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Abstract

We propose an attention-injective deformable convolu-

tional network called ADCrowdNet for crowd understand-

ing that can address the accuracy degradation problem of

highly congested noisy scenes. ADCrowdNet contains two

concatenated networks. An attention-aware network called

Attention Map Generator (AMG) first detects crowd regions

in images and computes the congestion degree of these re-

gions. Based on detected crowd regions and congestion

priors, a multi-scale deformable network called Density

Map Estimator (DME) then generates high-quality density

maps. With the attention-aware training scheme and multi-

scale deformable convolutional scheme, the proposed AD-

CrowdNet achieves the capability of being more effective

to capture the crowd features and more resistant to vari-

ous noises. We have evaluated our method on four popu-

lar crowd counting datasets (ShanghaiTech, UCF CC 50,

WorldEXPO’10, and UCSD) and an extra vehicle counting

dataset TRANCOS, and our approach beats existing state-

of-the-art approaches on all of these datasets.

1. Introduction

Crowd understanding has attracted much attention re-

cently because of its wide range of applications like public

safety, congestion avoidance, and flow analysis. The cur-

rent research trend for crowd understanding has developed

from counting the number of people to displaying distribu-

tion of crowd through density map. Generally, generating

accurate crowd density maps and performing precise crowd

counting for highly congested noisy scenes is challenging
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due to the complexity of crowd scenes caused by various

factors including background noises, occlusions, and diver-

sified crowd distributions.

Researchers recently have leveraged deep neural net-

works (DNN) for accurate crowd density map generation

and precise crowd counting. Although these DNNs-based

methods [37, 25, 29, 18, 2, 17] have made significant suc-

cess in solving the above issues, they still have the problem

of accuracy degradation when applied in highly congested

noisy scenes. As shown in Figure 1, the state-of-the-art ap-

proach [17], which has achieved much lower Mean Abso-

lute Error (MAE) than the previous state-of-the-art meth-

ods, is still severely affected by background noises, occlu-

sions, and non-uniform crowd distributions.

In this paper, we aim at an approach which is capa-

ble of dealing with highly congested noisy scenes for the

crowd understanding problem. To achieve this, we designed

an attention-injective deformable convolutional neural net-

work called ADCrowdNet which is empowered by a visual

attention mechanism and a multi-scale deformable convolu-

tion scheme. The visual attention mechanism is delicately

designed for alleviating the effects from various noises in

the input. The multi-scale deformable convolution scheme

is specially introduced for the congested environments. The

basic principle of visual attention mechanism is to use the

pertinent information rather than all available information

in the input image to compute the neural response. This

principle of focusing on specific parts of the input has been

successfully applied in various deep learning models for im-

ages classification [11], semantic segmentation [24], image

deblurring [22], and visual pose estimation [6], which also

suits our problem where the interest regions containing the

crowd need to be recognized and highlighted out from noisy

scenes. The multi-scale deformable convolution scheme

takes as input the information of the dynamic sampling lo-

cations, other than evenly distributed locations, which has
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Figure 1. From left to right: a congested sample (top) and a noisy sample (bottom) from ShanghaiTech dataset [37], ground truth density

map, and the generated density maps from the proposed ADCrowdNet and the state-of-the-art method [17]. ADCrowdNet outperforms the

state-of-the-art method on both congested and noisy scenes.

the capability of modeling complex geometric transforma-

tion and diverse crowd distribution. This scheme fits well

the nature of the distortion caused by the perspective view

of the camera and diverse crowd distributions in real world,

therefore guaranteeing more accurate crowd density maps

for the congested scenes.

To incorporate the visual attention mechanism and de-

formable convolution scheme, we leverage an architecture

consisting of two neural networks as shown in Figure 2. Our

training contains two stages. The first stage generates an at-

tention map for a target image via a network called Atten-

tion Map Generator (AMG). The second stage takes the out-

put of AMG as input and generates the crowd density map

via a network called Density Map Estimator (DME). The

attention map generator AMG mainly provides two types

of priors for the DME network: 1) candidate crowd regions

and 2) the congestion degree of crowd regions. The for-

mer prior enables the multi-scale deformable convolution

scheme empowered DME network to pay more attention to

those regions having people crowds, and thus improving the

capacity of being resistant to various noises. The latter prior

indicates each crowd region with congestion degree (i.e.,

how crowded each crowd region is), which provides fine-

grained congestion context prior for the subsequent DME

network and boosts the performance of the DME network

on the scenes containing diverse crowd distribution.

