines the detections with ROI feature fusion

from LiDAR and image feature maps. AVOD [12] further

extends ROI feature fusion to the proposal generation

stage to improve the object proposal quality. However,

ROI feature fusion happens only at high-level feature

maps. Furthermore, it only fuses features at selected object

regions instead of dense locations on the feature map. To

overcome this drawback, ContFuse [13] uses continuous

convolution [30] to fuse multi-scale convolutional feature

maps from each sensor, where the correspondence between

image and BEV spaces is achieved through projection of

the LiDAR points. However, such fusion is limited when

LiDAR points are very sparse. To address this issue, we

propose to predict dense depth from multi-sensor data, and

use the predicted depth as pseudo LiDAR points to find

dense correspondences between multi-sensor feature maps.

3D detection from multi-task learning: Various

auxiliary tasks have been exploited to help improve 3D

object detection. HDNET [33] exploits geometric ground

shape and semantic road mask for BEV vehicle detection.

SBNet [21] utilizes the sparsity in road mask to speed up

3D detection by > 2 times. Our model also reasons about

a geometric map. The difference is that this module is part

of our detector and thus end-to-end trainable, so that these

two tasks can be optimized jointly. Wang et al. [29] exploit

depth reconstruction and semantic segmentation to help

3D object detection. However, they rely on 3D rendering,

which is computationally expensive. Other contextual cues

such as the room layout [23, 26], and support surface [24]

have also been exploited to help 3D object reasoning in the

context of indoor scenes. 3DOP [3] exploits monocular

depth estimation to refine the 3D shape and position based

on 2D proposals. Mono3D [2] uses instance segmentation

and semantic segmentation as evidence, along with other

geometric priors to reason about 3D object detection from

monocular images. Apart from geometric map estimation,

we also exploit depth completion which brings two ben-

efits: it guides the network to learn better cross-modality

feature representations, and its prediction serves as pseudo

LiDAR points for dense fusion between image and BEV

feature maps.

3. Multi-Task Multi-Sensor Detector

One of the fundamental tasks in autonomous driving is

to perceive the scene in real-time. In this paper we pro-

pose a multi-task multi-sensor fusion model for the task of

3D object detection. We refer the reader to Figure 2 for

an illustration of the model architecture. Our approach has

the following highlights. First, we design a multi-sensor ar-

chitecture that combines point-wise and ROI-wise feature

fusion. Second, our integrated ground estimation module

reasons about the geometry of the road. Third, we exploit

the task of depth completion to learn better multi-sensor

features and achieve dense point-wise feature fusion. As

a result, the whole model can be learned end-to-end by ex-

ploiting a multi-task loss.

In the following, we first introduce the architecture of the

multi-sensor 2D and 3D detector with point-wise and ROI-

7346



Concat

Dense Fusion

Class probability

3D box estimation
3D box refinement

2D box refinement

Online Mapping

Depth Completion

LiDAR Point Cloud
Ground-Relative

BEV Representation
LiDAR Backbone Network

RGB Image Image Backbone Network

Sparse Depth Image

Object Classification

Ground estimation

2D & 3D Regression

ROI Crop

Rotated ROI Crop

Pseudo LiDAR points

Dense depth

Figure 2. The architecture of the proposed multi-task multi-sensor fusion model for 2D and 3D object detection. Dashed arrows denote

projection, while solid arrows denote data flow. Our model is a simplified two-stage detector with densely fused two-stream multi-sensor

backbone networks. The first stage is a single-shot detector that outputs a small number of high-quality 3D detections. The second stage

applies ROI feature fusion for more precise 2D and 3D box regression. Ground estimation is explored to incorporate geometric ground prior

to the LiDAR point cloud. Depth completion is exploited to learn better cross-modality feature representation and achieve dense feature

map fusion by transforming predicted dense depth image into dense pseudo LiDAR points. The whole model can be learned end-to-end.

wise feature fusion. We then show how we exploit the other

two auxiliary tasks to further improve 3D detection. Finally

we provide details of how to train our model end-to-end.

