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Abstract

Few-shot learning for deep neural networks is a highly

challenging and key problem in many computer vision tasks.

In this context, we are targeting knowledge transfer from

a set with abundant data to other sets with few available

examples. We propose two simple and effective solutions:

(i) dense classification over feature maps, which for the

first time studies local activations in the domain of few-

shot learning, and (ii) implanting, that is, attaching new

neurons to a previously trained network to learn new, task-

specific features. Implanting enables training of multiple

layers in the few-shot regime, departing from most related

methods derived from metric learning that train only the fi-

nal layer. Both contributions show consistent gains when

used individually or jointly and we report state of the art

performance on few-shot classification on miniImageNet.

1. Introduction

Current state of the art on image classification [40,

11, 15], object detection [21, 35, 10], semantic segmenta-

tion [51, 2, 20], and practically most tasks with some degree

of learning involved, rely on deep neural networks. Those

are powerful high-capacity models with trainable parame-

ters ranging from millions to tens of millions, which require

vast amounts of annotated data to fit. When such data is

plentiful, supervised learning is the solution of choice.

Tasks and classes with limited available data, i.e. from

the long-tail [47], are highly problematic for this type of ap-

proaches. The performance of deep neural networks poses

several challenges in the low-data regime, in particular in

terms of overfitting and generalization. The subject of few-

shot learning is to learn to recognize previously unseen

classes with very few annotated examples. This is not a

new problem [4], yet there is a recent resurgence in interest

through meta-learning [18, 43, 38, 1, 5] inspired by early

work in learning-to-learn [42, 13].

In meta-learning settings, even when there is single large

training set with a fixed number of class, it is treated as a

collection of datasets of different classes, where each class

has a few annotated examples. This is done so that both

meta-learning and meta-testing are performed in a similar

manner [43, 38, 5]. However this choice does not always

come with best performance. We argue that a simple con-

ventional pipeline using all available classes and data with

a parametric classifier is effective and appealing.

Most few-shot learning approaches do not deal explicitly

with spatial information since feature maps are usually flat-

tened or pooled before the classification layer. We show that

performing dense classification over feature maps leads to

more precise classification and consistently improves per-

formance on standard benchmarks.

While incremental learning touches similar aspects with

few-shot learning by learning to adapt to new tasks using

the same network [26, 25] or extending an existing network

with new layers and parameters for each new task [37], few

of these ideas have been adopted in few shot learning. The

main impediment is the reduced number of training exam-

ples which make it difficult to properly define a new task.

We propose a solution for leveraging incremental learning

ideas for few-shot learning.

Contributions: We make the following contributions.

First, we propose a simple extension for few-shot learn-

ing pipelines consisting of dense classification over feature

maps. Through localized supervision, it enables reaping ad-

ditional knowledge from the limited training data. Second,

we introduce neural implants, which are layers attached to

an already trained network, enabling it to quickly adapt to

new tasks with few examples. Both are easy to implement

and show consistent performance gains.

2. Problem formulation and background

Problem formulation. We are given a collection of train-

ing examples X := (x1, . . . ,xn) with each xi ∈ X , and

corresponding labels Y := (y1, . . . , yn) with each yi ∈ C,

where C := [c]1 is a set of base classes. On this training

data we are allowed to learn a representation of the domain

X such that we can solve new tasks. This representation

learning we shall call stage 1.

In few-shot learning, one new task is that we are given a

collection of few support examples X ′ := (x′

1, . . . ,x
′

n′)

1We use the notation [i] := {1, . . . , i} for i ∈ N.
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with each x
′

i ∈ X , and corresponding labels Y ′ :=
(y′1, . . . , y

′

n′) with each y′i ∈ C ′, where C ′ := [c′] is a set

of novel classes disjoint from C and n′ ≪ n; with this new

data, the objective is to learn a classifier that maps a new

query example from X to a label prediction in C ′. The lat-

ter classifier learning, which does not exclude continuing

the representation learning, we shall call stage 2.

Classification is called c′-way where c′ is the number of

novel classes; in case there is a fixed number k of support

examples per novel class, it is called k-shot. As in stan-

dard classification, there is typically a collection of queries

for evaluation of each task. Few-shot learning is typically

evaluated on a large number of new tasks, with queries and

support examples randomly sampled from (X ′, Y ′).

Network model. We consider a model that is conceptually

composed of two parts: an embedding network and a classi-

fier. The embedding network φθ : X → R
r×d maps the in-

put to an embedding, where θ denotes its parameters. Since

we shall be studying the spatial properties of the input, the

embedding is not a vector but rather a tensor, where r rep-

resents the spatial dimensions and d the feature dimensions.

