
Robustness Verification of Classification Deep Neural Networks via Linear

Programming

Wang Lin1,2,3 Zhengfeng Yang2∗ Xin Chen3∗ Qingye Zhao3 Xiangkun Li2 Zhiming Liu4 Jifeng He2

1 School of Information Science and Technology, Zhejiang Sci-Tech University
2 Shanghai Key Lab of Trustworthy Computing, East China Normal University

3 State Key Laboratory for Novel Software Technology, Nanjing University
4 Center for Research and Innovation in Software Engineering, Southwest University

linwang@zstu.edu.cn, zfyang@sei.ecnu.edu.cn, chenxin@nju.edu.cn

qingyezhao@foxmail.com, xkli@stu.ecnu.cn, zhimingliu88@swu.edu.cn, jifeng@sei.ecnu.edu.cn

Abstract

There is a pressing need to verify robustness of classifi-

cation deep neural networks (CDNNs) as they are embed-

ded in many safety-critical applications. Existing robust-

ness verification approaches rely on computing the over-

approximation of the output set, and can hardly scale up to

practical CDNNs, as the result of error accumulation ac-

companied with approximation. In this paper, we develop a

novel method for robustness verification of CDNNs with sig-

moid activation functions. It converts the robustness verifi-

cation problem into an equivalent problem of inspecting the

most suspected point in the input region which constitutes

a nonlinear optimization problem. To make it amenable, by

relaxing the nonlinear constraints into the linear inclusion-

s, it is further refined as a linear programming problem. We

conduct comparison experiments on a few CDNNs trained

for classifying images in some state-of-the-art benchmark-

s, showing our advantages of precision and scalability that

enable effective verification of practical CDNNs.

1. Introduction

Classification deep neural networks (CDNNs) are a spe-

cial kind of deep neural networks that take in complicat-

ed, high-dimensional input, transform it through multiple

layers of neurons and finally identify it as a specific out-

put label or class. Acting as classifiers, they have been

∗Corresponding authors. This work was supported in part by the Na-

tional Key Research and Development Program under Grant 2017YF-

B1001801, in part by the National Natural Science Foundation of Chi-

na under Grant 61772203, 61602348, 61690204, 61632015, 61672435,

61732019, 61751210 and 61572441, in part by the Shanghai Natural Sci-

ence Foundation under Grant 17ZR1408300, in part by the Collaborative

Innovation Center of Novel Software Technology and Industrialization,

and in part by Southwest University under Grant SU116007.

adopted in a variety of applications, such as adaptive con-

trol [31, 34], pattern recognition [28], image understand-

ing [8, 18], cyber-security [29], speech and audio analysis

[14, 15] and self-driving [26]. It is a growing trend that em-

bedding CDNNs in safety-critical systems to make judge-

ments like human experts [19].

Unfortunately, it has been reported by many researchers

[3, 32] that CDNNs are unrobust with respect to perturba-

tions. For example, applying minimal changes to the input

image, being imperceptible to the human eye, can make the

well-trained CDNN misclassify it.

The unrobust issue obviously raises potential safety is-

sues for safety critical systems using neural networks and

calls for effective verification techniques that can check the

robustness of CDNNs [11, 17]. We state that a CDNN is ro-

bust when, given every possible input value within a speci-

fied region, its output is guaranteed to have the same classi-

fication label, which corresponds to the principal robust re-

quirement of classification: minimal perturbations (restrict-

ed by a threshold) should not affect the classification result.

Given a CDNN, its robustness can be verified by estimat-

ing the range of the output set with respect to a given input

region. Some methods are proposed to compute the out-

put range of CDNNs of particular types [2, 6, 12, 22]. The

method combining local gradient descent search with global

mixed integer linear programming can handle the CDNNs

with ReLU activation functions [9], which is further ex-

tended to treat a special class of perturbations [33]. The

ployhedra manipulating based method is able to compute

the exact output region of CDNNs with ReLU activation

functions and an union of ployhedra as its input set [35].

In general, the computation of output set is very difficult

since the theories to handle general activation functions are

undecidable. The methods that transform the verification

problem of CDNNs into programming receive most atten-

111418



tions in recent years. The method extending the Simplex

method to deal with the constraints imposed by ReLU nodes

is suggested to verify the ReLU equipped DNNs [17]. The

approach integrating SAT solving with linear programming

and linear approximation can handle CDNNs with piece-

wise linear activation functions [10].

The piece-wise linear feature of ReLU make the verifi-

cation of ReLU equipped CDNNs much easier [5, 25]. For

those nonlinear activation functions, such as sigmoid, ap-

proximation based methods are studied. The abstraction-

refinement method introduces piece-wise linear functions to

approximate sigmoid activation functions, encodes the net-

work as a set of linear constraints and then solves them by

the solver HYSAT [24]. The discretization based method

uses layer-by-layer analysis and SMT techniques to verify

CDNNs for image classification [16]. A simulation-based

approach formulates the output range estimation problem

into the maximal sensitivity, which can be computed via

solving a chain of convex optimization problems [36].

As the error arising from approximation propagates a-

long the network layer by layer, those approximation-based

approaches are prone to fail when encountering practical

CDNNs. How to provide adequate precision and scalability

to satisfy the requirement of verifying practical CDNNs is

the key challenge that verification methods must face with.

This paper proposes a novel method to robustness ver-

ification of CDNNs equipped with the activation function:

sigmoid. Rather than computing the over-approximation of

the output set with respect to the given input region, it trans-

fers the robustness verification problem into the problem of

finding the point in the input region that is easier to be as-

signed with a different label than any other points in the

region and checks whether or not the point will be misclas-

sified. To be specific, we build an equivalent optimization

problem where the relation between the neurons in the net-

works is encoded as constraints and the objective function

aims to find the minimal difference between the output val-

ues with respect to the desired label and the other labels. As

the desired label should have the maximal value, the opti-

mum of the optimization problem is positive if and only if

the robustness property holds.