3.1. Fully Fused MultiSensor Detector

Our multi-sensor detector takes a LiDAR point cloud

and an RGB image as input. The backbone network adopts

the two-stream structure, where one stream extracts image

feature maps, and the other extracts LiDAR BEV feature

maps. Point-wise feature fusion is applied to fuse multi-

scale image features to BEV stream. The final BEV feature

map predicts dense 3D detections per BEV voxel via 2D

convolution. After Non-Maximum Suppression (NMS) and

score thresholding, we get a small number of high-quality

3D detections and their projected 2D detections (typically

fewer than 20 when tested on KITTI dataset). We then

apply a 2D and 3D box refinement by ROI-wise feature

fusion, where we combine features from both image ROIs

and BEV oriented ROIs. After the refinement, the detector

outputs accurate 2D and 3D detections.

Input representation: We use the voxel based Li-

DAR representation [13] due to its efficiency. In particular,

we voxelize the point cloud into a 3D occupancy grid,

where the voxel feature is computed via 8-point linear

interpolation on each LiDAR point. This LiDAR rep-

resentation is able to capture fine-grained point density

clues efficiently. We consider the resulting 3D volume as

BEV representation by treating the height slices as feature

channels. This allows us to reason in 2D BEV space, which

brings significant efficiency gain with no performance

drop. We simply use the RGB image as input for the

camera stream. When we exploit the auxiliary task of depth

completion, we additionally add a sparse depth image

generated by projecting the LiDAR points to the image.

Network architecture: The backbone network follows a

two-stream architecture [13] to process multi-sensor data.

Specifically, for the image stream we use the pre-trained

ResNet-18 [10] until the fourth convolutional block. Each

block contains 2 residual layers with number of feature

maps increasing from 64 to 512 linearly. For the LiDAR

stream, we use a customized residual network which is

deeper and thinner than ResNet-18 for a better trade-off

between speed and accuracy. In particular, we have four

residual blocks with 2, 4, 6, 6 residual layers in each, and

the numbers of feature maps are 64, 128, 192 and 256. We

also remove the max pooling layer before the first residual

block to maintain more details in the point cloud feature.

In both streams we apply a feature pyramid network (FPN)

[14] with 1 × 1 convolution and bilinear up-sampling to

combine multi-scale features. As a result, the final feature

maps of the two streams have a down-sampling factor of 4

compared with the input.

On top of the last BEV feature map, we simply add a

1 × 1 convolution to perform dense 3D object detection.

After score thresholding and oriented NMS, a small number

of high-quality 3D detections are projected to both BEV
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Figure 3. Point-wise feature fusion between LiDAR and image

backbone networks. A feature pyramid network is used to com-

bine multi-scale image feature maps, followed with a continuous

fusion layer to project image feature map into BEV space. Feature

fusion is implemented by element-wise summation.

space and 2D image space, and their ROI features are

cropped from each stream’s last feature map via precise

ROI feature extraction. The multi-sensor ROI features are

fused together and fed into a refinement module with two

256-dimension fully connected layers to predict the 2D and

3D box refinements for each 3D detection respectively.

Point-wise feature fusion: We apply point-wise fea-

ture fusion between the convolutional feature maps of

LiDAR and image streams (as shown in Figure ref-

fig:point). The fusion is directed from image steam to

LiDAR steam to augment BEV features with information

richness of image features. We gather multi-scale features

from all four blocks in the image backbone network with a

feature pyramid network. The resulting multi-scale image

feature map is then fused to each block of the LiDAR BEV

backbone network.

To fuse image feature map with BEV feature map, we

need to find the pixel-wise correspondence between the two

sensors. Inspired by [13], we use LiDAR points to establish

dense and accurate correspondence between the image and

BEV feature maps. For each pixel in the BEV feature map,

we find its nearest LiDAR point and project the point onto

the image feature map to retrieve the corresponding image

feature. We compute the distance between the BEV pixel

and LiDAR point as the geometric feature. Both retrieved

image feature and the BEV geometric feature are passed

into a Multi-Layer Perceptron (MLP) and the output is

fused to BEV feature map by element-wise addition. Note

that such point-wise feature fusion is sparse by nature of

LiDAR observation. Later we explain how we exploit

dense depth as pseudo LiDAR points to provide dense

correspondence for dense point-wise fusion.
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Figure 4. Precise rotated ROI feature extraction that takes orien-