For a 2d input image and a convolutional network for in-

stance, the embedding is a 3d tensor in R
w×h×d taken as the

activation of the last convolutional layer, where r = w × h
is its spatial resolution. The embedding can still be a vector

in the special case r = 1.

The classifier network can be of any form and depends

on the particular model, but it is applied on top of φθ and

its output represents confidence over c (resp. c′) base (resp.

novel) classes. If we denote by fθ : X → R
c (resp. R

c′ )

the network function mapping the input to class confidence,

then a prediction for input x ∈ X is made by assigning the

label of maximum confidence, argmaxi f
i
θ(x)

2.

Prototypical networks. Snell et al. [41] introduce a simple

classifier for novel classes that computes a single prototype

per class and then classifies a query to the nearest prototype.

More formally, given X ′, Y ′ and an index set S ⊂ N ′ :=
[n′], let the set Sj := {i ∈ S : y′i = j} index the support

examples in S labeled in class j. The prototype of class j is

given by the average of those examples

pj =
1

|Sj |

∑

i∈Sj

φθ(x
′

i) (1)

for j ∈ C ′. Then, the network function is defined as3

fθ[P ](x) := σ

(

[s(φθ(x),pj)]
c′

j=1

)

(2)

for x ∈ X , where P := (p1, . . . ,pc′) and s is a similarity

function that may be cosine similarity or negative squared

2Given vector x ∈ R
m, xi denotes the i-th element of x. Similarly for

f : A → R
m, f i(a) denotes the i-the element of f(a) for a ∈ A.

3We define [e(i)]ni=1 := (e(1), . . . , e(n)) for n ∈ N and any expres-

sion e(i) of variable i ∈ N.

Euclidean distance and σ : Rm → R
m is the softmax func-

tion defined by

σ(x) :=

[

exp(xj)
∑m

i=1 exp(x
i)

]m

j=1

(3)

for x ∈ R
m and m ∈ N.

Given a new task with support data (X ′, Y ′) over novel

classes C ′ (stage 2), the full index set N ′ is used and com-

puting class prototypes (1) is the only learning to be done.

When learning from the training data (X,Y ) over base

classes C (stage 1), a number of fictitious tasks called

episodes are generated by randomly sampling a number

classes from C and then a number of examples in each class

from X with their labels from Y ; these collections, denoted

as X ′, Y ′ respectively and of length n′, are supposed to be

support examples and queries of novel classes C ′, where

labels are now available for the queries and the objective

is that queries are classified correctly. The set N ′ := [n′]
is partitioned into a support set S ⊂ N ′ and a query set

Q := N ′ \ S. Class prototypes P are computed on index

set S according to (1) and the network function fθ is defined

on these prototypes by (2). The network is then trained by

minimizing over θ the cost function

J(X ′, Y ′; θ) :=
∑

i∈Q

ℓ(fθ[P ](x′

i), y
′

i) (4)

on the query set Q, where ℓ is the cross-entropy loss

ℓ(a, y) := − log ay (5)

for a ∈ R
m, y ∈ [m] and m ∈ N.

Learning with imprinted weights. Qi et al. [31] follow a

simpler approach when learning on the training data (X,Y )
over base classes C (stage 1). In particular, they use a fully-

connected layer without bias as a parametric linear classi-

fier on top of the embedding function φθ followed by soft-

max and they train in a standard supervised classification

setting. More formally, let wj ∈ R
r×d be the weight pa-

rameter of class j for j ∈ C. Then, similarly to (2), the

network function is defined by

fθ,W (x) := σ

(

[sτ (φθ(x),wj)]
c
j=1

)

(6)

for x ∈ X , where W := (w1, . . . ,wc) is the collection of

class weights and sτ is the scaled cosine similarity

sτ (x,y) := τ 〈x̂, ŷ〉 (7)

for x,y ∈ R
r×d; x̂ := x/ ‖x‖ is the ℓ2-normalized coun-

terpart of x for x ∈ R
r×d; 〈·, ·〉 and ‖·‖ denote Frobenius

inner product and norm respectively; and τ ∈ R
+ is a train-

able scale parameter. Then, training amounts to minimizing
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over θ,W the cost function

J(X,Y ; θ,W ) :=

n
∑

i=1

ℓ(fθ,W (xi), yi). (8)

Given a new task with support data (X ′, Y ′) over novel

classes C ′ (stage 2), class prototypes P are computed on N ′

according to (1) and they are imprinted in the classifier, that

is, W is replaced by W ′ := (W,P ). The network can now

make predictions on n + n′ base and novel classes. The

network is then fine-tuned based on (8), which aligns the

class weights W with the prototypes P at the cost of having

to store and re-train on the entire training data (X,Y ).