The optimization problem is further relaxed by replac-

ing the nonlinear sigmoid function in constraints with its

linear inclusions, so that linear programming (LP) solvers

can work. Precisely, the sigmoid function is contained in

a closed polyhedron produced by combining bound deriva-

tion with linear inclusion. The derived optimization prob-

lem constitutes a sufficient condition for verification as the

feasible set of its constraints is a superset of the original

one.

The proposed method has two advantages over existing

ones: 1. It verifies robustness by inspecting whether or not

the worst point in the input region will be classified dif-

ferently, and thus provides more precise estimation on ro-

bustness of CDNNs. 2. It can safely scale up to realistic

sized networks which beyond the reach of existing ones. It

is supported by the comparison experiments conducted on

CDNNs generated from many state-of art benchmarks.

The main contributions of the paper are summarized as

follows: 1. We propose a novel method for verifying ro-

bustness of CDNNs which converts the robustness verifica-

tion problem into an equivalent optimization problem. 2.

We suggest a new computational approach, by approximat-

ing the activation function sigmoid with a tightly enclosed

region, and then leveraging LP solvers to solve it. 3. We

conduct a comparison experiment on a set of benchmark-

s consisting of many state-of-the-art CDNNs, which shows

our advantages on precision and scalability that enable ver-

ification of practical CDNNs.

The paper is organized as follows. Section 2 introduces

some notions for CDNNs, and then describes the robust-

ness verification problem. In Section 3, the problem of

robustness verification is transformed to a nonlinear opti-

mization problem and an LP based computational method

is addressed to deal with it. We show the experiments on

benchmarks, confirming the effectiveness of our algorithm

in Section 4 before concluding in Section 5.

2. Preliminaries

Notations Let N and R be the set of natural numbers

and the field of real number, respectively; ̥n denotes the

set consisting of the positive integer numbers not greater

than n, i.e., ̥n = {1, 2, . . . , n}, where n is a positive inte-

ger; I denotes the open interval (0, 1), and Is denotes the

Cartesian product Is = I×· · ·×I with the positive integer

number s.

2.1. Deep Neural Networks

Deep neural networks (DNNs) consist of an input lay-

er, an output layer, and multiple hidden layers in between.

Neurons (so-called nodes), in a DNN are arranged in dis-

joint layers, with each neuron in one layer connected to the

next layer, but no connection between neurons in the same

layer. Furthermore, the output of each neuron in the hid-

den layer is assigned by a linear combination of the neuron

outputs of the previous layer, and then applying a non-linear

activation function. Formally, DNNs are defined as follows.

Definition 1 (Deep Neural Network) A deep neural net-

work N is a tuple ⟨L,X,W,B,Φ⟩, where

• L = {L[0] . . . , L[n]} is a set of layers, where layer

L[0] is the input layer, L[n] is the output layer, and

L[1], . . . , L[n−1] are the hidden layers. Each layer

L[k], 0 ≤ k ≤ n is associated with an sk-dimensional

vector space Ψk ⊆ Rsk , in which each dimension cor-

responds to a neuron.

211419



• X = {x[0], . . . ,x[n]}, where x[k] is the vector corre-

sponding to the values of the neurons in the layer L[k]

for 0 ≤ k ≤ n.

• W = {W [1], . . . ,W [n]} is the set of weight matri-

ces. Each non-input layer L[k] with 1 ≤ k ≤ n has

a weight matrix W [k] ∈ Rsk×sk−1 , and neurons in

L[k] are connected to neurons from the preceding layer

L[k−1] by the weight matrix W [k].

• B = {b[1], . . . ,b[n]} is the set of bias vectors. For

each non-input layer L[k] with 1 ≤ k ≤ n, the bias

vector b[k] ∈ Rsk is used to assigned bias values to

the neurons in L[k].

• Φ = {ϕ[1], . . . , ϕ[n]} is a set of activation function-

s ϕ[k] : Ψk−1 → Ψk, one for each non-input layer

L[k] with 1 ≤ k ≤ n. Furthermore, the value vector

x[k] for the neurons in L[k] are determined by the val-

ue vector of x[k−1] with the weight matrix W [k], the

bias vector b[k] and the activation function ϕ[k], i.e.,

x[k] = ϕ[k](W [k] x[k−1] + b[k]) with the activation

function ϕ[k] being applied element-wise.

Given a DNN N : ⟨L,X,W,B,Φ⟩, it is seen that the

output of the k − 1-th layer is the input of the k-th layer.

From the mapping point of view, each non-input layer L[k],

1 ≤ k ≤ n, defines a function fk : Rsk−1 → Rsk , with

fk(x) = ϕ
[k](W [k]

x+ b
[k]). (1)

Therefore, the behavior of N is defined by the composition

function f : Rs0 → Rsn , which is defined as

f(x) = fn(fn−1(· · · (f1(x)))). (2)

For the purpose of this paper we are assuming that all the

weights matrices W and bias vectors B inN have fixed val-

ues. For an overview of weight and bias selection and a re-

view of previous work, see [13]. Observing the composition

of the given DNN, the difficulty in proving its properties is

caused by the presence of activation functions. The activa-

tion function is generally a nonlinear function connecting

the neuron values of the preceding layer to the ones of the

following layer. There are some typical activation function-

s, such as the sigmoid, rectified linear unit (ReLU), and tanh

functions[13]. In this paper, we only focus on DNNs with

the widely used sigmoid activation function

ϕ(x) =
1

1 + e−x
. (3)

We extend the definition of ϕ(x) to apply component-wise

to vectors x as ϕ(x):
(

ϕ(x1), · · · , ϕ(xn)
)T

. Due to the

property of the sigmoid function with ϕ(x) : R → I, the

input and the output of the function fk for the given input

x[0] ∈ Rs0 , can be restricted to

x[k] = fk(x
[k−1]) ∈ Isk , 1 ≤ k ≤ n.