The main contributions of this paper are summarized as

follows. First, a novel attention-injective deformable convo-

lutional network framework ADCrowdNet is proposed for

crowd understanding. Second, our AMG model that attends

the crowd regions in images, is innovatively formulated as a

binary classification network by introducing third party neg-

ative data (i.e., background images with no crowds). Third,

our DME model can estimate the crowds effectively by us-

ing the proposed structure of aggregating multi-scale de-

formable convolution representations. Furthermore, exten-

sive experiments conducted on all popular datasets demon-

strate the superior performance of our approach over exist-

ing leading ones. In particular, the proposed model AD-

CrowdNet outperforms the state-of-the-art crowd counting

solution CSRNet [17] with 3.0%, 18.8%, 3.0%, 13.9%

and 5.1% lower Mean Absolute Error (MAE) on Shang-

haiTech Part A, Part B, UCF CC 50, WorldExpo10, UCSD

datasets, respectively. Apart from crowd counting, AD-

CrowdNet is also general for other counting tasks. We

have evaluated ADCrowdNet on a popular vehicle counting

dataset named TRANCOS [10], and ADCrowdNet achieves

32.8% lower MAE than CSRNet.

2. Related Work

Counting by detection: Early approaches of crowd

understanding mostly focus on the number of people in

crowds [9]. The major characteristics of these approaches

are the sliding window based detection scheme and hand

crafted features extracted from the whole human body or

particular body parts with low-level descriptors like Haar

wavelets [31] and HOG [8]. Generally, approaches in these

groups deliver accurate counts when their underlying as-

sumptions are met but are not applicable in more challeng-

ing congested scenes.

Counting by regression: Counting by regression ap-

proaches differs depending on the target of regression: ob-

ject count [5, 4], or object density [15]. This group of ap-

proaches avoid solving the hard detection problem. Instead,

they deploy regression model to learn the mapping between

image characteristics (mainly histograms of lower level or

middle level features) and object count or density. These

approaches that directly regress the total object count dis-

card the information of the location of the objects and only

use 1-dimensional object count for learning. As a result, a

large number of training images with the supplied counts

are needed in training. Lempitsky et al. [15] propose a

method to solve counting problem by modeling the crowd
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Figure 2. Architecture overview of ADCrowdNet. The well trained AMG generates the attention map of the input image. The pixel-wise

product of the input image and its attention map is taken as the input to train the DME network.

density at each pixel and cast the problem as that of estimat-

ing an image density whose integral over any image region

gives the count of objects within that region. Since the ideal

linear mapping is hard to obtain, Pham et al. [21] use ran-

dom forest regression to learn a non-linear mapping instead

of the linear one.

Crowd understanding by CNN: Inspired by the great

success in visual classification and recognition, literature

also focuses on the CNN-based approaches to predict crowd

density map and count the number of crowds [32, 20, 16,

13, 23]. Walach et al. [32] use CNN with a layered training

structure. Shang et al. [26] adapt an end-to-end CNN which

uses the entire images as input to learn the local and global

count of the images and ultimately outputs the crowd count.

A dual-column network combining shallow and deep layers

is used in [1] to generate density maps. In [37], a multi-

column CNN is proposed to estimate density map by exact-

ing features at different scales. Similar idea is used in [20].

Marsden et al. [19] try a single-column fully convolutional

network to generate density map while Sindagi et al. [28]

present a CNN that uses high-level prior to boost accuracy.

More recently, Sindagi et al. [29] propose a multi-

column CNN called CP-CNN that uses context at various

levels to improve generate high-quality density maps. Li et

al. [17] propose a model called CSRNet that uses dilated

convolution to enlarge receptive fields and extract deeper

features for boosting performance. These two approaches

have achieved the state-of-the-art performances.

