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Abstract

We solve the problem of salient object detection by in-

vestigating how to expand the role of pooling in convolu-

tional neural networks. Based on the U-shape architecture,

we first build a global guidance module (GGM) upon the

bottom-up pathway, aiming at providing layers at different

feature levels the location information of potential salient

objects. We further design a feature aggregation module

(FAM) to make the coarse-level semantic information well

fused with the fine-level features from the top-down path-

way. By adding FAMs after the fusion operations in the top-

down pathway, coarse-level features from the GGM can be

seamlessly merged with features at various scales. These

two pooling-based modules allow the high-level semantic

features to be progressively refined, yielding detail enriched

saliency maps. Experiment results show that our proposed

approach can more accurately locate the salient objects

with sharpened details and hence substantially improve

the performance compared to the previous state-of-the-arts.

Our approach is fast as well and can run at a speed of more

than 30 FPS when processing a 300×400 image. Code can

be found at http://mmcheng.net/poolnet/.

1. Introduction

Benefiting from the capability of detecting the most vi-

sually distinctive objects from a given image, salient ob-

ject detection plays an important role in many computer vi-

sion tasks, such as visual tracking [8], content-aware image

editing [4], and robot navigation [5]. Traditional methods

[11, 25, 14, 31, 2, 12, 41, 3] mostly rely on hand-crafted fea-

tures to capture local details and global context separately

or simultaneously, but the lack of high-level semantic infor-

mation restricts their ability to detect the integral salient ob-

jects in complex scenes. Luckily, convolutional neural net-

works (CNNs) greatly promote the development of salient

object detection models because of their capability of ex-

tracting both high-level semantic information and low-level

∗Indicates equal contributions.
†M.M. Cheng (cmm@nankai.edu.cn) is the corresponding author.

detail features in multiple scale space.

As pointed out in many previous approaches [9, 28, 44],

because of the pyramid-like structural characteristics of

CNNs, shallower stages usually have larger spatial sizes

and keep rich, detailed low-level information while deeper

stages contain more high-level semantic knowledge and are

better at locating the exact places of salient objects. Based

on the aforementioned knowledge, a variety of new archi-

tectures [9, 17, 38, 10] for salient object detection have been

designed. Among these approaches, U-shape based struc-

tures [32, 22] receive the most attentions due to their abil-

ity to construct enriched feature maps by building top-down

pathways upon classification networks.

Despite the good performance achieved by this type of

approaches, there is still a large room for improving it. First,

in the U-shape structure, high-level semantic information

is progressively transmitted to shallower layers, and hence

the location information captured by deeper layers may be

gradually diluted at the same time. Second, as pointed out

in [47], the receptive field size of a CNN is not propor-

tional to its layer depth. Existing methods solve the above-

mentioned problems by introducing attention mechanisms

[46, 24] into U-shape structures, refining feature maps in

a recurrent way [23, 46, 36], combining multi-scale fea-

ture information [9, 28, 44, 10], or add extra constraints to

saliency maps like the boundary loss term in [28].

In this paper, different from the methods mentioned

above, we investigate how to solve these problems by ex-

panding the role of the pooling techniques in U-shape based

architectures. In general, our model consists of two pri-

mary modules on the base of the feature pyramid networks

(FPNs) [22]: a global guidance module (GGM) and a fea-

ture aggregation module (FAM). As shown in Fig. 1, our

GGM composes of a modified version of pyramid pooling

module (PPM) and a series of global guiding flows (GGFs).

Unlike [37] which directly plugs PPM into the U-shape net-

works, our GGM is an individual module. More specifi-

cally, the PPM is placed on the top of the backbone to cap-

ture global guidance information (where the salient objects

are). By introducing GGFs, high-level semantic informa-

tion collected by PPM can be delivered to feature maps at
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Figure 1. The overall pipeline of our proposed approach. For clarity, we also place a standard U-shape FPN structure [22] at the top-left

corner. The top part for edge detection is optional.

all pyramid levels, remedying the drawback of U-shape net-

works that top-down signals are gradually diluted. Taking

into account the fusion problem of the coarse-level feature

maps from GGFs with the feature maps at different scales

of the pyramid, we further propose a feature aggregation

module (FAM), which takes the feature maps after fusion

as input. This module first converts the fused feature maps

into multiple feature spaces to capture local context infor-

mation at different scales and then combines the informa-

tion to weigh the compositions of the fused input feature

maps better.