According to the Universal Approximation Theo-

rem [27], it guarantees that, in principle, a DNN N is able

to approximate any nonlinear real-valued function. Despite

the impressive ability of approximating nonlinear function-

s, much complexities represent in predicting the output be-

haviors of N due to the nonlinearity and non-convexity of

DNNs.

2.2. Classification Deep Neural Networks and Ro-
bustness Property

In this subsection, we will introduce the notion of clas-

sification deep neural networks (CDNNs), and describe

the robustness verification problem of CDNNs. CDNN is

one of the primary applications in deep neural network-

s. In this type of networks, a CDNN will act as a clas-

sifier, which is used to specify which of labels some in-

put belongs to. Given a CDNN N : ⟨L,X,W,B,Φ⟩ with

an input x[0], the activation for x[k] in layer k is x[k] =
fk(fk−1(· · · (f1(x

[0])))), the activation for x[n] in the out-

put layer can be propagated through the layers shown in (2),

that is, x[n] = f(x[0]) ∈ Isn .

The classification decision is asked to produce a function

ϱ : Rs0 → ̥sn based on the output value x[n], assigning to

x[0] to label ℓ ∈ ̥sn by selecting the index corresponding

to the largest element in x[n]. Therefore, the function ϱ is

the composition of argmax and f , i.e.,

ϱ(x[0]) = argmax(f(x[0])) = argmax
1≤ℓ≤sn

(x[n]). (4)

To make the input x[0] be classified, the largest element of

the output x[n] must be unique. In other words, ℓ = ϱ(x[0])

implies that x
[n]
ℓ > x

[n]

ℓ̃
for all ℓ̃ ̸= ℓ.

Given a CDNN N , we say that two inputs x[0] and y[0]

have the same label if ϱ(x[0]) = ϱ(y[0]). This property

for having the same label can also be generalized from the

discrete inputs to the input region. More specifically, we say

that the input region Θ has the same label if two arbitrary

inputs x[0] and y[0] chosen from Θ, have the same label,

namely,

ϱ(x[0]) = ϱ(y[0]), ∀x[0], y[0] ∈ Θ.

Similar to the description in [16], this property that the giv-

en input region having the same label is called as robust-

ness. In this situation, robustness specification of the given

CDNN N is described over the specified input region Θ.

We begin with a common definition for robustness.

Definition 2 (Robustness) Given a classification deep

neural network N with an input region Θ, the robustness

property holds if and only if all inputs within the input re-

gion Θ have the same label, i.e.,

∀x[0]
, y

[0] ∈ Θ =⇒ ϱ(x[0]) = ϱ(y[0]). (5)

311420



Namely, if there exists an index ℓ, 1 ≤ ℓ ≤ sn, such that

ϱ(x[0]) = ℓ, ∀x[0] ∈ Θ (6)

is satisfied, we say that N with respect to Θ is robust.

Given a CDNNN , the problem of robustness verification is

to decide whether N with respect to the input region Θ is

robust. According to Definition 2, the target for robustness

verification is to determine whether there exists an unified

label (index) ℓ such that any output x[n] produced by the

input selected from Θ satisfies

x
[n]
ℓ > x

[n]

ℓ̃
for all ℓ̃ ̸= ℓ. (7)

On the contrary, we say thatN is unrobust if there exist two

inputs x[0,y[0] ∈ Θ such that

argmax(f(x[0])) ̸= argmax(f(y[0]))

is satisfied. Hereafter we will always consider the input re-

gion Θ is a Cartesian product, that is, Θ = Ω1 × · · · × Ωs0

where Ωi = [ai, bi] is a closed interval bounded by ai, bi ∈
R for all 1 ≤ i ≤ s0.

3. Robustness Verification of Classification

Deep Neural Networks

Instead of computing the over-approximation of the out-

put set, in this work we propose a direct method for attack-

ing the robustness verification problem. Given a CDNN

with the input region, we establish a nonlinear optimiza-

tion problem equivalent to the original robustness verifica-

tion problem. Namely, a sufficient and necessary condition

for robustness verification is to inspect the most suspicious

point in the input region is robust or not. (see Section 3.1).

To alleviate the computational intractability for the practi-

cal CDNNs, a surrogate is given to relax the derived non-

linear optimization as a linear programming problem (see

Section 3.2). Moreover, the positivity of the optimum for

the relaxed LP problem suffices to guarantee the robustness

property of the given network (see Section 3.3).

3.1. From Robustness Verification to Nonlinear Op-
timization

Given a CDNN N : ⟨L,X,W,B,Φ⟩ with an input re-

gion Θ, recall that the robustness satisfaction is to veri-

fy whether the existence of the identical label ℓ such that

each output holds the condition (7). As a result, ℓ is eas-

ily obtained by checking an arbitrary output, i.e., ℓ =
argmax f(x[0]), where x[0] is a random input selected from

Θ. Depending on the label ℓ, robustness verification by

checking the condition (7) is equivalent to verify

min{x
[n]
ℓ − x

[n]

ℓ̃
, ℓ̃ ̸= ℓ} > 0 (8)

is satisfied for each output x[n]. In other words, N with Θ
is robust if and only if

min
x
[n]
{min{x

[n]
ℓ − x

[n]

ℓ̃
, ℓ̃ ̸= ℓ} } > 0. (9)

From (9), one can construct the following nonlinear op-

timization problem whose objective is a linear piece-wise

function:

p∗ = min
x
[k],z[k]{ x

[n]
ℓ − x

[n]

ℓ̃
, ℓ̃ ̸= ℓ }

s.t. ai ≤ x
[0]
i ≤ bi i = 1, · · · , s0,

z[k] = W [k] x[k−1] + b[k] k = 1, · · · , n,

x[k] = ϕ(z[k]) k = 1, · · · , n.



















