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Abstract

We propose to tackle the multiview 2D/3D rigid regis-

tration problem via a Point-Of-Interest Network for Track-

ing and Triangulation (POINT2). POINT2 learns to estab-

lish 2D point-to-point correspondences between the pre-

and intra-intervention images by tracking a set of point-

of-interests (POIs). The 3D pose of the pre-intervention

volume is then estimated through a triangulation layer. In

POINT2, the unified framework of the POI tracker and the

triangulation layer enables learning informative 2D fea-

tures and estimating 3D pose jointly. In contrast to existing

approaches, POINT2 only requires a single forward-pass to

achieve a reliable 2D/3D registration. As the POI tracker

is shift-invariant, POINT2 is more robust to the initial pose

of the 3D pre-intervention image. Extensive experiments

on a large-scale clinical cone-beam computed tomography

dataset show that the proposed POINT2 method outper-

forms the existing learning-based method in terms of accu-

racy, robustness and running time. Furthermore, when used

as an initial pose estimator, our method also improves the

robustness and speed of the state-of-the-art optimization-

based approaches by ten folds.

1. Introduction

In 2D/3D rigid registration for intervention, the goal is

to find a rigid pose of a pre-intervention 3D data, e.g.,

computed tomography (CT), such that it aligns with a 2D

intra-intervention image of a patient, e.g., fluoroscopy. In

practice, CT is usually a preferred 3D pre-intervention data

as digitally reconstructed radiographs (DRRs) can be pro-

duced from CT using ray casting [21]. The generation of

DRRs simulates how an X-ray is captured, which makes

them visually similar to the X-rays. Therefore, they are

leveraged to facilitate the 2D/3D registration as we can ob-

serve the misalignment between the CT and patient by di-

rectly comparing the intra-intervention X-ray and the gen-

* indicates equal contributions.

(a) before registration (b) after registration

Figure 1: Overlay of the DRRs and X-rays before and after

the 2D/3D registration. For visualization purpose, only the

bone region of the DRRs are projected and recolored with

red to distinguish from the X-rays.

erated DRR (See Figure 1 and Section 3.1 for details).

One of the most commonly used 2D/3D registration

strategies [12] is through an optimization-based approach,

where a similarity metric is first designed to measure the

closeness between the DRRs and the 2D data, and then

the 3D pose is iteratively searched and optimized for the

best similarity score. However, the iterative pose search-

ing scheme usually suffers from two problems. First, the

generation of DRRs incurs high computation, and the itera-

tive pose searching requires a significant number of DRRs

for the similarity measure, making it computationally slow.

Second, iterative pose searching relies on a good initializa-

tion. When the initial position is not close enough to the

correct one, the method may converge to local extrema, and

the registration fails. Although many studies have been pro-

posed to address these two problems [4, 16, 15, 8, 5, 7, 19],

trade-offs still have to be made between sampling good

starting points and less costly registration.

In recent years, the development of deep neural networks

(DNNs) has enabled a learning-based strategy for medical

image registration [13, 22, 11, 14] that aims to estimate the

pose of the 3D data without searching and sampling the

pose space at a large scale. Despite the efficiency, there are

still two limitations of the existing learning-based methods.

First, the learning-based methods usually require generat-
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ing a huge number of DRRs for training. The corresponding

poses for the DRRs have to be dense in the entire searching

space to avoid overfitting. Considering that the number of

required DRRs is exponential with respect to the dimension

of the pose space (which is usually six), this is computa-

tionally prohibitive, thus making the learning-based meth-

ods less reliable during testing. Second, the current state-

of-the-art learning-based methods [13, 22, 11] require an

iterative refinement of the estimated pose and use DNNs to

predict the most plausible update direction for faster con-

vergence. However, the iterative approach still introduces a

non-negligible computational cost, and the DNNs may di-

rect the searching to an unseen state, which fails the regis-

tration quickly.