As both the above modules are based on the pooling

techniques, we call our method PoolNet. To the best of

our knowledge, this is the first paper that aims at study-

ing how to design various pooling-based modules to assist

in improving the performance for salient object detection.

As an extension of this work, we also equip our architecture

with an edge detection branch to further sharpen the details

of salient objects by joint training our model with edge de-

tection. To evaluate the performance of our proposed ap-

proach, we report results on multiple popular salient ob-

ject detection benchmarks. Without bells and whistles, our

PoolNet surpasses all previous state-of-the-art methods in a

large margin. In addition, we conduct a series of ablation

experiments to let readers better understand the impact of

each component in our architecture on the performance and

show how joint training with edge detection helps enhance

the details of the predicted results.

Our network can run at a speed of more than 30 FPS on

a single NVIDIA Titan Xp GPU for an input image with

size 300× 400. When the edge branch is not incorporated,

training only takes less than 6 hours on a training set of

5,000 images, which is quite faster than most of the pre-

vious methods [24, 43, 28, 44, 45, 9]. This is mainly due

to the effective utilization of pooling techniques. PoolNet,

therefore, can be viewed as a baseline to help ease future

research in salient object detection.

2. Related Work

Recently, benefiting from the powerful feature extraction

capability of CNNs, most of the traditional saliency detec-

tion methods based on hand-crafted features [3, 12, 20, 31]

have been gradually surpassed. Li et al. [18] used the

multi-scale features extracted from a CNN to compute

the saliency value for each super-pixel. Wang et al. [34]

adopted two CNNs, aiming at combining local super-pixel

estimation and global proposal searching together, to pro-

duce saliency maps. Zhao et al. [48] presented a multi-

context deep learning framework which extracts both local

and global context information by employing two indepen-

dent CNNs. Lee et al. [6] combined low-level heuristic fea-

tures, such as color histogram and Gabor responses, with

high-level features extracted from CNNs. All these meth-

ods take image patches as the inputs of CNNs and hence

are time-consuming. Moreover, they ignore the essential

spatial information of the whole input image.

To overcome the above problems, more research atten-

tions are put on predicting pixel-wise saliency maps, in-

spired by the fully convolutional networks [27]. Wang et

al. [36] generated saliency prior maps using low-level cues

and further exploited it to guide the prediction of saliency

recurrently. Liu et al. [23] proposed a two-stage network

which produces coarse saliency maps first and then inte-

grates local context information to refine them recurrently

and hierarchically. Hou et al. [9] introduced short connec-

tions into multi-scale side outputs to capture fine details.

Luo et al. [28] and Zhang et al. [44] both advanced the U-

shape structures and utilized multiple levels of context in-
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formation for accurate detection of salient objects. Zhang

et al. [46] and Liu et al. [24] combined attention mecha-

nisms with U-shape models to guide the feature integration

process. Wang et al. [38] proposed a network to recurrently

locate the salient object and then refine them with local con-

text information. Zhang et al. [43] used a bi-directional

structure to pass messages between multi-level features ex-

tracted by CNNs for better predicting saliency maps. Xiao

et al. [39] adopted one network to tailor the distracting re-

gions first and then used another network for saliency de-

tection.

Our method is quiet different from the above approaches.

Instead of exploring new network architectures, we investi-

gate how to apply the simple pooling techniques to CNNs

to simultaneously improve the performance and accelerate

the running speed.

3. PoolNet

It has been pointed out in [23, 9, 37, 38] that high-level

semantic features are helpful for discovering the specific lo-

cations of salient objects. At the meantime, low- and mid-

level features are also essential for improving the features

extracted from deep layers from coarse level to fine level.

Based on the above knowledge, in this section, we propose

two complementary modules that are capable of accurately

capturing the exact positions of salient objects and mean-

while sharpening their details.