(10)

The following theorem shows the equivalent transformation

between robustness verification and nonlinear optimization

solving.

Theorem 1 LetN be a classification deep neural network,

and Θ be the given input region. Suppose y[0] is selected

randomly from Θ, and ℓ is the label classified by N with

y[0], i.e., ℓ = ϱ(y[0]). Suppose p∗ is the optimum of the

optimization problem (10), established byN , Θ and ℓ. Then

N with respect to Θ is robust if and only if p∗ > 0.

Proof 1 Observe that the constraints of the optimization

problem (10) are the equivalent expression of N : x[n] =
f(x[0]). Thus, taking the equivalence between (7) and (9)

yields the desired result. �

In fact, the optimization problem (10) tries to find the

point that are most likely to be unrobust in the input region.

If the worst point is robust, all the other points should be

robust too.

3.2. Linear Encoding for Deep Neural Networks

The subsection considers how to encode the behavior in

CDNNs in terms of linear constraints so that highly scal-

able LP solvers can contribute to verify CDNNs of practical

size. The encoding is based on the input-output behavior

of every neuron in the network, and the main challenge is

to handle the non-linearities, which are arising from the ac-

tivation functions. To facilitate such linear relaxation, we

start by computing the lower and upper bounds of all neu-

rons via layer-by-layer estimation, precedes linear inclusion

for activation functions within the yielded bounds.

Bound Derivation with Interval Analysis Without loss of

generality, we consider a single layer L[k]. As shown in

Section 2, it is known that the values of neurons, x[k] in

L[k] can be computed by

x[k] = ϕ(W [k]x[k−1] + b[k]), (11)

where ϕ is applied element-wise. By introducing the aux-

iliary variables z[k], the evaluation (11) can be rewritten as

the composition of a linear mapping

z
[k] = W

[k]
x
[k−1] + b

[k]
, (12)

411421



and a nonlinear mapping

x[k] = ϕ(z[k]). (13)

Let D[0] = Θ be the interval vector representing the

bounds of the input neurons, and let D[k], 1 ≤ k ≤ n be

the interval vector representing the bounds of the k-th layer

neurons. The bounds of all neurons can be obtained by per-

forming the procedure of the layer-by-layer analysis. More

specifically, suppose D[k−1] is yielded from the previous

layer, using the interval computation to (12) yields the range

of z
[k]
j , denoted by [αk,j , βk,j ] for each j = 1, · · · , sk. S-

ince ϕ is a monotonically increasing function, the i-th ele-

ment of x[k] can be bounded by ϕ(αk,i) ≤ x
[k]
i ≤ ϕ(βk,i).

As a result, we have x[k] ⊆ D[k], where D[k] is the follow-

ing interval vector

D[k] = [ϕ(αk,1), ϕ(βk,1)]× · · · × [ϕ(αk,sk), ϕ(βk,sk)].

Linear Inclusion Let us explain how to compute linear in-

clusion for the activation function y = ϕ(x) within the do-

main [a, b]. Let us first choose the midpoint ξ of the interval

[a, b], and the Taylor expansion for ϕ(x) yields a linear ap-

proximation at the point ξ,

ϕ(x) = p(x) + r(x),

where p(x) = ϕ(ξ)+ϕ′(ξ)(x−ξ) is a linear approximation

of ϕ(x) at the point ξ, and r(x) is the error function. By ex-

ploring interval evaluation [23], we can obtain the inclusion,

denoted by [r, r], representing the range of r(x) evaluated

at the domain [a, b].
To summarize, the procedure called LI, combining

bound derivation with linear approximation, is applicable

to linear inclusion for the activation function ϕ(x), namely,

LI: ϕ(a) ≤ ϕ(x) ≤ ϕ(b), p(x)+r ≤ ϕ(x) ≤ p(x)+r. (14)

As mentioned above, suppose the range of z
[k]
j is

[αk,j , βk,j ] produced from the previous layer. For each

1 ≤ j ≤ sk calling LI procedure to x
[k]
j = ϕ(z

[k]
j ), yields

the associated linear inequalities:

ϕ(αk,j) ≤ x
[k]
j ≤ ϕ(βk,j), (15)

p
[k]
j (z

[k]
j ) + rk,j ≤ x

[k]
j ≤ p

[k]
j (z

[k]
j ) + rk,j . (16)

By calling LI procedure component-wise to the vector x[k],

the nonlinear constraint (13) can be relaxed to the following

set of linear constraints

Ck :







x[k] ∈ D[k],

x[k] − p[k](z[k])− r[k] ≥ 0,

x[k] − p[k](z[k])− r[k] ≤ 0,

(17)

where p[k](z[k]) = ϕ(ξ[k]) − ϕ′(ξ[k])(z[k] − ξ[k]) and

ξ[k] is the midpoint vector for the range of z[k], r[k] =
(rk,1, · · · , rk,sk)

T , and r[k] = (rk,1, · · · , rk,sk)
T .