In this paper, we introduce a novel learning-based ap-

proach, which is referred to as a Point-Of-Interest Network

for Tracking and Triangulation (POINT2). POINT2 directly

aligns the 3D data with the patient by using DNNs to es-

tablish a point-to-point correspondence between multiple

views1 of DRRs and X-ray images. The 3D pose is then es-

timated by aligning the matched points. Specifically, these

are achieved by tracking a set of points of interest (POIs).

For 2D correspondence, we use the POI tracking network to

map the 2D POIs from the DRRs to the X-ray images. For

3D correspondence, we develop a triangulation layer that

projects the tracked POIs in the X-ray images of multiple

views back into 3D. We highlight that since the point-to-

point correspondence is established in a shift-invariant man-

ner, the requirement of dense sampling in the entire pose

space is avoided.

The contributions of this paper are as follows:

• A novel learning-based multiview 2D/3D rigid regis-

tration method that directly measures the 3D misalign-

ment by exploiting the point-to-point correspondence

between the X-rays and DRRs, which avoids the costly

and unreliable iterative pose searching, and thus deliv-

ers faster and more robust registration.

• A novel POI tracking network constructed using a

Siamese U-Net with POI convolution to enable a fine-

grained feature extraction and effective POI similar-

ity measure, and more importantly, to offer a shift-

invariant 2D misalignment measure that is robust to

in-plane offsets2.

• A unified framework of the POI tracker and the trian-

gulation layer, which enables (i) end-to-end learning of

informative 2D features and (ii) 3D pose estimation.

• An extensive evaluation on a large-scale and chal-

lenging clinical cone-beam CT (CBCT) dataset, which

shows that the proposed method performs signifi-

1A different view indicates the DRR or X-ray is captured at a different

projection angle.
2In-plane/out-plane offset refers to the translation and rotation offset

within/outside the DRR or X-ray images.

cantly better than the state-of-the-art learning-based

approaches, and, when used as an initial pose estima-

tor, it also greatly improves the robustness and speed

of the state-of-the-art optimization-based approaches.

2. Related Work

Optimization-Based Approaches. Optimization-based ap-

proaches usually suffer from high computational cost and

is sensitive to the initial estimate. To reduce the compu-

tational cost, many works have been proposed to improve

the efficiency in hardware-level [10, 8, 15] or software-

level [19, 27, 9]. Although these works have successfully

reduced the DRR generation time to a reasonable range, the

overall registration time is still non-negligible [19, 15] and

the registration accuracy might be compromised for faster

speed [27, 19]. For better initial pose estimation, many

attempts have been made by either sampling better initial

position [7, 5], using multistart strategies [26, 16], or a

carefully designed objective function that is less sensitive

to the initial position selection [15]. However, these meth-

ods usually achieve a more robust registration at the cost of

longer running time as more locations, and the correspond-

ing DRRs need to be sampled and generated, respectively,

to avoid being trapped in the local extrema.

Learning-Based Approaches. Early learning-based ap-

proach [14] aims to train the DNNs to directly predict the

3D pose given a pair of DRR and X-ray images. However,

this approach is generally too ambitious and hence relies

on the existence of opaque objects, such as medical im-

plants, that provide strong features for robustness. Alterna-

tively, it has been shown that formulating the registration as

a Markov decision process (MDP) is viable [11]. Instead of

directly regressing the 3D pose, MDP-based methods pro-

pose first to train an agent that predicts the most possible

search direction and then the registration is iteratively re-

peated until a fixed number of steps is reached. However,

the MDP-based approach requires the agent to be trained on

a large number of samples such that the registration can fol-

low the expected trajectory. Though mitigated with a multi-

agent design [13], it is still inevitable that the neighborhood

search may reach an unseen pose and the registration fails.