3. Attention-Injective Deformable Convolu-

tional Network

The architecture of the proposed ADCrowdNet method

is illustrated in Figure 2. It employs two concatenated net-

works: AMG and DME. AMG is a classification network

based on fully convolutional architecture for attention map

generation, while DME is a multi-scale network based on

deformable convolutional layers for density map genera-

tion. Before training DME, we train the AMG module

with crowd images (positive training examples) and back-

ground images (negative training examples). We then use

the well-trained AMG to generate the attention map of the

input image. Afterward, we train the DME module using

the pixel-wise product of input images and the correspond-

ing attention maps. In the following sections, we will detail

Figure 3. Attention maps generated by AMG at various crowd den-

sity levels (density level increases from left to right).

the architectures of the AMG and DME netwroks.

3.1. Attention Map Generator

3.1.1 Attention map

Attention map is an image-sized weight map where crowd

regions have higher values. In our work, attention map is

a feature map from a two-category classification network

AMG which classifies an input image into crowd image or

background image. The idea of using feature map to find

the crowd regions in the input is motivated by an object lo-

calization work [38] which points out that the feature maps

of classification network contain the location information of

target objects.

The pipeline of the attention map generation is shown

in Figure 4. Fc and Fb are the feature maps from the last

convolution layer of AMG. Wc and Wb are the spatial aver-

age of the Fc and Fb after global average pooling (i.e., GAP

in Figure 4). Pc and Pb are confidence scores of the pre-

dicted two class. They are generated by softmax from Wc

and Wb. The attention map is obtained by up-sampling the

linear weighted fusion of the two feature maps Fc and Fb

(i.e., Fc · Pc + Fb · Pb) to the same size as the input image.

We also normalize the attention map such that all element

values fall in the range [0, 1].
The attention map highlights the regions of crowds. In

addition, it also indicates the degree of congestion in indi-

vidual regions, i.e., higher congestion degree values indi-

cate more congested crowds and lower values indicate less

congested ones. Figure 3 illustrates the effect of attention

maps at different density levels. The pixel-wise product be-

tween the attention map and the input image produces the

input data used by the DME network.
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Figure 4. Architecture of AMG. All convolutional layers use

padding to maintain the previous size. The convolutional lay-

ers’ parameters are denoted as “Conv-(kernel size)-(number of

filters)-(dilation rate)”, max-pooling layers are conducted over a

2×2 pixel window, with stride 2.

3.1.2 Architecture of attention map generator

The architecture of AMG is shown in Figure 4, we use the

first 10 layers of trained VGG-16 model [27] as the front

end to extract low-level features. We build the back end

by adopting multiple dilated convolution layers of different

dilation rates with an architecture similar to the inception

module in [30]. The multiple dilated convolution architec-

ture is motivated from [34]. It has the capability of localiz-

ing people clusters with enlarged receptive fields. The in-

ception module was originally proposed in [30] to process

and aggregate visual information of various scales. We use

this module to deal with the diversified crowd distribution

in congested scenes.

3.2. Density Map Estimator

The DME network consists of two components: the front

end and the back end. We remove the fully-connected lay-

ers of VGG-16 [27] and leave 10 convolutional layers to as

the front end of the DME. The back end is a multi-scale

deformable convolution based CNN network [7]. The ar-

chitecture of DME is shown in Figure 5. The front end

uses the first 10 layers of trained VGG-16 model [27] to

extract low-level features. The back end uses multi-scale

deformable convolutional layers with a structure similar to

the inception module in [30], which enables DME to cope

with various occlusion, diversified crowd distribution, and

the distortion caused by perspective view.