Using (12) and (17), we provide a way for linear encod-

ing the input-output behavior of layer L[k]. Thus, the set

of linear constraints encoding the network N can be de-

fined as: C =
∪n

k=1 Ck. In this situation, it follows from

the above linear encoding that the equivalent optimization

problem (10) for robustness verification can be relaxed into

the following optimization problem:

p∗r = min
x
[k],z[k]{ x

[n]
ℓ − x

[n]

ℓ̃
, ℓ̃ ̸= ℓ }

s.t. x[k] ∈ D[k], k = 0, · · · , n
z[k] = W [k] x[k−1] + b[k], k = 1, · · · , n,
x[k] − p[k] (z[k])− rk ≥ 0, k = 1, · · · , n
x[k] − p[k] (z[k])− rk ≤ 0, k = 1, · · · , n.



























(18)

Remark 1 In comparison with the optimization problem

(10), the feasible set of (18) is the superset of the one of (10),

which results in the optimum of (18) is the lower bound of

the optimum of (10), i.e., p∗r ≤ p∗.

3.3. Transform to Linear Programming

The objective function of the optimization problem (18)

is piecewise-linear. To make it amenable to LP solvers, it

is transformed into an equivalent optimization problem by

introducing an auxiliary variable t:

p∗r =max t

s.t. x
[n]
ℓ − x

[n]

ℓ̃
≥ t, ℓ̃ ̸= ℓ,

x[i] ∈ D[k], k = 0, · · · , n
z[k] = W [k] x[k−1] + b[k], k = 1, · · · , n
x[k] − p[k] (z[k])− rk ≥ 0, k = 1, · · · , n
x[k] − p[k] (z[k])− rk ≤ 0, k = 1, · · · , n



































(19)

Suppose p∗r and p̃∗r are optimums of the optimization

problem (18) and (19) respectively. Since p∗r = min{x
[n]
ℓ −

x
[n]

ℓ̃
}, and x

[n]
ℓ −x

[n]

ℓ̃
≥ p̃∗r , for all ℓ̃ ̸= ℓ, we have p∗r ≥ p̃∗r .

On the other hand, p̃∗r is the maximum value satisfying the

set of constraints {x
[n]
ℓ − x

[n]

ℓ̃
≥ t, ℓ̃ ̸= ℓ}, thus p̃∗r ≥ p∗r .

Combining the two facts, it follows that p∗r = p̃∗r .

The above transformation between the optimization

problems derives a sufficient condition for robustness ver-

ification of CDNNs.

Theorem 2 Given a CDNN N : ⟨L,X,W,B,Φ⟩ with the

input region Θ. Suppose (19) is the linear programming

problem established as above, and p∗r is an optimum of (19).

If p∗r > 0, then N is robust.

Proof 2 For the given N with the input region Θ, one may

establish the optimization problem (10). Due to the equiv-

alence between (18) and (19), and in combination with Re-

mark 1, p∗r is the lower bound of the optimum of (10). Tak-

ing p∗r > 0 into account, the optimum of (10) is positive.

Finally, it follows from Theorem 1 that N is robust. �

511422



Theorem 2 guarantees when p∗r > 0,N is robust with Θ.

Consider the case p∗r <= 0, and the corresponding worst

point is x̃[0], it is required to verify x̃[0] using N , denoted

as ϱ(x̃[0]). If ϱ(x̃[0]) ̸= ℓ, that is x̃[0] is misclassified, x̃[0]

provides a counterexample to show thatN is not robust. But

if ϱ(x̃[0]) = ℓ, the robustness of N remains undetermined

as we cannot predict the other bad points are robust or not.

To verify the robustness property of the given network

N , we have established a relaxed linear programming prob-

lem (19), which can be solved by using conventional algo-

rithms such as the interior-point method [4]. Furthermore,

the positivity of the optimum of (19) suffices to verify the

robustness of N . Detailed procedures are summarized in

Algorithm 1.

Algorithm 1: RobustVerifier (Robustness verification

for a CDNN)

Input: A CDNN N ; An input region Θ.

Output: bRobust; bUnrobust.

1 bRobust← FALSE; bUnrobust← FALSE;

2 Determine the label ℓ:

3 Choose a random element x[0] from Θ, i.e.,

x[0] ∈ Θ;

4 ℓ← ϱ(x[0]);

5 D[0] ← Θ;

6 C ← {};
7 for k = 1 : n do

8 D[k] is computed from D[k−1] by bound

derivation;

9 Ck ← LinearEncoding(N , D[k]);
10 C ← C ∪ Ck;

11 Construct the linear programming problem as in (19);

12 Call an LP solver to obtain the optimum p∗r and its

optimizer: (x̃[k], z̃[k]);
13 if p∗r > 0 then

14 bRobust← TRUE;

15 else

16 if ϱ(x̃[0]) ̸= ℓ then

17 bUnrobust← TRUE;

RobustVerifier takes as inputs a CDNN N with an input

region Θ. In line 1, two Boolean flags are defined, i.e., bRo-

bust and bUnrobust. The procedure first determines the la-

bel ℓ of theN by executing an element chosen from Θ, and

then initializes the set of the linear constraints (line 5 and

6). Line 7 to 10 obtain the linear constraints approximating

the activation functions. Line 11 constructs the correspond-

ing linear programming, and its solution can be found by

calling an LP solver (line 12).

RobustVerifier returns one of the following results: if

bRobust is TRUE then N with Θ is robust (line 14), and

if bUnrobust is TRUE then N with Θ is unrobust since t-

wo inputs x[0] and x̃[0] have the different label. Otherwise,

RobustVerifier fails to determine whether N is robust.

Remark 2 Suppose D[n] is the range of the output layer Ln

obtained by bound derivation (line 8), denoted by D[n] =
[l1, u1]× · · · [lsn , usn ]. Once lℓ > uℓ̃ for each ℓ̃ ̸= ℓ, it is to

say that N with the input region Θ has the same label ℓ. In

this case, Robustverifier ends and bRobust is set to TRUE.