Moreover, the MDP-based approach cannot guarantee con-

vergence and hence limits its registration accuracy. There-

fore, the MDP-based approach [13] is usually used to find

a good initial pose for the registration, and a combination

with an optimization-based method is applied for better per-

formance. Another possible approach is by directly tracking

landmarks from multiple views of X-ray images [2]. How-

ever, the landmark-based tracking approach does not make

use of the information from the CT volume and requires the

landmarks to be present in the X-ray images, making it less

robust and applicable to clinical applications.
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Figure 2: The X-ray imaging model of the canonical-

view (bottom-left to upper-right) and a non-canonical view

(bottom-right to upper-left).

3. Methodology

3.1. Problem Formulation

Following the convention in the literature [12], we as-

sume a 2D/3D rigid registration problem and also assume

that the 3D data is a CT or CBCT volume, which is the

most accessible and allows the generation of DRR. For the

2D data, we use X-rays. As single-view 2D/3D registration

is an ill-posed problem (due to the ambiguity introduced by

the out-plane offset), X-rays from multiple views are usu-

ally captured during the intervention. Therefore, we also

follow the literature [12] and tackle a multiview 2D/3D reg-

istration problem. Without loss of generality, most of the

studies in this work are conducted under two views, and it

is easy to extend our work to the cases with more views.

2D/3D Rigid Registration with DRRs. In 2D/3D rigid

registration, the misalignment between the patient and the

CT volume V is formulated through a transformation ma-

trix T that brings V from its initial location to the pa-

tient’s location under the same coordinate. As illustrated

in Figure 2, T is usually parameterized by three transla-

tions t = (tx, ty, tz)
T and three rotations θ = (θx, θy, θz)

T

about the axes, and can be written as a 4 × 4 matrix under

the homogeneous coordinate

T =

[

R(θ) t

0 1

]

, (1)

where R is the rotation matrix that controls the rotation of

V around the origin.

As demonstrated in Figure 1, casting simulated X-rays

through the CT volume creates a DRR on the detector. Sim-

ilarly, passing a real x-ray beam through the patient’s body

gives an X-ray image. Hence, the misalignment between

the CT volume and the patient can be observed from the de-

tector by comparing the DRR and the X-ray image. Given a

(a) Forward projection

from CT to DRR

(b) POI tracking

from DRR to X-ray

(c) Backward projection

from X-ray to patient

(d) Shape alignment

between

CT and patient POIs

Figure 3: Overview of the proposed POINT2 method. For

better visualization, we apply different colormaps to DRR

and X-ray images and adjust their contrast.

transformation matrix T and a CT volume V, the DRR ID

can be computed by

ID(x) =

∫

p∈l(x)

V(T−1p)dp, (2)

where l(x), whose parameters are determined by the imag-

ing model, is a line segment connecting the X-ray source

and a point x on the detector. Therefore, let IX denote the

X-ray image, the 2D/3D registration can be seen as finding

the optimal T∗ such that IX and ID are aligned.

X-Ray Imaging Model. An X-ray imaging system is usu-

ally modeled as a pinhole camera [3, 6], as illustrated in

Figure 2, where the X-ray source serves as the camera cen-

ter and the X-ray detector serves as the image plane. Fol-

lowing the convention in X-ray imaging [3], we assume an

isocenter coordinate system whose origin lies at the isocen-

ter. Without loss of generality, we also assume the imaging

model is calibrated, and there is no X-ray source offset and

detector offset. Thus, the X-ray source, the isocenter, and

the detector’s origin are collinear, and the line from the X-

ray source to the isocenter (referred to as the principal axis)

is perpendicular to the detector. Let d denote the distance

between the X-ray source and the detector origin, and c de-

note the distance between the X-ray source and the isocen-

ter, then for a point X = (X,Y, Z)T in the isocenter coor-
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Figure 4: The architecture of the POINT network.

dinate, its projection x on the detector is given by

x′ = K
[

I h
]

(

X

1

)

, (3)

where

K =





−d 0 0
0 −d 0
0 0 1



 ,h =





0
0
−c



 .