tation cycle into account. (1) The rotational periodicity causes re-

verse of order in feature extraction. (2) ROI refine module with

two orientation anchors. An ROI is assigned to 0◦ or 90◦. They

share most refining layers except for the output. (3) The regres-

sion target of relative offsets are re-parametrized with respect to

the object orientation axes. (4) A n × n sized feature is extracted

using bilinear interpolation (we show an example with n = 2).

ROI-wise feature fusion: The motivation of the ROI-wise

feature fusion is to further refine the localization precision

of the high-quality detections in 2D and 3D spaces respec-

tively. Towards this goal, the ROI feature extraction itself

needs to be precise so as to properly predict the relative

box refinement. By projecting a 3D detection onto the

image and BEV feature maps, we get an axis-aligned image

ROI and an oriented BEV ROI. We adopt ROIAlign [9] to

extract features from an axis-aligned image ROI.

For oriented BEV ROI feature extraction, however, we

observe two new issues (as shown in Figure 4). First, the

periodicity of the ROI orientation causes the reverse of fea-

ture order around the cycle boundary. To solve this issue,

we propose an oriented ROI feature extraction module with

anchors. Given an oriented ROI, we first assign it to one of

the two orientation anchors, 0 or 90 degrees. Each anchor

has a consistent feature extraction order. The two anchors

share the refinement net except for the output layer. Sec-

ond, when the ROI is rotated, its location offset has to be

parametrized in the rotated coordinates as well. In practice,

we rotate the axis-aligned location offset to be aligned with

the ROI orientation axes. Similar to ROIAlign[9], we ex-

tract bilinear interpolated feature into a n × n regular grid

for the BEV ROI (in practice we use n = 5).

3.2. MultiTask Learning for 3D Detection

In this paper we exploit two auxiliary tasks to improve

3D object detection, namely ground estimation and depth

completion. They help in different ways: ground estima-

tion provides geometric prior to canonicalize the LiDAR

point clouds. Depth completion guides the image network
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to learn better cross-modality feature representations, and

further facilitates dense point-wise feature fusion.

3.2.1 Ground estimation

Mapping is an important task for autonomous driving, and

in most cases the map building process is done offline.

However, online mapping is appealing for that it decreases

the system’s dependency on offline built maps and increases

the system’s robustness. Here we focus on one specific sub-

task in mapping, which is to estimate the road geometry

on-the-fly from a single LiDAR sweep. We formulate the

task as a regression problem, where we estimate the ground

height value for each voxel in the BEV space. This for-

mulation is more accurate than plane based parametrization

[3, 1], as in practice the road is often curved especially when

we look far ahead.

Network architecture: We apply a small fully convolu-

tional U-Net [25] on top of the LiDAR BEV representation

to estimate the normalized voxel-wise ground heights at an

inference time of 8 millisecond. We choose the U-Net archi-

tecture because it outputs prediction at the same resolution

as the input, and is good at capturing global context while

maintaining low-level details.

Map fusion: Given a voxel-wise ground estimation, we

first extract point-wise ground height by looking for the

point index during voxelization. We then subtract the

ground height from each LiDAR point’s Z axis value and

generate a new LiDAR BEV representation (relative to

ground), which is fed to the LiDAR backbone network. In

the regression part of the 3D detection, we add the ground

height back to the predicted Z term. Online ground esti-

mation eases 3D object localization as traffic participants of

interest all lay on the ground.

3.2.2 Depth completion

LiDAR provides long range 3D information for accurate 3D

object detection. However, the observation is sparse espe-

cially at long range. Here, we propose to densify LiDAR

points by depth completion from both sparse LiDAR ob-

servation and RGB image. Specifically, given the projected

(into the image plane) sparse depth from the LiDAR point

cloud and a camera image, the model outputs dense depth

at the same resolution as the input image.