Therefore, this simple method for computing the lower and

upper bounds of the output layer, called as RobustLU, can

also be used to verify the robustness property of N with Θ.

4. Evaluation

In the evaluation, we use image classification networks

generated from three popular image datasets designed for

image classification, as target CDNNs for robustness veri-

fication. Those image classification networks include net-

works trained for classifying 10 classes of hand-written im-

ages of digits 0-9 from the database MNIST [20] , 43 class-

es of German traffic signs from the database (GTSRB) [30]

, and 101 classes of images from the Caltech 101 dataset

[21] . All the image classification networks are built from

the neural networks library Keras [7] with a deep learning

package Tensorflow [1] as its backend.

Details of the three datasets are listed below:

• Modified National Institute of Standards and Technol-

ogy database. The MNIST database is a large collec-

tion of hand-written images designed for training vari-

ous image processing systems in which each image is

of size 28 × 28 and in black and white. It has 60,000

training input images, belonging to one of 10 labels,

i.e. from the digit 0 to the digit 9.

• German Traffic Signs Recognition Benchmark. The

GTSRB is a large image set of traffic signs devised for

the single-image, multi-class classification problem. It

consists of over 50,000 images of traffic signs, belong-

ing to 43 different classes. In GTSRB, each image is

of size 32×32 and has three channels (Red, Green and

Blue).

• Caltech-101 Dataset. The Caltech-101 dataset consist-

s of images belonging to 101 different classes where

the number of images in each class varies from 40 to

800. Most images are of the resolution 300×200 pixel

and have three channels.

In [24], the tool NEVER is proposed to verify a special

type of neural networks with sigmoid activation functions,

called Multi-Layer Perceptrons (MLPs). A MLP is a degen-

eration of CDNN as it restricts activation functions only to

611423



be located on the output neurons. We generalized the algo-

rithm to treat CDNNs, called Generalized-NEVER (GNEV-

ER).

We have implemented the proposed algorithms Ro-

bustVerifier, RobustLU (see Remark 2) and Generalized-

NEVER as MATLAB programs. The LP problems gener-

ated from robust verification are settled by the LP solver

linprog. The following experimental results were obtained

by running them on an Ubuntu 18.04 LTS computer with

a 3.2GHz Intel(R) Xeon Gold 6146 processor and 128 GB

RAM.

4.1. Performance

In the section, we evaluate the performance of the three

tools by varied perturbations and network structures.

The CDNN trained from the MNIST dataset is used for

performance evaluation whose input layer has 784 neurons

and output layer consists of 10 neurons. For each image in

MNIST, a set of pixels with a range of possible perturbation

of these pixels is specified, which forms an input region Θ
for the input layer.

Given a CDNNN and an input region Θ, robustness ver-

ification requires to check whether the robustness property

holds with respect to Θ, i.e., all inputs within the input re-

gion Θ are assigned to the same label. Figure 1 shows a

configuration of input region: a set of perturbations (with

disturbance radius ϵ = 0.5) to a block of size 5 × 5 on the

top left corner of each image.

Figure 1. The MNIST CDNN is robust w.r.t. perturbed images.

Table 1 lists the comparison results of the three tools Ro-

bustVerifier, RobustLU and GNEVER with varied perturba-

tions. Here, the input region is a block of size 5 × 5 on

the top left corner of the image; ϵ denotes the disturbance

radius, that is, ϵ = 0.2 means perturbations varying with-

in the range [−0.2, 0.2] are imposed on the original image;

r1, r2 and r3 record the recognition rates of the tools Ro-

bustVerifier, RobustLU and GNEVER, respectively. Here,

the recognition rate is defined as dividing the number of ro-

bust images plus adversarial examples reported by a specific

tool by the total number of images under verification.
It can be shown from Table 1 that under all circum-

stances, the tool RobustVerifier outperforms the other two

tools, while the tool RobustLU provides better performance

than the tool GNEVER. For example, consider the case of

ϵ = 0.2, the correct recognition rates of three tools are

Table 1. Performance on varied perturbations

ϵ r1 r2 r3
0.10 95.94% 92.56% 90.39%

0.15 92.16% 84.57% 82.00%

0.20 87.90% 83.88% 64.65%

0.25 79.43% 67.74% 65.78%

0.30 70.56% 65.32% 45.74%

87.90%, 83.88% and 64.65%, of the total 10,000 tests, re-

spectively. And when ϵ grows up to 0.3, the correct recog-

nition rates are reduced to 70.56%, 65.32% and 45.74%,

respectively. The performance result complies with our

discussion of approximation precision in descending order.

For the same tool, seeing the results in the same column, the

performance of verification tools decreases when the pertur-

bations become bigger, since the increasement of perturba-

tions speeds up the accumulation of approximation errors.

Table 2 lists the comparison results on varied network

structures. Here, the input region is defined as a 5×5 block

on the top left corner and the disturbance radius ϵ is fixed to

0.20; n denotes the number of layers in CDNNs and in each

hidden layer the number sk of neurons varies with 40 ≤
sk ≤ 100.

Table 2. Performance on varied network structure
n r1 r2 r3
5 87.90% 83.88% 64.65%

6 72.33% 51.84% 50.24%

7 61.33% 43.11% 29.07%

8 50.58% 29.02% 27.79%

9 45.90% 33.28% 31.63%

10 34.65% 14.19% 12.40%

Table 2 shows that the tool RobustVerifier performs best

in all cases and RobustLU performs better than GNEVER.

And with the increasement of hidden layers, inspecting the

results line by line, the performance of verification tools

decreases. It is the approximation error accumulated layer

by layer mainly responsible for performance decreasement.

The tight approximation technique adopted helps our tool

to be less affected.