The deformable convolution scheme was originally pro-

posed in [7]. Beneficial from the adaptive (deformable)

sampling location selection scheme, deformable convolu-

tion has shown its effectiveness on various tasks, such as

object detection, in the wild environment. The deformable

convolution treats the offsets of sampling locations as learn-

ing parameters. Rather than uniform sampling, the sam-
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Figure 5. Architecture of DME. The convolutional layers’ pa-

rameters are denoted as “Conv-(kernel size)-(number of filters)-

(stride)”, max-pooling layers are conducted over a 2×2 pixel win-

dow, with stride 2. The deformable convolutional layers’ pa-

rameters are denoted as “Dconv-(kernel size)-(number of filters)-

(stride)”.

pling locations in the deformable convolution can be ad-

justed and optimized via training (see Figure 6 for the de-

formed sampling points by the deformable convolution on

an example form ShanghaiTech Part B dataset [37]). Com-

pared to the uniform sampling scheme, this kind of dynamic

sampling scheme is more suitable for the crowd understand-

ing problem of congested noisy scenes. We will show the

comparative advantages of the deformable convolution in

our experimental section.

Figure 6. Illustration of the deformed sampling locations. Left:

standard convolution; right: deformable convolution; top: activa-

tion units on the feature map; bottom: the sampling locations of

the 3× 3 filter.

4. Experiments

4.1. Datasets and Settings

We evaluate ADCrowdNet on four challenging datasets

for crowd counting: ShanghaiTech dataset [37], the

UCF CC 50 dataset [12], the WorldExpo’10 dataset [35],

and the UCSD dataset [3].

ShanghaiTech dataset [37]. The ShanghaiTech dataset

contains 1,198 images with a total of 330,165 people. It is

divided into two parts: Part A and Part B. Part A contains
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482 pictures of congested scenes, in which 300 are used as

training dataset and 182 are used as testing dataset; Part B

contains 716 images of sparse scene, 400 of which are used

as training dataset and 316 are used as testing dataset.

UCF CC 50 dataset [12]. This dataset contains 50 im-

ages downloaded from the Internet. The number of persons

per image ranges from 94 to 4543 with an average of 1280

individuals. It is a very challenging dataset with two prob-

lems: the limited number of the images and the large span

in person count between images. We used 5-fold-cross-

validation setting described in [12].

WorldExpo’10 dataset [35]. It contains 3980 from 5

different scenes. Among 3980 images, 3380 images are

used as training dataset and the remaining 600 images are

used as testing dataset. Region-of-Interest (ROI) regions are

provided in this dataset.

UCSD dataset [3]. The UCSD dataset contains 2000

images in sparse scene. The dataset also provides ROI re-

gion information. We created the ground truth in the same

way as we did for the WorldExpo’10 dataset. Since the size

of each image is too small to support the generation of high-

quality density maps, we therefore enlarge each image to

952×632 size by bilinear interpolation. Among the 2000

images, 800 images were used as training dataset, and the

rest were used as testing dataset. Region-of-Interest (ROI)

regions are also provided in this dataset.

We show a representative example for each crowd count-

ing dataset in Figure 7. These four crowd counting datasets

have their own characteristics. In general, the scenes in

ShanghaiTech Part A dataset are congested and noisy. Ex-

amples in ShanghaiTech Part B are noisy but not highly

congested. The UCF CC 50 dataset consists of extremely

congested scenes which have hardly any background noises.

Both WorldExpo’10 dataset and UCSD dataset provide ex-

ample with sparse crowd scenes in the form of ROI regions.

Scenes in the ROI regions of the WorldExpo’10 dataset

are generally noisier than the only one scene in the UCSD

dataset.

Following [29, 17], we use the mean absolute error

(MAE) and the mean square error (MSE) for quantitative

evaluation of the estimated density maps. PSNR (Peak

Signal-to-Noise Ratio) and SSIM [33] are used to measure

the quality of the generated density map. For fair compar-

ison, we follow the measurement procedure in [17] and re-

size the density map and ground truth to the size of the orig-

inal input image by linear interpolation.

4.2. Training

4.2.1 AMG Training

Training data for the binary classification network AMG

consists of two groups of samples: positive and negative

samples. The positive samples are from the training sets

of the four crowd counting datasets. The negative samples

are 650 background images downloaded from the Internet.

These negative samples are shared by the training of each

individual dataset. These 650 negative samples contain var-

ious outdoor scenes where people appear, such as streets,

squares, etc., ensuring that the biggest difference between

positive sample and negative samples is whether the image

contains people. Adam [14] is selected as the optimization

method with the learning rate at 1e-5 and Standard cross-

entropy loss is used as the loss function.