3.1. Overall Pipeline

We build our architecture based on the feature pyramid

networks (FPNs) [22] which are a type of classic U-shape

architectures designed in a bottom-up and top-down man-

ner as shown at the top-left corner of Fig. 1. Because of the

strong ability to combine multi-level features from classifi-

cation networks [7, 33], this type of architectures has been

widely adopted in many vision tasks, including salient ob-

ject detection. As shown in Fig. 1, we introduce a global

guidance module (GGM) which is built upon the top of the

bottom-up pathway. By aggregating the high-level infor-

mation extracted by GGM with into feature maps at each

feature level, our goal is to explicitly notice the layers at

different feature levels where salient objects are. After the

guidance information from GGM is merged with the fea-

tures at different levels, we further introduce a feature ag-

gregation module (FAM) to ensure that feature maps at dif-

ferent scales can be merged seamlessly. In what follows, we

describe the structures of the above mentioned two modules

and explain their functions in detail.

3.2. Global Guidance Module

FPNs provide a classic architecture for combining multi-

level features from the classification backbone. However,

because the top-down pathway is built upon the bottom-up

(a) (b) (c) (d) (e) (f) (g)
Figure 2. Visual comparisons for salient object detection with dif-

ferent combinations of our proposed GGM and FAMs. (a) Source

image; (b) Ground truth; (c) Results of FPN baseline; (d) Results

of FPN + FAMs; (e) Results of FPN + PPM; (f) Results of FPN +

GGM; (g) Results of FPN + GGM + FAMs.

backbone, one of the problems to this type of U-shape archi-

tectures is that the high-level features will be gradually di-

luted when they are transmitted to lower layers. It is shown

in [49, 47] that the empirical receptive fields of CNNs are

much smaller than the ones in theory especially for deeper

layers, so the receptive fields of the whole networks are not

large enough to capture the global information of the input

images. The immediate effect on this is that only parts of

the salient objects can be discovered as shown in Fig. 2c.

Regarding the lack of high-level semantic information for

fine-level feature maps in the top-down pathway, we intro-

duce a global guidance module which contains a modified

version of pyramid pooling module (PPM) [47, 37] and a

series of global guiding flows (GGFs) to explicitly make

feature maps at each level be aware of the locations of the

salient objects.

To be more specific, the PPM in our GGM consists of

four sub-branches to capture the context information of the

input images. The first and last sub-branches are respec-

tively an identity mapping layer and a global average pool-

ing layer. For the two middle sub-branches, we adopt the

adaptive average pooling layer1 to ensure the output feature

maps of them are with spatial sizes 3× 3 and 5× 5, respec-

tively. Given the PPM, what we need to do now is how to

guarantee that the guidance information produced by PPM

can be reasonably fused with the feature maps at different

levels in the top-down pathway.

Quite different from the previous work [37] which sim-

ply views the PPM as a part of the U-shape structure, our

GGM is independent of the U-shape structure. By intro-

ducing a series of global guiding flows (identity mappings),

the high-level semantic information can be easily delivered

to feature maps at various levels (see the green arrows in

Fig. 1). In this way, we explicitly increase the weight of the

global guidance information in each part of the top-down

pathway to make sure that the location information will not

be diluted when building FPNs.

To better demonstrate the effectiveness of our GGM, we

1https://pytorch.org/docs/stable/nn.html#

adaptiveavgpool2d
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Figure 3. Detailed illustration of our feature aggregation module

(FAM). It comprises four sub-branches, each of which works in

an individual scale space. After upsampling, all sub-branches are

combined and then fed into a convolutional layer.

show some visual comparisons. As depicted in Fig. 2c, we

show some saliency maps produced by a VGGNet version

of FPNs2. It can be easily found that with only the FPN

backbone, it is difficult to locate salient objects for some

complex scenes. There are also some results in which only

parts of the salient object are detected. However, when our

GGM is incorporated, the quality of the resulting saliency

maps are greatly improved. As shown in Fig. 2f, salient

objects can be precisely discovered, which demonstrates the

importance of GGM.