4.2. Precision vs performance

In this subsection, we evaluate the three tools with larger

CDNNs and investigate how does the precision affect the

performance of verifying practical CDNNs.

For the CDNN generated from GTSRB, we specify the

input region as a 3 × 3 block on the center of each image

with the disturbance radius ϵ = 0.05 on one of the RGB

(Red Green Blue) channels.

For this configuration of input region, the tool Ro-

bustVerifier can verify that the perturbed images fall into the

same class as their original ones while the other two cannot.

711424



Figure 2. The GTSRB CDNN is robust w.r.t. perturbed images.

Figure 3. Adversarial examples for the GTSRB CDNN.

Figure 2 shows 4 pairs of original and perturbed images of

the configuration that has been verified to be robust. Then

we try to verify larger input region by enlarging the distur-

bance radius or the size of perturbation block. Unfortunate-

ly, neither of the two tools can verify the perturbed images

to be robust under those configurations. For the input re-

gion, a 3 × 3 block put on the central with the disturbance

radius ϵ = 0.1 on one of the RGB channels, our tool can

return many adversarial examples corresponding to a mis-

classification of perturbed images. Figure 3 presents some

adversarial examples, of which the input region is set with

disturbance radius ϵ = 0.1 on one channel to the central

block of size 3× 3.

Compared with that of the MNIST database, the CDNN

of GTSRB has to identify more classes, 43 vs 10. Thus,

it is more sensitive to perturbations inborn. A verification

method unable to provide enough precision does not work

when encountering CDNNs of this kind.

We also conduct experiments on the CDNN yielded from

the Caltech 101 dataset. The trained CDNNs have no less

than 180,000 neurons, while the input region is set as a

block of size 40 × 40 on the center of image with the dis-

turbance radius ϵ = 0.5. Several pairs of original and per-

turbed images are shown in Figure 4.

Figure 5 lists the result of performance vs network struc-

ture. Here, the X axis denotes the number of layers of

CDNNs while the Y axis records the rate of successful ver-

ification. For each network structure, ten different config-

urations of the number of neurons are chosen for experi-

ments where the number of neurons of each hidden layer is

Figure 4. The trained CDNN is robust w.r.t. perturbed images.

generated randomly from the range [40,150]. The average

successful verification rates of ten experiments are shown

in the figure.

For the tool GEVER, its performance varies between

23% and 81%. It drops sharply with the increase of hidden

layers as the error introduced by its approximation propa-

gates layer by layer very quickly. For all experiments, our

tool RobustVerifier can give exact results to more than 82%

disturbed images. Note that, the verification results depend

not only on the specific verification method but also on the

quality of CDNNs being verified. The CDNNs of 7 or 8

layers seems not to be as good as the others. In this exper-

iment, our tool RobustVerifier performs best and shows its

ability of treating real CDNNs.

Figure 5. Performance vs network structure on Caltech-101.

5. Conclusion

We have presented a novel method for attacking ro-

bustness verification of classification deep neural networks

with sigmoid activation functions. To make it amenable,

we started with converting the verification problem into

an equivalent nonlinear optimization problem, proceeded

by solving a linear programming problem yielded from

the linear relaxation for nonlinear activation functions.

Our LP based approach has been implemented inside the

tool RobustVerifier and validated on several state-of-the-art

CDNNs for realistic images. The performance results high-

light the potential of the approach in providing formal guar-

antees about the robustness of CDNNs of significant size.

811425



References

[1] Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen,

Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Geoffrey Irving, Michael Isard, Manjunath Kudlur,

Josh Levenberg, Rajat Monga, Sherry Moore, Derek Gor-

don Murray, Benoit Steiner, Paul A. Tucker, Vijay Vasude-

van, Pete Warden, Martin Wicke, Yuan Yu, and Xiaoqiang

Zheng. Tensorflow: A system for large-scale machine learn-

ing. In Proceedings of 12th USENIX Symposium on Operat-

ing Systems Design and Implementation (OSDI), pages 265–

283, 2016.

[2] Osbert Bastani, Yani Ioannou, Leonidas Lampropoulos,

Dimitrios Vytiniotis, Aditya V. Nori, and Antonio Crimin-

isi. Measuring neural net robustness with constraints. In

Proceedings of the 29 Annual Conference on Neural Infor-

mation Processing Systems (NIPS), pages 2613–2621, 2016.

[3] Battista Biggio, Igino Corona, Davide Maiorca, Blaine Nel-

son, Nedim Srndic, Pavel Laskov, Giorgio Giacinto, and

Fabio Roli. Evasion attacks against machine learning at

test time. In Proceedings of the European Conference on

Machine Learning and Knowledge Discovery in Databases,

pages 387–402, 2013.

[4] Stephen Boyd and Lieven Vandenberghe. Convex Optimiza-

tion. Cambridge University Press, 2004.

[5] Rudy Bunel, Ilker Turkaslan, Philip H. S. Torr, Pushmeet

Kohli, and M. Pawan Kumar. Piecewise linear neural

network verification: A comparative study. CoRR, ab-

s/1711.00455, 2017.

[6] Nicholas Carlini and David A. Wagner. Towards evaluat-

ing the robustness of neural networks. In Proceedings of

the IEEE Symposium on Security and Privacy, pages 39–57,

2017.

[7] François Chollet. Keras. https://keras.io., 2015.

[8] Dan C. Ciresan, Ueli Meier, and Jürgen Schmidhuber. Multi-

column deep neural networks for image classification. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 3642–3649, 2012.

[9] Souradeep Dutta, Susmit Jha, Sriram Sanakaranarayanan,

and Ashish Tiwari. Output range analysis for deep feedfor-

ward neural networks. In Proceedings of the 10th Interna-

tional Symposium on NASA Formal Methods (NFM), pages

121–138, 2018.