Here x′ = (x′, y′, z′) is defined under the homogeneous

coordinate and its counterpart under the detector coordinate

can be written as x = (x, y) = (x′/z′, y′/z′).
In general, an X-ray is usually not captured at the canon-

ical view as discussed above. Let Tview be a transformation

matrix that converts a canonical view to a non-canonical

view (Figure 2), then the projection of X for the non-

canonical view can be written as

x′ = K
[

Rview tview + h
]

(

X

1

)

, (4)

where Rview and tview perform the rotation and translation,

respectively, as in Equation (1). Similarly, we can rewrite

Equation (2) at a non-canonical view as

ID
view(x) =

∫

p∈l(x)

V(T−1T−1
viewp)dp. (5)

3.2. The Proposed POINT2 Approach

An overview of the proposed method with two views is

shown in Figure 3. Given a set of DRR and X-ray pairs of

different views, our approach first selects a set of POIs in 3D

from the CT volume and projects them to each DRR using

Equation (4) as shown in Figure 3(a). Then, the approach

measures the misalignment between each pair of DRR and

X-ray by tracking the projected DRR POIs from the X-ray

(Figure 3(b)). Using the tracked POIs on the X-rays, we can

estimate their corresponding 3D POIs on the patient through

triangulation (Figure 3(c)). Finally, by aligning CT POIs

with patient POIs, the pose misalignment T∗ between the

CT and the patient can be calculated (Figure 3(d)).

POINT. One of the key components of the proposed

method is a Point-Of-Interest Network for Tracking

(POINT) that finds the point-to-point correspondence be-

tween two images, that is, we use this network to track the

POIs from DRR to X-ray. Specifically, the network takes

a DRR and X-ray pair (ID, IX) and a set of projected DRR

POIs {xD
1 ,x

D
2 , . . . ,x

D
m} as the input and outputs the tracked

X-ray POIs in the form of heatmaps {M̂X
1 , M̂

X
2 , . . . , M̂

X
m}.

The structure of the network is illustrated in Figure 4. We

construct this network under a Siamese architecture [1, 23]

with each branch φ having an U-Net like structure [18]. The

weights of the two branches are shared. Each branch takes

an image as the input and performs fine-grained feature ex-

traction at pixel-level. Thus, the output is a feature map

with the same resolution as the input image, and for an im-

age with size M×N, the size of the feature map is M×N×C

where C is the number of channels. We denote the ex-

tracted feature maps of DRR and X-ray as FD = φ(ID)
and FX = φ(IX), respectively.

With feature map FD, the feature vector of a DRR POI

xD
i can be extracted by interpolating FD at xD

i . The fea-

ture extraction layer (FE layer) in Figure 4 performs this

operation and we denote its output as a feature kernel

FD(xD
i ). For a richer feature representation, the neighbor

feature vectors around xD
i may also be used. A neigh-

bor of size K gives in total (2K+1)×(2K+1) feature vec-

tors and the feature kernel FD(xD
i ) in this case has a size

(2K+1)×(2K+1)×C.

Similarly, a feature kernel at x of the X-ray feature map

can be extracted and denoted as FX(x). Then, we may ap-

ply a similarity operation to FD(xD
i ) and FX(x) to give a

similarity score of the two locations xD
i and x. When the

similarity check is operated exhaustively over all locations
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Figure 5: The overall framework of POINT2.

on the X-ray, the location x∗ with the highest similarity

score is regarded as the corresponding POI of xD
i on the

X-ray. Such an exhaustive search on FX can be performed

effectively with convolution and is denoted as a POI convo-

lution layer in Figure 4. The output of the layer is a heatmap

M̂X
i and is computed by

M̂X
i = FX ∗ (W ⊙ FD(xD

i )), (6)

where W is a learned weight that selects the features for

better similarity. Each element M̂X
i (x) denotes a similar-

ity score of the corresponding location x on the X-ray.