Sparse depth image from LiDAR projection: We first

generate a three-channel sparse depth image from the

LiDAR point cloud, representing the sub-pixel offsets

and the depth value. Specifically, we project each Li-

DAR point (x, y, z) to the camera space, denoted as

(xcam, ycam, zcam) (the Z axis points to the front of the

camera), where zcam is the depth of the LiDAR point in

camera space. We then project the point from camera space

to image space, denoted as (xim, yim). We find the pixel

(u, v) closest to (xim, yim), and compute (xim − u, yim −

v, zcam/10)1 as the value of pixel (u, v) on the sparse depth

image. For pixel locations with no LiDAR point, we set

the pixel value to zero. The resulting sparse depth image is

then concatenated with the RGB image and fed to the image

backbone network.

Network architecture: The depth completion network

shares the feature representation with the image backbone

network, and applies four convolutional layers accompa-

nied with two bilinear up-sampling layers afterwards to pre-

dict the dense pixel-wise depth at the same resolution as the

input image.

Dense depth for dense point-wise feature fusion: As

mentioned above, the point-wise feature fusion relies on

LiDAR points to find the correspondence between multi-

sensor feature maps. However, since LiDAR observation

is sparse by nature, the point-wise feature fusion is sparse.

In contrast, the depth completion task provides dense depth

estimation per image pixel, and therefore can be used as

“pseudo” LiDAR points to find dense pixel correspondence

between multi-sensor feature maps. In practice, we use true

and pseudo LiDAR points together in fusion and resort to

pseudo points only when true points are not available.

3.3. Joint Training

We employ multi-task loss to train our multi-sensor de-

tector end-to-end. The full model outputs object classifica-

tion, 3D box estimation, 2D and 3D box refinement, ground

estimation and dense depth. During training, we have detec-

tion labels and dense depth labels, while ground estimation

is optimized implicitly by the 3D localization loss. There

are two paths of gradient transmission for ground estima-

tion. One is from the 3D box output where ground height is

added back to predicted Z term. The other goes through the

LiDAR backbone network to the LiDAR voxelization layer

where ground height is subtracted from the Z coordinate of

each LiDAR point.

For object classification loss Lcls, we use bi-

nary cross entropy. For 3D box estimation loss

Lbox and 3D box refinement loss Lr3d, we compute

smooth ℓ1 loss on each dimension of the 3D object

(x, y, z, log(w), log(l), log(h), θ)2, and sum over positive

samples. For 2D box refinement loss Lr2d, we similarly

compute smooth ℓ1 loss on each dimension of the 2D ob-

ject (x, y, log(w), log(h)), and sum over positive samples.

For dense depth prediction loss Ldepth, we sum ℓ1 loss over

all pixels. The total loss is defined as follows:

Loss = Lcls + λ(Lbox + Lr2d + Lr3d) + γLdepth

where λ, γ are the weights to balance different tasks.

1We divide the depth value by 10 for normalization purpose.
2We normalize each dimension of the regression targets respectively.

7349



Detector
Input Data Time 2D AP (%) 3D AP (%) BEV AP (%)

LiDAR IMG (ms) easy mod. hard easy mod. hard easy mod. hard

SHJU-HW [35, 7] X 850 90.81 90.08 79.98 - - - - - -

RRC [20] X 3600 90.61 90.23 87.44 - - - - - -

MV3D [5] X 240 89.80 79.76 78.61 66.77 52.73 51.31 85.82 77.00 68.94

VoxelNet [36] X 220 - - - 77.49 65.11 57.73 89.35 79.26 77.39

SECOND [32] X 50 90.40 88.40 80.21 83.13 73.66 66.20 88.07 79.37 77.95

PIXOR [34] X 35 - - - - - - 87.25 81.92 76.01

PIXOR++ [33] X 35 - - - - - - 89.38 83.70 77.97

HDNET [33] X 50 - - - - - - 89.14 86.57 78.32

MV3D [5] X X 360 90.53 89.17 80.16 71.09 62.35 55.12 86.02 76.90 68.49

AVOD [12] X X 80 89.73 88.08 80.14 73.59 65.78 58.38 86.80 85.44 77.73

ContFuse [13] X X 60 - - - 82.54 66.22 64.04 88.81 85.83 77.33

F-PointNet [17] X X 170 90.78 90.00 80.80 81.20 70.39 62.19 88.70 84.00 75.33

AVOD-FPN [12] X X 100 89.99 87.44 80.05 81.94 71.88 66.38 88.53 83.79 77.90

Our MMF X X 80 91.82 90.17 88.54 86.81 76.75 68.41 89.49 87.47 79.10
Table 1. Evaluation results on the testing set of KITTI 2D, 3D and BEV object detection benchmark (car). We compare with previously