[10] Rüdiger Ehlers. Formal verification of piece-wise linear

feed-forward neural networks. In Proceedings of the 15th

International Symposium on Automated Technology for Ver-

ification and Analysis (ATVA), pages 269–286, 2017.

[11] Alhussein Fawzi, Omar Fawzi, and Pascal Frossard. Analy-

sis of classifiers’ robustness to adversarial perturbations. Ma-

chine Learning, 107(3):481–508, 2018.

[12] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep s-

parse rectifier neural networks. In Proceedings of the 14th In-

ternational Conference on Artificial Intelligence and Statis-

tics (AISTATS), pages 315–323, 2011.

[13] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep

Learning. MIT Press, 2016.

[14] Kun Han, Dong Yu, and Ivan Tashev. Speech emotion recog-

nition using deep neural network and extreme learning ma-

chine. In Proceedings of the 15th Annual Conference of the

International Speech Communication Association (INTER-

SPEECH), pages 223–227, 2014.

[15] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. r. Mohamed, N.

Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath,

and B. Kingsbury. Deep neural networks for acoustic model-

ing in speech recognition: The shared views of four research

groups. IEEE Signal Processing Magazine, 29(6):82–97,

2012.

[16] Xiaowei Huang, Marta Kwiatkowska, Sen Wang, and Min

Wu. Safety verification of deep neural networks. In Pro-

ceedings of the 29th International Conference on Computer

Aided Verification (CAV), pages 3–29, 2017.

[17] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and

Mykel J. Kochenderfer. Reluplex: An efficient SMT solver

for verifying deep neural networks. In Proceedings of the

29th International Conference on Computer Aided Verifica-

tion (CAV), pages 97–117, 2017.

[18] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.

Imagenet classification with deep convolutional neural net-

works. In Proceedings of the 26th Annual Conference on

Neural Information Processing Systems (NIPS), pages 1106–

1114, 2012.

[19] Zeshan Kurd and Tim Kelly. Establishing safety criteria for

artificial neural networks. In Proceedings of the 7th Interna-

tional Conference on Knowledge-Based and Intelligent In-

formation and Engineering Systems (KES), pages 163–169,

2003.

[20] Yann LeCun, Corinna Cortes, and Christopher J.C.

Burges. The mnist database of handwritten digits.

http://yann.lecun.com/exdb/mnist/, 1998.

[21] Fei-Fei Li, Robert Fergus, and Pietro Perona. Learning gen-

erative visual models from few training examples: An incre-

mental bayesian approach tested on 101 object categories.

Computer Vision and Image Understanding, 106(1):59–70,

2007.

[22] Awni Y. Hannun Maas, Andrew L. and Andrew Y. Ng. Rec-

tifier nonlinearities improve neural network acoustic models.

In Proceedings of the 30th International Conference on Ma-

chine Learning (ICML), 2013.

[23] Ramon Edgar Moore, R. B. Kearfott, and M. J. Cloud. In-

troduction to Interval Analysis. Cambridge University Press,

2009.

[24] Luca Pulina and Armando Tacchella. An abstraction-

refinement approach to verification of artificial neural net-

works. In Proceedings of the 22nd International Confer-

ence on Computer Aided Verification (CAV), pages 243–257,

2010.

[25] Luca Pulina and Armando Tacchella. Challenging SMT

solvers to verify neural networks. AI Communications,

25(2):117–135, 2012.

[26] Sebastian Ramos, Stefan K. Gehrig, Peter Pinggera, Uwe

Franke, and Carsten Rother. Detecting unexpected obsta-

cles for self-driving cars: Fusing deep learning and geomet-

ric modeling. In Proceedings of the IEEE Intelligent Vehicles

Symposium (IV), pages 1025–1032, 2017.

[27] Anton Maximilian Schäfer and Hans Georg Zimmermann.

Recurrent neural networks are universal approximators. In

911426



Proceedings of the 16th International Conference on Artifi-

cial Neural Networks (ICANN), pages 632–640, 2006.

[28] Jürgen Schmidhuber. Deep learning in neural networks: An

overview. Neural Networks, 61:85–117, 2015.

[29] Eui Chul Richard Shin, Dawn Song, and Reza Moazzezi.

Recognizing functions in binaries with neural networks. In

Proceedings of the 24th USENIX Security Symposium, pages

611–626, 2015.

[30] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel. Man

vs. computer: Benchmarking machine learning algorithms

for traffic sign recognition. Neural Networks, 32:323–332,

2012.

[31] Changyin Sun, Wei He, Weiliang Ge, and Cheng Chang.

Adaptive neural network control of biped robots. IEEE

Transactions on Systems, Man, and Cybernetics: Systems,

47(2):315–326, 2017.

[32] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan

Bruna, Dumitru Erhan, Ian J. Goodfellow, and Rob Fergus.

Intriguing properties of neural networks. In Proceedings of

the International Conference on Learning Representations

(ICLR 2014), 2014.

[33] Vincent Tjeng and Russ Tedrake. Verifying neural networks

with mixed integer programming. CoRR, abs/1711.07356,

2017.

[34] Tong Wang, Huijun Gao, and Jianbin Qiu. A combined adap-

tive neural network and nonlinear model predictive control

for multirate networked industrial process control. IEEE

Transactions on Neural Networks and Learning Systems,

27(2):416–425, 2016.

[35] Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson.

Reachable set computation and safety verification for neu-

ral networks with relu activations. CoRR, abs/1712.08163,

2017.

[36] Weiming Xiang, Hoang-Dung Tran, , and Taylor T. Johnson.

Output reachable set estimation and verification for multilay-

er neural networks. IEEE Transactions on Neural Networks

and Learning Systems, 99:1–7, 2018.

1011427