4.2.2 DME training

We simply crop 9 patches from each image where each

patch is 1/4 of the original image size. The first four patches

contain four quarters of the image without overlapping. The

other five patches are randomly cropped from the image.

After that, we mirror the patches so that we double the train-

ing dataset. We generate the ground truth for DME training

following the procedure in [17]. We select Adam [14] as the

optimization method with the learning rate at 1e-5. As pre-

vious works [37, 25, 17], we use the euclidean distance to

measure the difference between the generating density map

and ground truth and define the loss function as

L(Θ) =
1

2N

N∑

i=1

||F (Xi; Θ)− Fi||
2

2
(2),

where N is the batch size, F (Xi; Θ) is the estimated den-

sity map generated by DME with the parameterΘ, Xi is the

input image, and Fi is the ground truth of Xi.

4.3. Results and Analyses

In this section, we first study several alternative network

design of ADCrowdNet. After that, we evaluate the overall

performance of ADCrowdNet and compare it with previous

state-of-the-art methods.

4.3.1 Alternative study

DME AMG-DME AMG-bAttn-DME AMG-attn-DME

Dataset MAE MSE MAE MSE MAE MSE MAE MSE

ShanghaiTech Part A [37] 68.5 107.5 66.1 102.1 63.2 98.9 70.9 115.2

ShanghaiTech Part B [37] 9.3 16.9 7.6 13.9 8.2 15.7 7.7 12.9

UCF CC 50 [12] 257.1 363.5 257.9 357.7 266.4 358.0 273.6 362.0

The WorldExpo’10 [35] 8.5 - 7.4 - 7.7 - 7.3 -

The UCSD [3] 0.98 1.25 1.10 1.42 1.39 1.68 1.09 1.35

Table 1. Results of different variants of ADCrowdNet on four

crowd counting datasets.

DME. Our first study is to investigate the influence of

the AMG network, we compared two network designs on

all the four datasets. The first one named AMG-DME has

the architecture shown in Figure 2. The other one named

DME uses the only DME network. Our quantitative exper-

imental results in Table 1 show that AMG-DME is signif-

icantly superior than DME on the those datasets which are
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ShanghaiTech Part_A ShanghaiTech Part_B UCF_CC_50 WoldExpo'10 UCSD 

Figure 7. Representative examples from four crowd counting datasets.

Figure 8. DME vs. AMG-DME. From left to right: representative

samples from the ShanghaiTech Part A dataset, ground truth den-

sity map, density map generated from the architectures of single

DME and AMG-DME.

characteristic of noisy scenes: ShanghaiTech Part A, Part B

and WorldExpo’10. In Figure 8, we illustrate two represen-

tative samples from the testing set of ShanghaiTech Part A.

On the top example which contains a congested noisy scene,

estimated people number of AMG-DME is 198 that is much

closer to the groud truth 171 than that estimated by DME.

From the density map in the 3rd column of Figure 8, we

can see the trees in the distance have been recognized as

people by the single DME model. However, AMG-DME

does not suffer this problem due to the help from the AMG

network. On the middle-row example containing a noisy

and more congested scene, the performances of AMG-DME

and DME agree with those on the top example. The com-

parison results indicate that AMG-DME is more effective

than DME on those noisy examples.

On the UCF CC 50 dataset, AMG-DME has approxi-

mate performance (slightly higher AME but lower MSE)

with DME. It may due to the fact most of examples in

the UCF CC 50 dataset have a large regions of congested

crowds while rarely have background noises. On the UCSD

dataset where scenes are neither congested nor noisy, both

MSE and MAE of AMG-DME is slightly higher than DME.

This might because the examples in the UCSD dataset have

already provide the accurate information of ROI regions.

The attention map generated by the AMG network may de-

stroy the ROI regions, which degrades the performance of

the DME network since some ROI regions may be erased

from its input.