published detectors on the leaderboard ranked by Average Precision (AP) in the moderate setting.

A good initialization is important for faster convergence.

We use the pre-trained ResNet-18 network to initialize the

image backbone network. For the additional channels of the

sparse depth image at the input, we set the corresponding

weights to zero. We also pre-train the ground estimation

network on TOR4D dataset [34] with offline maps as labels

and ℓ2 loss as objective function [33]. Other networks in

the model are initialized randomly. We train the model with

stochastic gradient descent using Adam optimizer [11].

4. Experiments

In this section, we first evaluate the proposed method on

the KITTI 2D/3D/BEV object detection benchmark [8]. We

also provide a detailed ablation study to analyze the gains

brought by multi-sensor fusion and multi-task learning. We

then evaluate on the more challenging TOR4D multi-class

BEV object detection benchmark [34]. Lastly we provide

qualitative results and discussions.

4.1. 2D/3D/BEV Object Detection on KITTI

Dataset and metric: KITTI’s object detection dataset has

7,481 frames for training and 7,518 frames for testing. We

evaluate our approach on “Car” class. We apply the same

data augmentation as [13] during training, which applies

random translation, orientation and scaling on LiDAR

point clouds and camera images. For multi-task training,

we also leverage the dense depth labels from the KITTI’s

depth dataset [28]. KITTI’s detection metric is defined as

Average Precision (AP) averaged over 11 points on the

Precision-Recall (PR) curve. The evaluation criterion for

cars is 0.7 Intersection-Over-Union (IoU) in 2D, 3D or

BEV. KITTI also divides labels into three subsets (easy,

moderate and hard) according to the object size, occlusion

and truncation levels, and ranks methods by AP in the

moderate setting.

Implementation details: We detect objects within 70

meters forward and 40 meters to the left and right of the

ego-car, as most of the labeled objects are within this

region. We voxelize the cropped point cloud into a volume

of size 512× 448× 32 as the BEV representation. We also

center-crop the images of different sizes into a uniform size

of 370 × 1224. We train the model on a 4 GPU machine

with a total batch size of 16 frames. Online hard negative

mining [27] is used during training. We set the initial

learning rate to 0.001 and decay it by 0.1 after 30 and 45

epochs respectively. The training ends after 50 epochs. We

train two models on KITTI: one without depth completion

auxiliary task, and one full model. We submit the former

one to the test server for fair comparison with other meth-

ods that are trained on KITTI object detection dataset only.

We evaluate the full model in ablation study to showcase

the performance gain brought by depth completion and

dense fusion.

Evaluation results: We compare our approach with

previously published state-of-the-art detectors in Table 1,

and show that our approach outperforms competitors by

a large margin in all 2D, 3D and BEV detection tasks. In

2D detection, we surpass the best image detector RRC

[20] by 1.1% AP in the hard setting, while being 45×
faster. Note that we only use a small ResNet-18 network

as the image stream backbone network, which shows that

2D detection benefits a lot from exploiting the LiDAR

sensor and reasoning in 3D. In BEV detection, we outper-

form the best detector HDNET [33], which also exploits

ground estimation, by 0.9% AP in moderate setting. The
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Model
Multi-Sensor Multi-Task 2D AP (%) 3D AP (%) BEV AP (%)