POINT2. With the tracked POIs from different views of

X-rays, we can obtain their 3D locations on the patient us-

ing triangulation as shown in Figure 3(c). However, this

work seeks a uniform solution that formulates the POINT

network and the triangulation under the same framework so

that the two tasks can be trained jointly in an end-to-end

fashion which could potentially benefit the learning of the

tracking network. An illustration of this end-to-end design

for two views is shown in Figure 5. For an n-view 2D/3D

registration problem, the proposed design will include n
POINT networks as discussed above. Each of the networks

will track POIs for the designated view and, therefore, the

weights are not shared among the networks. Given a set of

DRR and X-ray pairs {(ID
1 , I

X
1 ), (I

D
2 , I

X
2 ), . . . , (I

D
n, I

X
n)} of

the n views, these networks output the tracked X-ray POIs

of each view in the form of heatmaps.

After obtaining the heatmaps, we introduce a triangula-

tion layer that localizes a 3D point by forming triangles to it

from the 2D tracked POIs from the heatmaps. Formally, we

denote Mj = {M̂X
1j , M̂

X
2j , . . . , M̂

X
nj} the set of heatmaps

from different views but all corresponding to the same 3D

POI X̂X
j . Here, M̂X

ij is the heatmap of the j-th X-ray POI

from the i-th view, and we obtain the 2D X-ray POI by

x̂X
ij =

1
∑

x M̂
X
ij(x)

∑

x

M̂X
ij(x)x. (7)

Next, we rewrite Equation (4) as

D(x)RviewX = cx−D(x)tview, (8)

where

D(x) =

[

d 0
0 d

x

]

.

Thus, by applying Equation (8) for each view, we can get























D(x̂X
1j)R1X̂

X
j = cx̂X

1j −D(x̂X
1j)t1,

D(x̂X
2j)R2X̂

X
j = cx̂X

2j −D(x̂X
2j)t2,

...

D(x̂X
nj)RnX̂

X
j = cx̂X

nj −D(x̂X
nj)tn.

(9)

Let

A =











D(x̂X
1j)R1

D(x̂X
2j)R2

...

D(x̂X
nj)Rn











,b =











cx̂X
1j −D(x̂X

1j)t1
cx̂X

2j −D(x̂X
2j)t2

...

cx̂X
nj −D(x̂X

nj)tn











, (10)

then X̂X
j is given by

X̂X
j = A+b. (11)

The triangulation can be plugged into a loss function that

regulates the training of POINT networks of different views.

L =
1

mn

∑

i

∑

j

BCE(σ(M̂X
ij), σ(M

X
ij))

+
w

n

∑

j

||X̂X
j −XX

j ||2, (12)

where MX
ij is the ground truth heatmap, XX

j is the ground

truth 3D POI, BCE is the pixel-wise binary cross entropy

function, σ is the sigmoid function, and w is a weight bal-

ancing the losses between tracking and triangulation errors.

Shape Alignment. Let PD = [XD
1 XD

2 . . . XD
m] be the

selected CT POIs and PX = [X̂X
1 X̂X

2 . . . X̂X
m] be the esti-

mated 3D POIs 3. The shape alignment finds a transforma-

tion matrix T∗ such that the transformed PD aligns closely

with PX, i.e.,

T∗ = argmin
T

||TPD −PX||F , s.t., RRT = I (13)

This problem is solved analytically through Procrustes anal-

ysis [20].

3The shape alignment assumes the points are under the homogeneous

coordinate.
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Figure 6: Sample raw X-ray images of our dataset.

4. Experiments

4.1. Dataset

The dataset we use in the experiments is a cone-beam CT

(CBCT) dataset captured for radiation therapy. The dataset

contains 340 raw CBCT scans with each has 780 X-ray im-

ages. Each X-ray image comes with a geometry file that

provides the registration ground truth as well as the infor-

mation to reconstruct the CBCT volume. Each CBCT vol-

ume is reconstructed from the 780 X-ray images, and in

total, we have 340 CBCT volumes (one for each CBCT

scan). We use 300 scans for training and validation, and

40 scans for testing. The size of the CBCT volumes is

448×448×768 with 0.5 mm voxel spacing, and the size of

the X-ray images is 512×512 with 0.388 mm pixel spacing.