AMG-bAttn-DME. Since the AMG network has shown

its strength in coping with noise background of scenes,

our second study is to explore if a hard binary attention

mask is more effective than the soft attention employed by

AMG-DME. We therefore set up an variant of AMG-DME

called AMG-bAttn-DME in Table 1. AMG-bAttn-DME has

the same architecture as AMG-DME while differing with

AMG-DME on the attention map (i.e., the attention maps

of AMG-bAttn-DME contain either 0 or 1, other than a

floating point within [0, 1] in the attention maps of AMG-

DME). We first conducted the experiments on the Shang-

haiTech dataset to find out the optimal binarization thresh-

old for AMG-bAttn-DME. We set three different threshold

attention values,{0.2, 0.1, 0.0}, for the binarization of atten-

tion maps. The ROI regions are gradually enlarged with the

decreasing the threshold values as shown in Figure 9. The

results shown in Table 2 indicates AMG-bAttn-DME with

attention threshold of 0.1 achieved the best performance.

We then evaluated AMG-bAttn-DME with this optimal at-

tention threshold on the rest three datasets and reported the

results in Table 1. It is observed that AMG-bAttn-DME

is superior than AMG-DME only on ShanghaiTech Part A

while AMG-DME outperforms AMG-bAttn-DME on all

other datasets. It may be due to the AMG network can learn

more accurate attention maps on ShanghaiTech Part A and

the binarization process does not destroy too much informa-

tion of the crowd regions.

Figure 9. Illustration of the ROI regions extracted by different at-

tention thresholds. The pixels which have the value of attention

lower than t are changed to black.

Part A Part B

Threshold MAE MSE MAE MSE

t = 0.2 68.0 104.1 9.2 17.8

t = 0.1 63.2 98.9 8.2 15.7

t = 0.0 63.2 100.6 8.6 15.0

Table 2. Performance of AMG-bAttn-DME under different bina-

rization thresholds on the ShanghaiTech dataset.
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Figure 10. Architecture of AMG-attn-DME in both training and

testing phases.

AMG-attn-DME. Complement to the above experi-

ments, we stretched the design choice exploration to study-

ing an alternative way of injecting the learned attention from

the AMG network to the DME network. In our proposed

architecture, the DME network directly takes the crowd im-

ages as input. An alternative architecture is to weigh in-

termediate the feature map of a certain layer of the DME

network with the attention map from the AMG network.

In our implementation, we inject the attention map into

the output of the front end of the DME network as shown

in Figure 10. Following the same training procedures as

those in Table 1, this alternative architecture, named AMG-

attn-DME, performs slightly worse than AMG-DME on

the datasets with congested noisy scenes like ShanghaiTech

Part A and ShanghaiTech Part B. This may be due to some

non-crowd pixels in the attention map from the AMG net-

work having an attention value of zero, which, during the

injection, would make convolution features at those cor-

responding locations vanish, reducing the feature informa-

tion learned by previous convolutional lays from the input.

On the UCF CC 50 dataset and UCSD dataset, AMG-attn-

DME is worse than the the only DME network as AMG-

bAttn-DME and AMG-DME. This is because the scenes

of these two datasets have less noisy background, AMG-

attn-DME may reduce the information of the ROI regions

through the injected attention map. On the UCSD and

WorldExpo’10 datasets, AMG-attn-DME achieved higher

effectiveness. Maybe it is because the convolution feature

vanishing problem has been alleviated by the black regions

around the ROI regions in the input.

4.3.2 Quantitative results

In this section, we study the overall performance of AD-

CrowdNet and compare it with existing methods on each

individual crowd counting dataset.

Comparison on MAE and MSE. We first compare

the variants of the proposed ADCrowdNet network with

the state-of-the-art work CSRNet [17] along with several

previous methods including CP-CNN [29], MCNN [37],

Cascaded-MTL [28], Switching-CNN [25] on the Shang-

haiTech dataset and the UCF CC 50 dataset. These two

datasets are characteristic of congested and/or noisy scenes.

The comparison results were summarized in Table 3.

On the ShanghaiTech dataset, two of our approach vari-

ants ADCrowdNet(AMG-DME) and ADCrowdNet(AMG-

bAttn-DME) achieved better performances than existing ap-

proaches. The only DME network achieved the perfor-

mance generally close to the state-of-the-art approach CSR-

Net [17].