Few-shot learning without forgetting. Gidaris and Ko-

modakis [6], concurrently with [31], develop a similar

model that is able to classify examples of both base and

novel classes. The main difference to [31] is that only the

weight parameters of the base classes are stored and not the

entire training data. They use the same parametric linear

classifier as [31] in both stages, and they also use episode-

style training like [41] in stage 2.

3. Method

Given training data of base classes (stage 1), we use a

parametric classifier like [31, 6], which however applies at

all spatial locations rather than following flattening or pool-

ing; a very simple idea that we call dense classification and

discuss in §3.1. Given support data of novel classes (stage

2), we learn in episodes as in prototypical networks [41],

but on the true task. As discussed in §3.2, the embedding

network learned in stage 1 remains fixed but new layers

called implants are trained to learn task-specific features.

Finally, §3.3 discusses inference of novel class queries.

3.1. Dense classification

As discussed in §2, the embedding network φθ : X →
R

r×d maps the input to an embedding that is a tensor. There

are two common ways of handling this high-dimensional

representation, as illustrated in Figure 1.

The first is to apply one or more fully connected layers,

for instance in networks C64F, C128F in few-shot learn-

ing [43, 41, 6]. This can be seen as flattening the activation

into a long vector and multiplying with a weight vector of

the same length per class; alternatively, the weight param-

eter is a tensor of the same dimension as the embedding.

This representation is discriminative, but not invariant.

The second way is to apply global pooling and reduce the

embedding into a smaller vector of length d, for instance in

small ResNet architectures used more recently in few-shot

learning [27, 6, 30]. This reduces dimensionality signifi-

cantly, so it makes sense if d is large enough. It is an invari-

ant representation, but less discriminative.

φ(x) w1 w2 w3

feature (d)

sp
atial

(r
)

s

class weights

σ ℓ

(a)

φ(x)
w1 w2 w3

feature (d)

sp
atial

(r
)

sΣ

class weights

a σ ℓ

(b)
Figure 1. Flattening and pooling. Horizontal (vertical) axis repre-

sents feature (spatial) dimensions. Tensors w1,w2,w3 represent

class weights, and φ(x) the embedding of example x. An embed-

ding is compared to class weights by similarity (s) and then soft-

max (σ) and cross-entropy (ℓ) follow. (a) Flattening is equivalent

to class weights having the same r × d shape as φ(x). (b) Global

pooling. Embedding φ(x) is pooled (Σ) into vector a ∈ R
d before

being compared to class weights, which are in R
d too.

In this work we follow a different approach that we

call dense classification and is illustrated in Figure 2.

We view the embedding φθ(x) as a collection of vectors

[φ(k)(x)]rk=1, where φ(k)(x) ∈ R
d for k ∈ [r]4. For a 2d

image input and a convolutional network, φθ(x) consists of

the activations of the last convolutional layer, that is a tensor

in R
w×h×d where r = w×h is its spatial resolution. Then,

φ(k)(x) is an embedding in R
d that represents a single spa-

tial location k on the tensor.

When learning from the training data (X,Y ) over base

classes C (stage 1), we adopt the simple approach of train-

ing a parametric linear classifier on top of the embedding

function φθ, like [31] and the initial training of [6]. The

main difference in our case is that the weight parameters

do not have the same dimensions as φθ(x); they are rather

vectors in R
d and they are shared over all spatial locations.

More formally, let wj ∈ R
d be the weight parameter of

class j for j ∈ C. Then, similarly to (6), the classifier map-

ping fθ,W : X → R
r×c is defined by

4Given tensor a ∈ R
m×n, denote by a

(k) the k-th n-dimensional

slice along the first group of dimensions for k ∈ [m].