3.3. Feature Aggregation Module

The utilization of our GGM allows the global guid-

ance information to be delivered to feature maps at dif-

ferent pyramid levels. However, a new question that de-

serves asking is how to make the coarse-level feature maps

from GGM seamlessly merged with the feature maps at

different scales of the pyramid. Taking the VGGNet ver-

sion of FPNs as an example, feature maps corresponding

to C = {C2, C3, C4, C5} in the pyramid have downsam-

pling rates of {2, 4, 8, 16} compared to the size of the input

image, respectively. In the original top-down pathway of

FPNs, feature maps with coarser resolutions are upsampled

by a factor of 2. Therefore, adding a convolutional layer

with kernel size 3×3 after the merging operation can effec-

tively reduce the aliasing effect of upsampling. However,

our GGFs need larger upsampling rates (e.g. , 8). It is es-

sential to bridge the big gaps between GGFs and the feature

maps of different scales effectively and efficiently.

To this end, we propose a series of feature aggregation

modules, each of which contains four sub-branches as illus-

trated in Fig. 3. In the forward pass, the input feature map

is first converted to different scale spaces by feeding it into

2 Similarly to [22], we use the feature maps outputted by conv2, conv3,

conv4, conv5 which are denoted by {C2, C3, C4, C5} to build the feature

pyramid upon the VGGNet [33]. The channel numbers corresponding to

{C2, C3, C4, C5} are set to {128, 256, 512, 512}, respectively.

FFF
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Figure 4. Visualizing feature maps around FAMs. Feature maps

shown on the left are from models with FAMs, while feature maps

displayed on the right are from models replacing FAMs with two

convolution layers. The last row are source images and the cor-

responding ground-truth annotations. (a-d) are visualizations of

feature maps at different places. As can be seen, when our FAMs

are used, feature maps after FAMs can more precisely capture the

location and detail information of salient objects (Column a), com-

pared to those after two convolution layers (Column c).

average pooling layers with varying downsampling rates.

The upsampled feature maps from different sub-branches

are then merged together, followed by a 3×3 convolutional

layer.

Generally speaking, our FAM has two advantages. First,

it assists our model in reducing the aliasing effect of upsam-

pling, especially when the upsampling rate is large (e.g. , 8).

In addition, it allows each spatial location to view the local

context at different scale spaces, further enlarging the recep-

tive field of the whole network. To the best of our knowl-

edge, this is the first work revealing that FAMs are helpful

for reducing the aliasing effect of upsampling.

To verify the effectiveness of our proposed FAMs, we

visualize the feature maps near the FAMs in Fig. 4. By

comparing the left part (w/ FAMs) with the right part (w/o

FAMs), feature maps after FAMs (Column a) can better cap-

ture the salient objects than those without FAMs (Column

c). In addition to visualizing the intermediate feature maps,

we also show some saliency maps produced by models with

different settings in Fig. 2. By comparing the results in Col-

umn f (w/o FAMs) and Column g (w/ FAMs), it can be eas-

ily found that introducing FAM multiple times allows our

network to better sharpen the details of the salient objects.

This phenomenon is especially clear by observing the sec-
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(a) (b) (c) (d) (e) (f)

Figure 5. Visual results by joint training with edge detection. (a)

Source image; (b) Ground truth; (c-d) Edge maps and saliency

maps using the boundaries of salient objects as ground truths of the

edge branch; (e-f) Edge maps and saliency maps by joint training

with the edge dataset [1, 29]. By comparing the results in Column

d and Column f, we can easily observe that joint training with

high-quality edge datasets substantially improves the details of the

detected salient objects.

ond row of Fig. 2. All the aforementioned discussions verify

the significant effect of our FAMs on better fusing feature

maps at different scales. In our experiment section, we will

give more numerical results.

4. Joint Training with Edge Detection

The architecture described in Sec. 3 has already sur-

passed all previous state-of-the-art single-model results on

multiple popular salient object detection benchmarks. De-

spite so, by observing the resulting saliency maps produced

by our model, we find out that many inaccurate (incomplete

or over-predicted) predictions are caused by unclear object

boundaries.