During the experiments, the CBCT volumes are treated as

the 3D pre-intervention data, and the corresponding X-ray

images are treated as the 2D intra-intervention data. Sam-

ple X-ray images from our dataset are shown in Figure.

Note that unlike many existing approaches [15, 17, 25] that

evaluate their methods on small datasets (typically about

10 scans) which are captured under relatively ideal sce-

narios, we use a significantly larger dataset with complex

clinical settings, e.g., diverse field-of-views, surgical instru-

ments/implants, various image contrast and quality, etc.

We consider two common views during the experiment:

the anterior-posterior view and the lateral view. Hence, only

X-rays that are close to (±5◦) these views are used for train-

ing and testing. Note that this selection does not tightly

constrain the diversity of the X-rays as the patient may be

subject to movements with regard to the operating bed. To

train the proposed method, X-ray and DRR pairs are se-

lected and generated with a maximum of 10◦ rotation offset

and 20 mm translation offset. We first invert all the raw X-

ray images and then apply histogram equalization to both

the inverted X-ray images and DRRs to facilitate the simi-

larity measurement. For each of the scan, we also annotate

their landmarks on the reconstructed CBCT volume for fur-

ther evaluation.

4.2. Implementation and Training Details

We implement the proposed approach under the Pytorch4

framework with GPU acceleration. For the POINT network,

4https://pytorch.org

(a) landmark (b) Harris corner (c) random

Figure 7: Training and validation losses of different POI

selection methods.

each of the Siamese branch φ has five encoding blocks

(BatchNorm, Conv, and LeakyReLU) followed by five de-

coding blocks (BatchNorm, Deconv, and ReLU), thus form-

ing a symmetric structure, and we use skip-connections

to shuttle the lower-level features from an encoding block

to its symmetric decoding counterpart (see details in the

supplementary material). The triangulation layer is imple-

mented according to Equation (11) with the backpropaga-

tion automatically supported by Pytorch. We train the pro-

posed approach in a two-stage fashion. In the first stage, we

train the POINT network of each view independently for

30 epochs. Then, we fine-tune POINT2 for 20 epochs. We

find this mechanism converges faster than training POINT2

from scratch. For the optimization, we use the mini-batch

stochastic gradient descent with 0.01 learning rate for the

first stage and 0.001 for the second. We set the loss weight

as w = 0.01, which we empirically find it works well during

training. For the X-ray imaging model, we use d = 1, 500
mm and c = 1, 000 mm.

4.3. Ablation Study

This section discusses an ablation study of the proposed

POINT network. As the network tracks POIs in 2D, we use

mean projected distance (mPD) [24] to evaluate different

models with specific design choices. The evaluation results

are given in Table 1.

POI Selection. The first step of the proposed approach re-

quires selecting a set of POIs to set up a point-to-point cor-

respondence. In this experiment, we investigate different

POI selection strategies. First, we investigate directly us-

ing landmarks as the POIs since they usually have strong

semantic meaning and can be annotated before the inter-

vention. Second, we also investigate an automatic solution

that uses the Harris corners as the POIs to avoid the labor

work of annotation. Finally, we try random POI selection.

As shown in Figure 7 (a), we find our approach is prone

to overfitting when trained with landmark POIs. This is ac-

tually reasonable as each CBCT volume only contains about

a dozen of landmarks, which in total is about 3, 000 POIs.

Considering the variety of the field of views of our dataset,

this is far from enough and leads to the overfitting. For the
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Harris corners, a few hundreds of POIs are selected from

each CBCT volume, and we can see an improvement in

performance, but the overfitting still exists (Figure 7 (b)).

We find the use of random POIs gives the best performance

and generalizes well to unseen data (Figure 7 (c)). This

seemly surprising observation is, in fact, reasonable as it

forces the model to learn a more general way to extract fea-

tures at a fine-grained level, instead of memorizing some

feature points that may look different when projected from

a different view.