9260



φ(x) +

feature (d)

sp
atial

(r
)

φ(1)(x) w1 w2 w3 s σ ℓ

φ(2)(x) w1 w2 w3 s σ ℓ

φ(3)(x) w1 w2 w3 s σ ℓ

class weights

Figure 2. Dense classification. Notation is the same as in Figure 1. The embedding a := φ(x) ∈ R
r×d is seen as a collection of vectors

(a(1), . . . ,a(r)) in R
d (here r = 3) with each being a vector in R

d and representing a region of the input image. Each vector is compared

independently to the same class weights and the losses are added, encouraging all regions to be correctly classified.

pooling dense pooling dense

Figure 3. Examples overlaid with correct class activation

maps [53] (red is high activation for ground truth) on Resnet-12

(cf . §5) trained with global average pooling or dense classification

(cf . (9)). From top to bottom: base classes, classified correctly by

both (walker hound, tile roof); novel classes, classified correctly

by both (king crab, ant); novel classes, dense classification is bet-

ter (ferret, electric guitar); novel classes, pooling is better (mixing

bowl, ant). In all cases, dense classification results in smoother

activation maps that are more aligned with objects.

fθ,W (x) :=
[

σ

(

[sτ (φ
(k)
θ (x),wj)]

c
j=1

)]r

k=1
(9)

for x ∈ X , where W := (w1, . . . ,wc) is the collection of

class weights and sτ is the scaled cosine similarity defined

by (7), with τ being a learnable parameter as in [31, 6]5.

Here fθ,W (x) is a r × c tensor: index k ranges over spatial

resolution [r] and j over classes [c].
This operation is a 1× 1 convolution followed by depth-

wise softmax. Then, f
(k)
θ,W (x) at spatial location k is a vec-

5Temperature scaling is frequently encountered in various formats in

several works to enable soft-labeling [12] or to improve cosine similarity

in the final layer [45, 30, 6, 31, 14].

tor in R
c representing confidence over the c classes. On the

other hand, f
(:,j)
θ,W (x) is a vector in R

r representing confi-

dence of class j for j ∈ [c] as a function of spatial location.6

For a 2d image input, f
(:,j)
θ,W (x) is like a class activation map

(CAM) [53] for class j, that is a 2d map roughly localizing

the response to class j, but differs in that softmax suppresses

all but the strongest responses at each location.

Given the definition (9) of fθ,W , training amounts to

minimizing over θ,W the cost function

J(X,Y ; θ,W ) :=
n
∑

i=1

r
∑

k=1

ℓ(f
(k)
θ,W (xi), yi), (10)

where ℓ is cross-entropy (5). The loss function applies to all

spatial locations and therefore the classifier is encouraged

to make correct predictions everywhere.

Learning a new task with support data (X ′, Y ′) over

novel classes C ′ (stage 2) and inference are discussed

in §3.2.2 and §3.3 respectively.

Discussion. The same situation arises in semantic segmen-

tation [23, 29], where given per-pixel labels, the loss func-

tion applies per pixel and the network learns to make local-

ized predictions on upsampled feature maps rather than just

classify. In our case there is just one image-level label and

the low resolution, e.g. 5 × 5, of few-shot learning settings

allows us to assume that the label applies to all locations

due to large receptive field.

Dense classification improves the spatial distribution of

class activations, as shown in Figure 3. By encouraging all

spatial locations to be classified correctly, we are encourag-

ing the embedding network to identify all parts of the object

of interest rather than just the most discriminative details.

Since each location on a feature map corresponds to a re-

gion in the image where only part of the object may be vis-

ible, our model behaves like implicit data augmentation of

exhaustive shifts and crops over a dense grid with a single

forward pass of each example in the network.

3.2. Implanting

From the learning on the training data (X,Y ) of base

classes C (stage 1) we only keep the embedding network

6Given tensor a ∈ R
m×n, denote by a

(:,j) the j-th m-dimensional

slice along the second group of dimensions for j ∈ [n].
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Backprop base classes 

Image 

Figure 4. Neural implants for CNNs. The implants are convolutional filters operating in a new processing stream parallel to the base

network. The input of an implant is the depth-wise concatenation of hidden states from both streams. When training neural implants,

previously trained parameters are frozen. Purple and black arrows correspond to stage 1 flows; red and black to stage 2.

φθ and we discard the classification layer. The assumption

is that features learned on base classes are generic enough to

be used for other classes, at least for the bottom layers [50].

However, given a new few-shot task on novel classes C ′

(stage 2), we argue that we can take advantage of the sup-

port data (X ′, Y ′) to find new features that are discrimina-

tive for the task at hand, at least in the top layers.

3.2.1 Architecture

We begin with the embedding network φθ, which we call

base network. We widen this network by adding new con-

volution kernels in a number of its top convolutional layers.

We call these new neurons implants. While learning the im-

plants, we keep the base network parameters frozen, which

preserves the representation of the base classes.