At first, we attempt to solve this problem by adding

an extra prediction branch built upon the architecture pre-

sented in Sec. 3 to estimate the boundaries of the salient

objects. The detailed structure can be found on the top side

of Fig. 1. We add three residual blocks [7] after the FAMs

at three feature levels in the top-down pathway, which are

used for information transformation. These residual blocks

are similar to the design in [7] and have channel numbers of

{128, 256, 512} from the fine level to the coarse level. As

done in [26], each residual block is then followed by a 16-

channel 3 × 3 convolutional layer for feature compression

plus a one-channel 1×1 convolutional layer for edge predic-

tion. We also concatenate these three 16-channel 3× 3 con-

volutional layers and feed them to three consecutive 3 × 3
convolutional layers with 48 channels to transmit the cap-

tured edge information to the salient object detection branch

for detail enhancement.

Similar to [17], during the training phase, we use the

boundaries of the salient objects as our ground truths for

joint training. However, this procedure does not bring us

any performance gain, and some results are still short of de-

tail information of the object boundaries. For example, as

demoed in Column c of Fig. 5, the resulting saliency maps

and boundary maps are still ambiguous for scenes with low

contrast between the foreground and background. The rea-

son for this might be that the ground-truth edge maps de-

rived from salient objects still lack most of the detailed in-

formation of salient objects. They just tell us where the

outermost boundaries of salient objects are, especially for

cases where there are overlaps between salient objects.

Taking the aforementioned argument into account, we at-

tempt to perform joint training with the edge detection task

using the same edge detection dataset [1, 29] as in [26].

During training, images from the salient object detection

dataset and the edge detection dataset are inputted alterna-

tively. As can be seen in Fig. 5, joint training with the edge

detection task greatly improves the details of the detected

salient objects. We will provide more quantitative analysis

in our experiment section.

5. Experimental Results

In this section, we first describe the experiment setups,

including the implementation details, the used datasets and

the evaluation metrics. We then conduct a series of abla-

tion studies to demonstrate the impact of each component

of our proposed approach on the performance. At last, we

report the performance of our approach and compare it with

previous state-of-the-art methods.

5.1. Experiment Setup

Implementation Details. The proposed framework is im-

plemented based on the PyTorch repository3. All the exper-

iments are performed using the Adam [13] optimizer with

a weight decay of 5e-4 and an initial learning rate of 5e-

5 which is divided by 10 after 15 epochs. Our network

is trained for 24 epochs in total. The backbone parame-

ters of our network (e.g. , VGG-16 [33] and ResNet-50 [7])

are initialized with the corresponding models pretrained on

the ImageNet dataset [16] and the rest ones are randomly

initialized. By default, our ablation experiments are per-

formed based on the VGG-16 backbone and the union set

of MSRA-B [25] and HKU-IS [18] datasets as done in [17]

unless special explanations. We only use the simple random

horizontal flipping for data augmentation. In both training

and testing, the sizes of the input images are kept unchanged

as done in [9].

Datasets & Loss Functions. To evaluate the performance

of our proposed framework, we conduct experiments on 6

commonly used datasets, including ECSSD [41], PASCAL-

S [21], DUT-OMRON [42], HKU-IS [18], SOD [30] and

DUTS [35]. Sometimes, for convenience, we use the ini-

tials of the datasets as their abbreviations if there is no ex-

3https://pytorch.org
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Figure 6. Qualitative comparisons to previous state-of-the-art methods. Obviously, compared to other methods, our approach is capable of

not only locating the integral salient objects but also refining the details of the detected salient objects. This makes our resulting saliency

map very close to the ground-truth annotations.

plicit conflict. We use standard binary cross entropy loss for

salient object detection and balanced binary cross entropy

loss [40] for edge detection.

Evaluation Criteria. We evaluate the performance of our

approach and other methods using three widely-used met-

rics: precision-recall (PR) curves, F-measure score, and

mean absolute error (MAE). F-measure, denoted as Fβ , is

an overall performance measurement and is computed by

the weighted harmonic mean of the precision and recall:

Fβ =
(1 + β2)× Precision×Recall

β2 × Precision+Recall
(1)

where β2 is set to 0.3 as done in previous work to weight

precision more than recall. The MAE score indicates how

similar a saliency map S is compared to the ground truth G:

MAE =
1

W ×H

W∑

x=1

H∑

y=1

|S(x, y)−G(x, y)| (2)

where W and H denote the width and height of S, respec-

tively.