POI Convolution. We also explore two design options

for the POI convolution layer. First, it is worth knowing

that how much neighborhood information around the POI is

necessary to extract a distinctive feature while the learning

can still be easily generalized. To this end, we try different

sizes of the feature kernel for POI convolution as given in

Equation (6). Rows 1-3 in Table 1 show the performance of

the POINT network with different feature kernel sizes. We

observe that a 1 × 1 kernel does not give features distinc-

tive enough for better similarity measure and a 5× 5 kernel

seems to include too much neighborhood information (and

use more computation) that is harder for the model to fig-

ure out a general representation. In general, a 3 × 3 kernel

serves better for the feature similarity measure. It should

also be noted that a 1 × 1 kernel does not mean only the

information at the current pixel location is used since each

element of FD or FX is supported by the receptive field of

the U-Net that readily provides rich neighborhood informa-

tion. Second, we compare the performance of the POINT

network with or without having the weight W in Equation

(6). Rows 2 and 6 show that it is critical to have a weighted

feature kernel convolution so that discriminate features can

be highlighted in the similarity measure.

Shift-Invariant Tracking. The POINT network benefits

from the shift invariant property of the convolution opera-

tion, which makes it less sensitive to the in-plane offset of

the DRRs. Figure 8 shows some tracking results from the

POINT network. Here the odd rows show the (a) X-ray and

(b-d) DRR images. The heatmap below each DRR shows

the tracking result between this DRR and the leftmost X-ray

image. The red and the blue marks on the X-ray and DRR

images denote the POIs. The red and the blue marks on the

heatmaps are the ground truth POIs and the tracked POIs,

respectively. The green blobs are the heatmap responses

and they are used to generate the tracked POIs (blue) ac-

cording to Equation (7). The numbers under each DRR de-

note the mPD scores before and after the tracking. As we

can observe that the tracking results are consistently good,

no matter how much initial offset there is between the DRR

and the X-ray image. This shows that our POINT network

indeed benefits from the POI convolution layer and provide

more consistent outputs regardless of the in-plane offsets.

Table 1: Ablation study of the proposed POINT network.

#
Kernel size POI type Weight mPD

1 3 5 land. Harris rand. w/ w/o (mm)

1 X X X 8.46

2 X X X 8.12

3 X X X 9.49

4 X X X 9.87

5 X X X 12.72

6 X X X 11.26

4.4. 2D/3D Registration

We compare our method with one learning-based

(MDP [13]) and three optimization-based methods (Opt-

GC [4], Opt-GO [4] and Opt-NGI [16]). To further eval-

uate the performances of the proposed method as an initial

pose estimator, we also compare two approaches that use

MDP or our method to initialize the optimization. We de-

note these two approaches as MDP+opt and POINT2+opt,

respectively. Finally, we investigate the registration perfor-

mance of our method that only uses the POINT network

without the triangulation layer, and denote the correspond-

ing models as POINT and POINT+opt. For MDP+opt,

POINT+opt and POINT2+opt, we use the Opt-GC method

during the optimization as we find it converges faster when

the initial pose is close to the global optima.

Following the standard in 2D/3D registration [24], the

performances of the proposed method and the baseline

methods are evaluated with mean target registration error

(mTRE), i.e., the mean distance (in mm) between the pa-

tient landmarks and the aligned CT landmarks in 3D. The

mTRE results are reported in forms of the 50th, 75th, and

95th percentiles to demonstrate the robustness of the com-

pared methods. In addition, we also report the gross fail-

ure rate (GFR) and average registration time, where GFR

is defined as the percentage of the tested cases with a TRE

greater than 10 mm [13].

The evaluation results are given in Table 2. We find that

the optimization-based methods generally require a good

initialization for accurate registration. Otherwise, they fail

quickly. Opt-NGI overall is less sensitive to the initial loca-

tion than Opt-GO and Opt-GC, with more than half of the

registration results have less than 1 mm mTRE. Despite the

high accuracy, it still suffers from the high failure rate and

long registration time and so do the Opt-GO and Opt-GC

methods. On the other hand, MDP achieves a better GFR

and registration time by learning a function that guides the

iterative pose searching. This also demonstrates the benefit

of using a learning-based approach to guide the registration.