Let al denote the output activation of the convolutional

layer l in the base network. The implant for this layer, if it

exists, is a distinct convolutional layer with output activa-

tion a
′

l. Then the input of an implant at the next layer l + 1
is the depth-wise concatenation [al,a

′

l] if a′l exists, and just

al otherwise. If θ′l are the parameters of the l-th implant,

then we denote by θ′ := (θ′l0 , . . . , θ
′

L) the set of all new

parameters, where l0 is the first layer with an implant and

L the network depth. The widened embedding network is

denoted by φθ,θ′ .

As illustrated in Figure 4, we are creating a new stream

of data in parallel to the base network. The implant stream

is connected to the base stream at multiple top layers and

leverages the previously learned features by learning addi-

tional connections for the new tasks.

Why implanting? In several few-shot learning works, in

particular metric learning, it is common to focus on the top

layer of the network and learn or generate a new classifier

for the novel classes. The reason behind this choice un-

derpins a major challenge in few-shot learning: deep neu-

ral networks are prone to overfitting. With implanting, we

attempt to diminish this risk by adding a limited amount

of new parameters, while preserving the previously trained

ones intact. Useful visual representations and parameters

learned from base classes can be quickly squashed dur-

ing fine-tuning on the novel classes. With implants, we

freeze them and train only the new neurons added to the

network, maximizing the contribution of the knowledge ac-

quired from base classes.

3.2.2 Training

To learn the implants only makes sense when a new task

is given with support data (X ′, Y ′) over novel classes C ′

(stage 2). Here we use an approach similar to prototypical

networks [41] in the sense that we generate a number of

fictitious subtasks of the new task, the main difference being

that we are now working on the novel classes.

We choose the simple approach of using each one of the

given examples alone as a query in one subtask while all the

rest are used as support examples. This involves no sam-

pling and the process is deterministic. Because only one

example is missing from the true support examples, each

subtask approximates the true task very well.

In particular, for each i ∈ N ′ := [n′], we define a query

set Qi := {i} and a support set Si := N ′ \ Qi. We com-

pute class prototypes Pi on index set Si according to (1),

where we replace φθ by φθ,θ′ and θ′ are the implanted pa-

rameters. We define the widened network function fθ,θ′ [Pi]
on these prototypes by (2) with a similar replacement. We

then freeze the base network parameters θ and train the im-

plants θ′ by minimizing a cost function like (4). Similarly

to (4) and taking all subtasks into account, the overall cost

function we are minimizing over θ′ is given by

J(X ′, Y ′; θ, θ′) :=

n′

∑

i=1

ℓ(fθ,θ′ [Pi](x
′

i), y
′

i), (11)

where ℓ is cross-entropy (5).

In (11), activations are assumed flattened or globally

pooled. Alternatively, we can densely classify them and ap-

ply the loss function to all spatial locations independently.
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Combining with (10), the cost function in this case is

J(X ′, Y ′; θ, θ′) :=

n′

∑

i=1

r
∑

k=1

ℓ(f
(k)
θ,θ′ [Pi](x

′

i), y
′

i). (12)

Prototypes in (11) or (12) are recomputed at each iteration

based on the current version of implants. Note that this

training setup does not apply to the 1-shot scenario as it

requires at least two support samples per class.

3.3. Inference on novel classes

Inference is the same whether the embedding network

has been implanted or not. Here we adopt the prototypical

network model too. What we have found to work best is

to perform global pooling of the embeddings of the support

examples and compute class prototypes P := (p1, . . . ,pc′)
by (1). Given a query x ∈ X , the standard prediction is then

to assign it to the nearest prototype

argmax
j∈C′

s(φθ,θ′(x),pj), (13)

where s is cosine similarity [41]. Alternatively, we can

densely classify the embedding φθ,θ′(x), soft-assigning in-

dependently the embedding φ
(k)
θ,θ′(x) of each spatial loca-

tion, then average over all locations k ∈ [r] according to

fθ,θ′ [P ](x) :=
1

r

r
∑

k=1

σ

(

[sτ (φ
(k)
θ,θ′(x),pj)]

c′

j=1

)

, (14)

where sτ is the scaled cosine similarity (7), and finally clas-

sify to argmaxj∈C′ f j
θ,θ′ [P ](x).

4. Related work

Metric learning is common in few-shot learning. Multiple

improvements of the standard softmax and cross-entropy

loss are proposed by [48, 22, 52, 44, 9] to this end. Tra-

ditional methods like siamese networks are also consid-

ered [3, 39, 18] along with models that learn by comparing

multiple samples at once [43, 49, 41]. Learning to generate

new samples [9] is another direction. Our solution is related

to prototypical networks [41] and matching networks [43]

but we rather use a parametric classifier.