5.2. Ablation Studies

In this subsection, we investigate the effectiveness of our

proposed GGM and FAMs first. Then, we conduct more

experiments on the configurations of our GGM and FAMs.

Finally, we show the effect of joint training with edge de-

tection on the performance.

Effectiveness of GGM and FAMs. To demonstrate the ef-

fectiveness of our proposed GGM and FAMs, we conduct

ablation experiments based on the FPN baseline with the

VGG-16 backbone. Except for different combinations of

No.
GGM + FAMs DUT-O [42] SOD [30]

PPM GGFs FAMs MaxF ↑ MAE ↓ MaxF ↑ MAE ↓

1 0.770 0.076 0.838 0.124

2 ✓ 0.783 0.071 0.847 0.125

3 ✓ 0.772 0.076 0.843 0.121

4 ✓ ✓ 0.790 0.069 0.855 0.120

5 ✓ 0.798 0.065 0.852 0.118

6 ✓ ✓ ✓ 0.806 0.063 0.861 0.117

Table 1. Ablation analysis for the proposed architecture on two

popular datasets. All experiments are based on the VGG-16 back-

bone and trained on the union set of MSRA-B [25] and HKU-IS

[18]. By default, our baseline is the VGG-16 version of FPN [22].

As can be observed, each component in our architecture plays an

important role and contributes to the performance. Best result in

each column are highlighted in red.

GGM and FAMs, all other configurations are the same. Ta-

ble 1 shows the performance on two challenging datasets:

DUT-O and SOD. The corresponding visual comparisons

can be found in Fig. 2.

• GGM Only. The addition of GGM (the 4th row in

Table 1) gives performance gains in terms of both F-

measure and MAE on the two datasets over the FPN

baseline. The global guidance information produced

by GGM allows our network to focus more on the in-

tegrity of salient objects, greatly improving the quality

of the resulting saliency maps. Therefore, the details

of the salient objects can be sharpened, which might

be wrongly estimated as background for models with

limited receptive fields (e.g. , the last row in Fig. 2).

• FAMs Only. Simply embedding FAMs (the 5th row

of Table 1) into the FPN baseline as shown in Fig. 1
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Figure 7. Precision (vertical axis) recall (horizontal axis) curves on three popular salient object datasets.

also helps improve the performance on both F-measure

and MAE scores on the same two datasets. This might

be because the pooling operations inside FAMs also

enlarge the receptive field of the whole network com-

pared to the baseline, and the FPN baseline still needs

to merge feature maps from different levels, which in-

dicates the effectiveness of our FAMs for solving the

aliasing effect of upsampling.

• GGM & FAMs. By introducing both GGM and FAMs

into the baseline (the last row of Table 1), the perfor-

mance compared to the above two cases can be further

enhanced on both F-measure and MAE scores. This

phenomenon demonstrates that our GGM and FAM are

two complementary modules. The utilization of them

allows our approach to possess the strong capability of

accurately discovering the salient objects and refining

the details as illustrated in Fig. 2. More qualitative re-

sults can be found in Fig. 6 as well.

Configuration of GGM. To have a better understanding of

the constitution of our proposed GGM, we perform two ab-

lation experiments, which correspond to the 2nd and 3rd

rows of Table 1, respectively. We alternatively remove one

of the PPM and GGFs while keeping the other one un-

changed. As can be seen, both operations make the per-

formance decline compared to the results with both of them

considered (the 4th row). These numerical results indicate

that both PPM and GGFs play an important role in our

GGM. The absence of any one of them is harmful for the

performance of our approach.

The Impact of Joint Training. To further improve the

quality of saliency maps produced by our approach, we at-

tempt to combine edge detection with salient object detec-

tion in a joint training manner. In Table 2, we list the results

when two kinds of boundary information are considered.