pt roi map dep depf easy mod. hard easy mod. hard easy mod. hard

LiDAR only 93.44 87.55 84.32 81.50 69.25 63.55 88.83 82.98 77.26

+image X +2.95 +1.97 +2.76 +4.62 +5.21 +3.35 +0.70 +2.39 +1.25

+map X X +3.06 +2.20 +3.33 +5.24 +7.14 +4.56 +0.36 +3.77 +1.59

+refine X X X +3.94 +2.71 +4.66 +6.43 +8.62 +12.03 +7.00 +4.81 +2.12

+depth X X X X +4.69 +2.65 +4.64 +6.34 +8.64 +12.06 +7.74 +5.16 +2.26

full model X X X X X +4.61 +2.67 +4.68 +6.40 +8.61 +12.02 +7.83 +5.27 +2.34

Table 2. Ablation study on KITTI object detection benchmark (car) training set with four-fold cross validation. pt: point-wise feature

fusion. roi: ROI-wise feature fusion. map: online mapping. dep: depth completion. depf: dense fusion with dense depth.

Range (m)

(a) blue: original object location; red: ground-relative location.

(b) Depth completion helps densify LiDAR points at long range.

KITTI: 50m range, 20 points, ~20 px height TOR4D: 80m range, 6 points, ~45 px height

Z
(m)

Figure 5. Object detection benefits from ground estimation and

depth completion.

improvement mainly comes from multi-sensor fusion. In

the most challenging 3D detection task (as it requires 0.7

3D IoU), we show an even larger gain over competitors.

We surpass the best detector SECOND [32] by 3.09% AP

in moderate setting, and outperform the previously best

multi-sensor detector AVOD-FPN [12] by 4.87% AP in

moderate setting. We believe the large gain mainly comes

from the fully fused feature representation and the proposed

ROI feature extraction for precise object localization.

Ablation study: To analyze the effects of multi-sensor

fusion and multi-task learning, we conduct an ablation

study on KITTI training set. We use four-fold cross

validation and accumulate the evaluation results over the

whole training set. This produces stable evaluation results

for apple-to-apple comparison. We show the ablation study

results in Table 2. Our baseline model is a single-shot Li-

DAR only detector. Adding image stream with point-wise

feature fusion brings over 5% AP gain in 3D detection,

possibly because image features provide complementary

information on the Z axis in addition to the BEV represen-

tation of LiDAR point cloud. Ground estimation improves

3D and BEV detection by 1.9% and 1.4% AP respectively

in moderate setting. This gain suggests that the geometric

ground prior provided by online mapping is very helpful

Model
Vehicle Pedestrian Bicyclist

AP0.5 AP0.7 AP0.3 AP0.5 AP0.3 AP0.5

Baseline 95.1 83.7 88.9 80.7 72.8 58.0

+dep 95.6 84.5 88.9 81.2 74.3 62.2

+dep+depf 95.7 85.4 89.4 81.8 76.3 63.1

Table 3. Ablation study of BEV object detection with multi-task

learning on TOR4D benchmark. The baseline detector is based on

[13], with multi-sweep LiDAR and HD maps added to the input

for better performance. dep: depth completion. depf: dense fusion

using estimated dense depth.

for detection at long range (as shown in Figure 5 a), where

we have very sparse 3D LiDAR observation. Adding the

refinement module with ROI-wise feature fusion brings

consistent improvements on all three tasks, which purely

come from more precise localization. This proves the

effectiveness of the proposed orientation aware ROI feature

extraction. Lastly, the model further benefits in BEV de-

tection from the depth completion task with better feature

representations and dense fusion, which suggests that depth

completion provides complementary information in BEV

space. On KITTI we do not see much gain from dense

point-wise fusion using estimated depth. We hypothesize

that this is because in KITTI the captured image is at

equivalent resolution of LiDAR at long range (as shown in

Figure 5 b). Therefore, there isn’t much juice to squeeze

from image feature. However, on TOR4D benchmark

where we have higher resolution camera images, we show

in next section that depth completion helps not only by

multi-task learning, but also dense feature fusion.