Meta-learning is the basis of a large portion of the few-shot

learning literature. Recent approaches can be roughly clas-

sified as: optimization-based methods, that learn to initial-

ize the parameters of a learner such that it becomes faster

to fine-tune [5, 27, 28]; memory-based methods leverag-

ing memory modules to store training samples or to encode

adaptation algorithms [38, 34]; data generation methods

that learn to generate new samples [46]; parameter gener-

ating methods that learn to generate the weights of a clas-

sifier [6, 32] or the parameters of a network with multiple

layers [1, 7, 47, 8]. The motivation behind the latter is that

Network Pooling 1-shot 5-shot 10-shot

C128F GAP 54.28 ±0.18 71.60 ±0.13 76.92 ±0.12

C128F DC 49.84 ±0.18 69.64 ±0.15 74.61 ±0.13

ResNet-12 GAP 58.61 ±0.18 76.40 ±0.13 80.76 ±0.11

ResNet-12 DC 61.26 ±0.20 79.01 ±0.13 83.04 ±0.12

Table 1. Average 5-way accuracy on novel classes of

miniImageNet, stage 1 only. Pooling refers to stage 1 train-

ing. GAP: global average pooling; DC: dense classification. At

testing, we use global max-pooling on queries for models trained

with dense classification, and global average pooling otherwise.

it should be easier to generate new parameters rather than

to fine-tune a large network or to train a new classifier from

scratch. By generating a single linear layer at the end of the

network [6, 31, 32], one neglects useful coarse visual in-

formation found in intermediate layers. We plug our neural

implants at multiple depth levels, taking advantage of such

features during fine-tuning and learning new ones.

Network adaptation is common when learning a new task

or new domain. One solution is to learn to mask part of the

network, keeping useful neurons and re-training/fine-tuning

the remaining neurons on the new-task [25, 26]. Rusu et

al. [37] rather widen the network by adding new neurons

in parallel to the old ones at every layer. New neurons

receive data from all hidden states, while previously gen-

erated weights are frozen when training for the new task.

Our neural implants are related to [37] as we add new neu-

rons in parallel and freeze the old ones. Unlike [37], we

focus on low-data regimes, keeping the number of new im-

planted neurons small to diminish overfitting risks and train

faster, and adding them only at top layers, taking advantage

of generic visual features from bottom layers [50].

5. Experiments

We evaluate our method extensively on the

miniImageNet and FC100 datasets. We describe the

experimental setup and report results below.

5.1. Experimental setup

Networks. In most experiments we use a ResNet-12 net-

work [30] as our embedding network, composed of four

residual blocks [11], each having three 3×3 convolutional

layers with batch normalization [16] and swish-1 activa-

tion function [33]. Each block is followed by 2×2 max-

pooling. The shortcut connections have a convolutional

layer to adapt to the right number of channels. The first

block has 64 channels, which is doubled at each subsequent

block such that the output has depth 512. We also test dense

classification on a lighter network C128F [6] composed of

four convolutional layers, the first (last) two having 64 (128)

channels, each followed by 2×2 max-pooling.
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Stage 1 training Support/query pooling at testing

Support → GMP GAP

Queries → GMP DC GAP DC

Global average pooling

Base classes 63.55 ±0.20 77.17 ±0.11 79.37 ±0.09 77.15 ±0.11

Novel classes 72.25 ±0.13 70.71 ±0.14 76.40 ±0.13 73.28 ±0.14

Both classes 37.74 ±0.07 38.65 ±0.05 56.25 ±0.10 54.80 ±0.09

Base classes 79.28 ±0.10 80.67 ±0.10 80.61 ±0.10 80.70 ±0.10

Dense classification Novel classes 79.01 ±0.13 77.93 ±0.13 78.55 ±0.13 78.95 ±0.13

Both classes 42.45 ±0.07 57.98 ±0.10 67.53 ±0.10 67.78 ±0.10

Table 2. Average 5-way 5-shot accuracy on base, novel and both classes of miniImageNet with ResNet-12, stage 1 only. GMP: global

max-pooling; GAP: global average pooling; DC: dense classification. Bold: accuracies in the confidence interval of the best one.

Stage 2 training Query pooling at testing

Support Queries GAP GMP DC

GMP GMP 79.03 ± 0.19 78.92 ± 0.19 79.04 ± 0.19

GMP DC 79.06 ± 0.19 79.37 ± 0.18 79.15 ± 0.19

GAP GAP 79.62 ± 0.19 74.57 ± 0.22 79.77 ± 0.19

GAP DC 79.56 ± 0.19 74.58 ± 0.22 79.52 ± 0.19

Table 3. Average 5-way 5-shot accuracy on novel classes of

miniImageNet with ResNet-12 and implanting in stage 2. At

testing, we use GAP for support examples. GMP: global max-

pooling; GAP: global average pooling; DC: dense classification.