As can be seen, using the boundaries of salient objects as

supervision results in no improvement while using standard

boundaries can greatly boost the performance on all three

PASCAL-S [21] DUT-O [42] SOD [30]

Settings MaxF MAE MaxF MAE MaxF MAE

Baseline (B) 0.838 0.093 0.806 0.063 0.861 0.117

B + SalEdge 0.835 0.096 0.805 0.063 0.863 0.120

B + StdEdge 0.849 0.077 0.808 0.059 0.872 0.105

Table 2. Ablation analysis of our approach when different kinds

of boundaries are used. The baseline here refers to the VGG-16

version of FPN plus GGM + FAMs. We also use the combination

of MSRA-B [25] and HKU-IS [18] as the training set. ‘SalEdge’

refers to the boundaries of salient objects and ‘StdEdge’ refers to

the standard datasets for edge detection, which include BSDS500

[1] and PASCAL VOC Context [29] as done in [26, 15].

datasets especially on the MAE metric. This indicates that

involving detailed edge information is helpful for salient ob-

ject detection.

5.3. Comparisons to the State­of­the­Arts

In this section, we compare our proposed PoolNet with

13 previous state-of-the-art methods, including DCL [19],

RFCN [36], DHS [23], MSR [17], DSS [9], NLDF [28],

UCF [45], Amulet [44], GearNet[10], PAGR [46], Pi-

CANet [24], SRM [37], and DGRL [38]. For fair com-

parisons, the saliency maps of these methods are gener-

ated by the original code released by the authors or directly

provided by them. Moreover, all results are directly from

single-model test without relying on any post-processing

tools and all the predicted saliency maps are evaluated with

the same evaluation code.

Quantitative Comparisons. Quantitative results are listed

in Table 3. We consider both VGG-16 [33] and ResNet-50

[7] as our backbones and show results on both of them. Ad-

ditionally, we also conduct experiments on different train-

ing sets to eliminate the potential performance fluctuation.

From Table 3, we can observe that our PoolNet surpasses al-

most all previous state-of-the-art results on all datasets with

the same backbone and training set. Average speed (FPS)

comparisons among different methods (tested in the same
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Training ECSSD [41] PASCAL-S [21] DUT-O [42] HKU-IS [18] SOD [30] DUTS-TE [35]

Model #Images Dataset MaxF ↑ MAE ↓ MaxF ↑ MAE ↓ MaxF ↑ MAE ↓ MaxF ↑ MAE ↓ MaxF ↑ MAE ↓ MaxF ↑ MAE ↓

VGG-16 backbone

DCL [19] 2,500 MB 0.896 0.080 0.805 0.115 0.733 0.094 0.893 0.063 0.831 0.131 0.786 0.081

RFCN [36] 10,000 MK 0.898 0.097 0.827 0.118 0.747 0.094 0.895 0.079 0.805 0.161 0.786 0.090

DHS [23] 9,500 MK+DTO 0.905 0.062 0.825 0.092 - - 0.892 0.052 0.823 0.128 0.815 0.065

MSR [17] 5,000 MB + H 0.903 0.059 0.839 0.083 0.790 0.073 0.907 0.043 0.841 0.111 0.824 0.062

DSS [9] 2,500 MB 0.906 0.064 0.821 0.101 0.760 0.074 0.900 0.050 0.834 0.125 0.813 0.065

NLDF [28] 3,000 MB 0.903 0.065 0.822 0.098 0.753 0.079 0.902 0.048 0.837 0.123 0.816 0.065

UCF [45] 10,000 MK 0.908 0.080 0.820 0.127 0.735 0.131 0.888 0.073 0.798 0.164 0.771 0.116

Amulet [44] 10,000 MK 0.911 0.062 0.826 0.092 0.737 0.083 0.889 0.052 0.799 0.146 0.773 0.075

GearNet[10] 5,000 MB + H 0.923 0.055 - - 0.790 0.068 0.934 0.034 0.853 0.117 - -

PAGR [46] 10,553 DTS 0.924 0.064 0.847 0.089 0.771 0.071 0.919 0.047 - - 0.854 0.055

PiCANet [24] 10,553 DTS 0.930 0.049 0.858 0.078 0.815 0.067 0.921 0.042 0.863 0.102 0.855 0.053