However, due to the problems we have mentioned in Sec-

tion 1, it still has a relatively high GFR and a noticeable

registration time. In contrast, our base model POINT al-

ready achieves comparable performance to MDP; however,
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13.6 → 7.3 22.9 → 9.0 37.1 → 7.8

19.5 → 8.7 26.0 → 9.5 41.1 → 11.4

(a) (b) (c) (d)

Figure 8: POI tracking results. (a) X-ray image. (b-d) DRR

images with different in-plane offsets. The heatmaps of the

tracking results are all aligned with the X-ray images and

appear similar, showing the shift-invariant property.

it runs over twice faster. Further, by including the triangula-

tion layer, POINT2 performs significantly better than both

POINT and MDP in terms of mTRE and GFR. It means that

the triangulation layer that brings the 3D information to the

training of the POINT network is indeed useful.

In addition, we notice that when our method is com-

bined with an optimization-based method (POINT2 + Opt)

the GFR is greatly reduced, which demonstrates that our

method provides initial poses that are close to the global

optima such that the optimization is unlikely to fall into lo-

cal optima. The speed is also significantly improved due to

faster convergence and less sampling over the pose space.

5. Limitations

First, similar to other learning-based approaches, our

method requires a considerably large dataset from the tar-

geting medical domain for learning reliable feature rep-

resentations. When the data is insufficient, the proposed

method may fail. Second, although our method alone is

quite robust and its accuracy is state-of-the-art through a

combination with the optimization-based approach, it is still

desirable to come up with a more elegant solution to solve

the problem directly. Finally, due to the use of triangula-

Table 2: 2D/3D registration performance comparing with

the state-of-the-art results.

mTRE (mm)
GFR

Reg.

50th 75th 95th time

Initial 20.4 24.4 29.7 92.9% N/A

Opt-NGI [16] 0.62 25.2 57.8 40.0% 23.5s

Opt-GO [4] 6.53 23.8 44.7 45.1% 22.8s

Opt-GC [4] 7.40 25.7 56.5 47.7% 22.1s

MDP [13] 5.40 8.62 27.6 16.4% 1.74s

POINT 5.63 7.72 12.8 18.6% 0.75s

POINT2 4.22 5.70 9.84 4.9% 0.78s

MDP [13] + Opt 1.06 2.25 24.6 15.6% 3.21s

POINT + Opt 1.19 4.67 21.8 14.8% 2.16s

POINT2 + Opt 0.55 0.96 5.67 2.7% 2.25s

tion, our method requires X-rays from at least two views to

be available. Hence, for the applications where only a sin-

gle view is acceptable, our method will render an estimate

of registration parameter with inherent ambiguity.

6. Conclusion

We proposed a fast and robust method for 2D/3D reg-

istration. The proposed method avoids the often costly

and unreliable iterative pose searching by directly aligning

the CT with the patient through a novel POINT2 frame-

work, which first establishes the point-to-point correspon-

dence between the pre- and intra-intervention data in both

2D and 3D, and then performs a shape alignment between

the matched points to estimate the pose of the CT. We eval-

uated the proposed POINT2 framework on a challenging

and large-scale CBCT dataset and showed that 1) a robust

POINT network should be trained with random POIs, 2)

a good POI convolution layer should be convolved with

weighted 3 × 3 feature kernel, and 3) the POINT network

is not sensitive to in-plane offsets. We also demonstrated

that the proposed POINT2 framework is significantly more

robust and faster than the state-of-the-art learning-based ap-

proach. When used as an initial pose estimator, we also

showed that the POINT2 framework can greatly improve

the speed and robustness of the current optimization-based

approach while attaining a higher registration accuracy.

Finally, we discussed several limitations of the POINT2

framework which we will address in our future work.
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