Datasets. We use miniImageNet [43], a subset of Im-

ageNet ILSVRC-12 [36] of 60,000 images of resolution

84 × 84, uniformly distributed over 100 classes. We use

the split proposed in [34]: C = 64 classes for training, 16

for validation and 20 for testing.

We also use FC100, a few-shot version of CIFAR-100

recently proposed by Oreshkin et al. [30]. Similarily to

miniImageNet, CIFAR-100 [19] has 100 classes of 600 im-

ages each, although the resolution is 32 × 32. The split is

C = 60 classes for training, 20 for validation and 20 for

testing. Given that all classes are grouped into 20 super-

classes, this split does not separate super-classes: classes

are more similar in each split and the semantic gap between

base and novel classes is larger.

Evaluation protocol. The training set X comprises images

of the base classes C. To generate the support set X ′ of

a few-shot task on novel classes, we randomly sample C ′

classes from the validation or test set and from each class we

sample k images. We report the average accuracy and the

corresponding 95% confidence interval over a number of

such tasks. More precisely, for all implanting experiments,

we sample 5,000 few-shot tasks with 30 queries per class,

while for all other experiments we sample 10,000 tasks. Us-

ing the same task sampling, we also consider few-shot tasks

involving base classes C, following the benchmark of [6].

We sample a set of extra images from the base classes to

form a test set for this evaluation, which is performed in two

ways: independently of the novel classes C ′ and jointly on

the union C ∪C ′. In the latter case, base prototypes learned

at stage 1 are concatenated with novel prototypes [6].

Implementation details. In stage 1, we train the em-

bedding network for 8,000 (12,500) iterations with mini-

batch size 200 (512) on miniImageNet (FC100). On

miniImageNet, we use stochastic gradient descent with Nes-

terov momentum. On FC100, we rather use Adam opti-

mizer [17]. We initialize the scale parameter at τ = 10
(100) on miniImageNet (FC100). For a given few-shot task

in stage 2, the implants are learned over 50 epochs with

AdamW optimizer [24] and scale fixed at τ = 10.

5.2. Results

Networks. In Table 1 we compare ResNet-12 to C128F,

with and without dense classification. We observe that

dense classification improves classification accuracy on

novel classes for ResNet-12, but it is detrimental for the

small network. C128F is only 4 layers deep and the recep-

tive field at the last layer is significantly smaller than the one

of ResNet-12, which is 12 layers deep. It is thus likely that

units from the last feature map correspond to non-object ar-

eas in the image. Regardless of the choice of using dense

classification or not, ResNet-12 has a large performance gap

over C128F. For the following experiments, we use exclu-

sively ResNet-12 as our embedding network.

Dense classification. To evaluate stage 1, we skip stage 2

and directly perform testing. In Table 2 we evaluate 5-way

5-shot classification on miniImageNet with global average

pooling and dense classification at stage 1 training, while

exploring different pooling strategies at inference. We also

tried using global max-pooling at stage 1 training and got

similar results as with global average pooling. Dense classi-

fication in stage 1 training outperforms global average pool-

ing in all cases by a large margin. It also improves the abil-

ity of the network to integrate new classes without forget-

ting the base ones. Using dense classification at testing as

well, the accuracy on both classes is 67.78%, outperforming

the best result of 59.35% reported by [6]. At testing, dense
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Method 1-shot 5-shot 10-shot

GAP 58.61 ± 0.18 76.40 ± 0.13 80.76 ± 0.11

DC (ours) 62.53 ± 0.19 78.95 ± 0.13 82.66 ± 0.11

DC + WIDE 61.73 ± 0.19 78.25 ± 0.14 82.03 ± 0.12

DC + IMP (ours) - 79.77 ± 0.19 83.83 ± 0.16

MAML [5] 48.70 ± 1.8 63.10 ± 0.9 -

PN [41] 49.42 ± 0.78 68.20 ± 0.66 -

Gidaris et al. [6] 55.45 ± 0.7 73.00 ± 0.6 -

PN [30] 56.50 ± 0.4 74.20 ± 0.2 78.60 ± 0.4

TADAM [30] 58.50 76.70 80.80

Table 4. Average 5-way accuracy on novel classes of mini-

ImageNet. The top part is our solutions and baselines, all on

ResNet-12. GAP: global average pooling (stage 1); DC: dense

classification (stage 1); WIDE: last residual block widened by 16

channels (stage 1); IMP: implanting (stage 2). In stage 2, we use

GAP on both support and queries. At testing, we use GAP on

support examples and GAP or DC on queries, depending on the

choice of stage 1. The bottom part results are as reported in the lit-

erature. PN: Prototypical Network [41]. MAML [5] and PN [41]

use four-layer networks; while PN [30] and TADAM [30] use the

same ResNet-12 as us. Gidaris et al. [6] use a Residual network of

comparable complexity to ours.