Part A Part B UCF CC 50

Method MAE MSE MAE MSE MAE MSE

MCNN [37] 110.2 173.2 26.4 41.3 377.6 509.1

Cascaded-MTL [28] 101.3 152.4 20.0 31.1 322.8 397.9

Switching-CNN [25] 90.4 135.0 21.6 33.4 318.1 439.2

CP-CNN [29] 73.6 106.4 20.1 30.1 295.8 320.9

CSRNet [17] 68.2 115.0 10.6 16.0 266.1 397.5

ADCrowdNet(DME) 68.5 107.5 9.3 16.9 257.1 363.5

ADCrowdNet(AMG-DME) 66.1 102.1 7.6 13.9 257.9 357.7

ADCrowdNet(AMG-bAttn-DME) 63.2 98.9 8.2 15.7 266.4 358.0

ADCrowdNet(AMG-attn-DME) 70.9 115.2 7.7 12.9 273.6 362.0

Table 3. Estimation errors on ShanghaiTech and UCF CC 50.

The WorldEXpo’10 UCSD

Method Sce.1 Sce.2 Sce.3 Sce.4 Sce.5 Ave. MAE MSE

MCNN [37] 3.4 20.6 12.9 13.0 8.1 11.6 1.07 1.35

Switching-CNN [25] 4.4 15.7 10.0 11.0 5.9 9.4 1.62 2.10

CSRNet [17] 2.9 11.5 8.6 16.6 3.4 8.6 1.16 1.47

ADCrowdNet(DME) 1.6 15.8 11.0 10.9 3.2 8.5 0.98 1.25

ADCrowdNet(AMG-DME) 1.6 13.8 10.7 8.0 3.2 7.4 1.10 1.42

ADCrowdNet(AMG-bAttn-DME) 1.7 14.4 11.5 7.9 3.0 7.7 1.39 1.68

ADCrowdNet(AMG-attn-DME) 1.6 13.2 8.7 10.6 2.6 7.3 1.09 1.35

Table 4. Estimation error comparison on the WorldExpo’10 and

UCSD. Note that only MAE is provided on WorldExpo’10 as pre-

vious approaches.

On the two relatively less challenging datasets World-

Expo’10 and UCSD, we compared ADCrowdNet with re-

cent state-of-the-art recent approaches including Switching-

CNN [25], MCNN [37], and CSRNet [17]. The comparison

results are shown in Table 4. Our method achieved the best

accuracy in scenes 1, 4, 5 as well as the best average accu-

racy on the WorldExpo’10 dataset . On the UCSD dataset,

our DME model achieved the best accuracy on terms of both

MAE and MSE.

Comparison on PSNR and SSIM. To study the qual-

ity of the density maps generated by ADCrowdNet, an-

other experiment was conducted on all the five datasets for

both ADCrowdNet and the state-of-the-art method CSR-

Net [17]. The comparison results are shown in Table 5. Our

method outperforms CSRNet on all the five datasets. On

UCF CC 50 dataset, our method improves 7.03% on PSNR

and 55.76% on SSIM. On USCD dataset, our method im-

proves 31.81% on PSNR and 8.13% on SSIM.

Evaluation on vehicle counting dataset. We conducted

experiments on the TRANCOS [10] dataset for vehicle

counting to evaluate the generalization capability of the pro-

posed approach. The positive samples for training are from

the training set of TRANCOS [10]. The negative samples

use 250 background images downloaded from the Internet,

including various road scenes without vehicle. As previous
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CSRNet [17] ADCrowdNet

Dataset PSNR SSIM PSNR SSIM

ShanghaiTech Part A [37] 23.79 0.76 24.48 0.88

ShanghaiTech Part B [37] 27.02 0.89 29.35 0.97

UCF CC 50 [12] 18.76 0.52 20.08 0.81

The WorldExpo’10 [35] 26.94 0.92 29.12 0.95

The UCSD [3] 20.02 0.86 26.39 0.93

TRANCOS [10] 27.10 0.93 29.56 0.97

Table 5. CSRNet vs. ADCrowdNet (AMG-DME).

work CSRNet [17], we use the Grid Average Mean Abso-

lute Error (GAME) to measure the counting accuracy. The

comparison results are shown in Table 6. It clearly shows

that the ADCrowdNet approach achieved the best perfor-

mance at all levels of GAMEs.