4.2. BEV Object Detection on TOR4D

Dataset and metric: The TOR4D BEV object detection

benchmark [34] contains over 5,000 video snippets with

a duration of around 25 seconds each. To generate the

training and testing dataset, we sample video snippets

from different scenes at 1 Hz and 0.5 Hz respectively,

leading to around 100,000 training frames and around

6,000 testing frames. To validate the effectiveness of depth

completion in improving object detection, we use images

captured by camera with long-focus lens which provide

richer information at long range (as shown in Figure 5

b). We evaluate on multi-class BEV object detection (i.e.
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Figure 6. Qualitative results of 3D object detection (car) on KITTI benchmark. We draw object labels in green and our detections in red.

vehicle, pedestrian and bicyclist) with a distance range of

100 meters from the ego-car. We use AP at different IoU

thresholds as the metric for multi-class object detection.

Specifically, we look at 0.5 and 0.7 IoUs for vehicles, 0.3

and 0.5 IoUs for the pedestrians and cyclists.

Evaluation results: We re-produce the previously

state-of-the-art detector ContFuse [13] on our TOR4D

dataset split. Two modifications are made to further

improve the detection performance. First, we follow FAF

[16] to fuse multi-sweep LiDAR point clouds together at

the BEV representation. Second, following HDNET [33]

we incorporate semantic and geometric HD map priors to

the detector. We use the improved ContFuse detector as

the baseline, and apply the proposed depth completion with

dense fusion on top of it. As shown in Table 3, the depth

completion task helps in two ways: multi-task learning and

dense feature fusion. The former increases the bicyclist

AP by an absolute gain of 4.2%. Since bicyclists have the

fewest number of labels in the dataset, having additional

multi-task supervision is particularly helpful. In terms of

dense fusion with estimated depth, the performance on

vehicles is improved by over 5% in terms of relative error

reduction (i.e. 1-AP) at 0.7 IoU. The reason for this gain

may be that vehicles receive more additional feature fusion

compared to the other two classes.

4.3. Qualitative Results and Discussion

We show qualitative 3D object detection results of the

proposed detector on KITTI benchmark in Figure 6. The

proposed detector is able to produce high-quality 3D de-

tections of vehicles that are highly occluded or far away

from the ego-car. Some of our detections are un-labeled

cars in KITTI dataset. Previous works [5, 12] often fol-

low state-of-the-art 2D detection framework (like two-stage

Faster RCNN [22]) to solve 3D detection. However, we

argue that it may not be the optimal solution. With thou-

sands of pre-defined anchors, the feature extraction is both

slow and inaccurate. Instead we show that by detecting 3D

objects in BEV space, we can produce high-quality 3D de-

tections via a single pass of the network (as shown in Table

2 by model variants without refinement), given that we fully

fuse the multi-sensor feature maps via dense fusion.

Cascade approaches [17, 6] assume that 2D detection

is solved better than 3D detection, and therefore use 2D

detector to generate 3D proposals. However, we argue

that 3D detection is actually easier than 2D. As we de-

tect objects in 3D metric space, we do not have to han-

dle the problems of scale variance and occlusion reasoning

that would otherwise arise in 2D. Our model, which uses

a pre-trained ResNet-18 as image backbone network and

is trained from thousands of frames, surpasses F-PointNet

[17], which exploits two orders of magnitude more training

data (i.e. COCO dataset [15]), by over 7% AP in hard setting

of KITTI 2D detection. Multi-sensor fusion and multi-task

learning are highly interleaved. In this paper we provide a

way to combine them together under the same hood. In the

proposed framework, multi-sensor fusion helps learn better

feature representations to solve multiple tasks, while differ-

ent tasks in turn provide different types of clues to make

feature fusion deeper and richer.

5. Conclusion

We have proposed a multi-task multi-sensor detection

model that jointly reasons about 2D and 3D object detec-

tion, ground estimation and depth completion. Point-wise

and ROI-wise feature fusion are applied to achieve full

multi-sensor fusion, while multi-task learning provides ad-

ditional map prior and geometric clues enabling better rep-

resentation learning and denser feature fusion. We vali-

date the proposed method on KITTI and TOR4D bench-

marks, and surpass the state-of-the-art methods in all de-

tection tasks by a large margin. In the future, we plan to

expand our multi-sensor fusion approach to exploit other

sensors such as radar as well as temporal information.
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