Method 1-shot 5-shot 10-shot

GAP 41.02 ± 0.17 56.63 ± 0.16 61.65 ±0.15

DC (ours) 42.04 ± 0.17 57.05 ± 0.16 61.91 ± 0.16

DC + IMP (ours) - 57.63 ± 0.23 62.91 ± 0.22

PN [30] 37.80 ± 0.40 53.30 ± 0.50 58.70 ± 0.40

TADAM [30] 40.10 ± 0.40 56.10 ± 0.40 61.60 ± 0.50

Table 5. Average 5-way accuracy on novel classes of FC100 with

ResNet-12. The top part is our solutions and baselines. GAP:

global average pooling (stage 1); DC: dense classification (stage

1); IMP: implanting (stage 2). In stage 2, we use GAP on both

support and queries. At testing, we use GAP on support exam-

ples and GAP or DC on queries, depending on the choice of stage

1. The bottom part results are as reported in the literature. All

experiments use the same ResNet-12.

classification of the queries with global average pooling of

the support samples is the best overall choice. One excep-

tion is global max-pooling on both the support and query

samples, which gives the highest accuracy for new classes

but the difference is insignificant.

Implanting. In stage 2, we add implants of 16 channels to

all convolutional layers of the last residual block of our em-

bedding network pretrained in stage 1 on the base classes

with dense classification. The implants are trained on the

few examples of the novel classes and then used as an inte-

gral part of the widened embedding network φθ,θ′ at testing.

In Table 3, we evaluate different pooling strategies for sup-

port examples and queries in stage 2. Average pooling on

both is the best choice, which we keep in the following.

Ablation study. In the top part of Table 4 we compare

our best solutions with a number of baselines on 5-way

miniImageNet classification. One baseline is the embed-

ding network trained with global average pooling in stage

1. Dense classification remains our best training option. In

stage 2, the implants are able to further improve on the re-

sults of dense classification. To illustrate that our gain does

not come just from having more parameters and greater fea-

ture dimensionality, another baseline is to compare it to

widening the last residual block of the network by 16 chan-

nels in stage 1. It turns out that such widening does not

bring any improvement on novel classes. Similar conclu-

sions can be drawn from the top part of Table 5, showing

corresponding results on FC100. The difference between

different solutions is less striking here. This may be at-

tributed to the lower resolution of CIFAR-100, allowing

for less gain from either dense classification or implanting,

since there may be less features to learn.

Comparison with the state-of-the-art. In the bottom part

of Table 4 we compare our model with previous few-shot

learning methods on the same 5-way miniImageNet clas-

sification. All our solutions outperform by a large margin

other methods on 1, 5 and 10-shot classification. Our im-

planted network sets a new state-of-the art for 5-way 5-shot

classification of miniImageNet. Note that prototypical net-

work on ResNet-12 [30] is already giving very competitive

performance. TADAM [30] builds on top of this baseline

to achieve the previous state of the art. In this work we

rather use a cosine classifier in stage 1. This setting is our

baseline GAP and is already giving similar performance to

TADAM [30]. Dense classification and implanting are both

able to improve on this baseline. Our best results are at

least 3% above TADAM [30] in all settings. Finally, in the

bottom part of Table 5 we compare our model on 5-way

FC100 classification against prototypical network [30] and

TADAM [30]. Our model outperforms TADAM here too,

though by a smaller margin.

6. Conclusion

In this work we contribute to few-shot learning by build-

ing upon a simplified process for learning on the base

classes using a standard parametric classifier. We inves-

tigate for the first time in few-shot learning the activation

maps and devise a new way of handling spatial information

by a dense classification loss that is applied to each spatial

location independently, improving the spatial distribution of

the activation and the performance on new tasks. It is im-

portant that the performance benefit comes with deeper net-

work architectures and high-dimensional embeddings. We

further adapt the network for new tasks by implanting neu-

rons with limited new parameters and without changing the

original embedding. Overall, this yields a simple architec-

ture that outperforms previous methods by a large margin

and sets a new state of the art on standard benchmarks.
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