Method GAME0 GAME1 GAME2 GAME3

Hydra-3s[20] 10.99 13.75 16.69 19.32

FCN-HA [36] 4.21 - - -

CSRNet [17] 3.56 5.49 8.75 15.04

ADCrowdNet(DME) 2.65 4.49 7.09 14.29

ADCrowdNet(AMG-DME) 2.39 4.23 6.89 14.82

ADCrowdNet(AMG-bAttn-DME) 2.69 4.61 7.13 14.14

ADCrowdNet(AMG-attn-DME) 2.44 4.14 6.78 13.58

Table 6. Evaluation on TRANCOS.

4.3.3 Qualitative results

In this section, we further investigate the general perfor-

mance of the proposed ADCrowdNet by qualitative results.

We mainly compared ADCrowdNet with the state-of-the-art

approach CSRNet [17] which have demonstrated the best

performance on the datasets including the ShanghaiTech,

UCF CC 50, the WorlExpo’10, and UCSD datasets. In

general, CSRNet has a front-end and back-end architecture

as the DME network of the proposed ADCrowdNet. It is

empowered by a dilated convolution design in the back-end

of its architecture. Apart from the additional AMG netwok,

ADCrowdNet differs from CSRNet by two additional fea-

tures in its DME network: 1) the multiple-scale convolution

scheme different from the single scale scheme of CSRNet,

and 2) the deformable sampling scheme different from the

evenly fixed-offset sampling in the dilated convolution of

CSRNet.

Figure 11 shows some qualitative comparisons be-

tween the proposed ADCrowdNet (the variant AMG-DME

is used) and the state-of-the-art approach CSRNet [17].

Through visualization, it is observed that CSRNet is much

less effective on those examples with various noises than

ADCrowdNet. We can see the evidence from the noise re-

gions marked by red boxes of the 1st column where noises

exist in the background regions, as well as the marked re-

gions of the 3rd column where noises can be found in the

crowd regions. This may be due to CSRNet directly takes

the crowd image as input while the DME network of AD-

CrowdNet takes as the input the crowd information high-

lighted by its AMG network. On the example of the 2nd

column where there is not much noise but a significantly

non-uniform crowd distribution, ADCrowdNet also clearly

outperforms CSRNet. This indicates that the multi-scale de-

formable convolution scheme in ADCrowdNet is more ef-

fective than the single-scale fixed-offset dilated convolution

scheme in CSRNet.

On the rightmost example of Figure 11 which have

highly occluded crowd regions (see the regions within the

two green dotted bordered rectangle), ADCrowdNet only

recognized part of the severely occluded crowd regions.

It may because the AMG network of ADCrowdNet can-

not highlight out the whole occluded crowd regions for the

DME network. Nevertheless, ADCrowdNet still achieved

better performance in terms of all the measurement param-

eters: estimated number, PSNR and SSIM.

Figure 11. From top to bottom: representative samples from the

testing set of the ShanghaiTech dataset, ground truth density maps,

estimated density maps generated by the state-of-the-art approach

CSRNet [17] and ADCrowdNet (AMG-DME) respectively.

5. Conclusion

We propose a convolutional neural network based ar-

chitecture named ADCrowdNet for crowd understanding

of congested noisy scenes. Benefiting from the multi-

scale deformable convolutional layers and attention-aware

training scheme, ADCrowdNet generally achieved more

accurate crowd counting and density map estimation than

existing methods by suppressing the problems caused by

noises, occlusions, and diversified crowd distributions com-

monly presented in highly congested noisy environments.

On four popular crowd counting datasets (ShanghaiTech,

UCF CC 50, WorldEXPO’10, UCSD) and an extra vehi-

cle counting dataset TRANCOS, ADCrowdNet achieved

significant improvements over recent state-of-the-art ap-

proaches.
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