PoolNet (Ours) 2,500 MB 0.918 0.057 0.828 0.098 0.783 0.065 0.908 0.044 0.846 0.124 0.819 0.062

PoolNet (Ours) 5,000 MB + H 0.930 0.053 0.838 0.093 0.806 0.063 0.936 0.032 0.861 0.118 0.855 0.053

PoolNet (Ours) 10,553 DTS 0.936 0.047 0.857 0.078 0.817 0.058 0.928 0.035 0.859 0.115 0.876 0.043

PoolNet† (Ours) 10,553 DTS 0.937 0.044 0.865 0.072 0.821 0.056 0.931 0.033 0.866 0.105 0.880 0.041

ResNet-50 backbone

SRM [37] 10,553 DTS 0.916 0.056 0.838 0.084 0.769 0.069 0.906 0.046 0.840 0.126 0.826 0.058

DGRL [38] 10,553 DTS 0.921 0.043 0.844 0.072 0.774 0.062 0.910 0.036 0.843 0.103 0.828 0.049

PiCANet [24] 10,553 DTS 0.932 0.048 0.864 0.075 0.820 0.064 0.920 0.044 0.861 0.103 0.863 0.050

PoolNet (Ours) 10,553 DTS 0.940 0.042 0.863 0.075 0.830 0.055 0.934 0.032 0.867 0.100 0.886 0.040

PoolNet† (Ours) 10,553 DTS 0.945 0.038 0.880 0.065 0.833 0.053 0.935 0.030 0.882 0.102 0.892 0.036

MB: MSRA-B [25], MK: MSRA10K [3], DTO: DUT-OMRON [42], H: HKU-IS [18], DTS: DUTS-TR [35].

Table 3. Quantitative salient object detection results on 6 widely used datasets. The best results with different backbones are highlighted

in blue and red, respectively. †: joint training with edge detection. As can be seen, our approach achieves the best results on nearly all

datasets in terms of F-measure and MAE.

Ours PiCANet [24] DGRL [38] SRM [37] Amulet [44]

Size 400× 300 224× 224 384× 384 353× 353 256× 256

FPS 32 7 8 14 16

UCF [45] NLDF [28] DSS [9] MSR [17] DHS [23]

Size 224× 224 400× 300 400× 300 400× 300 224× 224

FPS 23 12 12 2 23

Table 4. Average speed (FPS) comparisons between our approach

(ResNet-50, w/ edge) and the previous state-of-the-art methods.

environment) are also reported in Table 4. Obviously, our

approach runs in real time and faster than other methods.

PR Curves. Other than numerical results, we also show

the PR curves on three datasets as shown in Fig. 7. As

can be seen, the PR curves by our approach (red ones) are

especially outstanding compared to all other previous ap-

proaches. As the recall score approaches 1, our precision

score is much higher than other methods. This phenomenon

reveals that the false positives in our saliency map are low.

Visual Comparisons. To further explain the advantages of

our approach, we show some qualitative results in Fig. 6.

From top to bottom, the images correspond to scenes with

transparent objects, small objects, large objects, complex

texture, and low contrast between foreground and back-

ground, respectively. It can be easily seen that our approach

can not only highlight the right salient objects but also main-

tain their sharp boundaries in almost all circumstances.

6. Conclusion

In this paper, we explore the potentials of pooling on

salient object detection by designing two simple pooling-

based modules: global guidance module (GGM) and feature

aggregation module (FAM). By plugging them into the FPN

architecture, we show that our proposed PoolNet can sur-

pass all previous state-of-the-art approaches on six widely-

used salient object detection benchmarks. Furthermore, we

also reveal that joint training our network with the standard

edge detection task in an end-to-end learning manner can

greatly enhance the details of the detected salient objects.

Our modules are independent of network architectures and

hence can be flexibly applied to any pyramid-based models.

These directions also provide promising ways to improve

the quality of saliency maps.
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