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Abstract

We formulate an equation describing a general Non-

line-of-sight (NLOS) imaging measurement and analyze the

properties of the measurement in the Fourier domain re-

garding the spatial frequencies of the scene it encodes. We

conclude that for a relay wall with finite size, certain scene

configurations and features are not detectable in an NLOS

measurement. We then provide experimental examples of

invisible scene features and their reconstructions, as well

as a set of example scenes that lead to an ill-posed NLOS

imaging problem.

1. Introduction

Time of flight non-line-of-sight (NLOS) imaging uses

fast illumination sources and detectors to probe multi-

bounce light transport of scenes not directly visible to the

observer (Figure 2). An illumination source illuminates

points pi on a relay surface with short pulses and captures

light returning from the scene to points pd on the relay

wall. By solving the inverse light transport problem from

those NLOS measurements, the invisible 3D space can be

reconstructed. We refer to this type of time of flight (time-

resolved) NLOS measurement simply as NLOS measure-

ment.

Different inverse methods have been developed to recon-

struct hidden scenes from the time of flight data such as fil-

tered backprojection [18, 7, 3, 10], similar to backprojection

methods used in computed tomography problems. Other

methods formulate the light transport in the hidden scene

as a linear matrix operator and solve a matrix inverse prob-

lem to reconstruct the scene through an optimization frame-

work [9]. More recently, O’Toole et al. showed that for con-

focal datasets (see Fig. 2 a; on the other hand, b shows the

non-confocal NLOS measurement) the forward integral can

be simplified to a convolution operator. Thus the inverse

process can be expressed as a deconvolution problem and

solved efficiently [13]. Other methods perform the recon-

struction using subsets of the measurement data such as the
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Figure 1. Three patches rotation example. Experimental recon-

struction of a scene containing three patches denoted by a, b, c.

Patches a and c are parallel but the latter one’s surface normal

vector does not point towards the NLOS relay wall and the patch

does not appear in the reconstruction shown on the right. The first

row stands for the top view and the second row for the front view.

The explanation for this astonishing effect will be developed in the

main text, see Sec. 6.2, and also Fig. 8 for a graphical explanation.

first returned photon [16], or parameterizing the reconstruc-

tion as a set of planes [14]. Other reconstruction techniques

are described in [19, 17]. Some existing approaches even

model partial occlusions within the hidden scene, e.g., [8].

The findings about reconstruction techniques developed for

NLOS imaging have also been transferred to acoustic imag-

ing around corners [11].

In this work, we aim to provide a generic description

for direct bounce (3rd bounce) NLOS measurements and

show how much information they encode and how this af-

fects practical NLOS imaging problems.

Consider the NLOS reconstruction shown in Figure 1. It

contains three very similar patches that only vary slightly

in orientation and have different positions in the reconstruc-

tion space. Yet while two of the patches are reconstructed
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clearly and accurately, the third is completely missing from

the reconstruction. A closer inspection of prior published

results reveals that similar artifacts are seen in reconstruc-

tions using a variety of diverse reconstruction methods. Sur-

faces with certain normal vectors are missing in the recon-

struction or scenes with simple surfaces are chosen to avoid

the problem. The main purpose of this work is to explain

this phenomenon.

As we show below, any NLOS measurement can be ex-

pressed as an integral operator known in the literature as el-

liptical Radon integral. We analyze this measurement func-

tion in the Fourier domain and show that a significant part of

the measurement space is not accessed by the NLOS mea-

surement and thus represents a null space for NLOS recon-

struction. Finally, we investigate the Fourier domain repre-

sentations of common scenes and scene features to identify

features that fall into the null space and cannot be recon-

structed. Because our analysis involves a generic descrip-

tion of the NLOS measurement, it is independent of the re-

construction algorithm used. We expect our findings will

inform inverse solution design and future NLOS reconstruc-

tion methods.

2. Related Work

Statements of the properties of NLOS reconstructions

are sometimes included with a presentation of reconstruc-

tion algorithms. For example, the available resolution has

been analyzed [3, 13]. Since the underlying mathemati-

cal forward model shares a similar root as the computed

tomography problem (Radon integral), much more exten-

sive work on this problem is available through related prob-

lems. Radon integrals have been studied for their applica-

tions in ultrasound imaging and medical computed tomo-

graphies [20, 15, 12]. The effect of a finite-sized sampling

aperture is similar to the missing cones problem that has

been the subject of extensive research in medical computed

tomography (CT) imaging [5, 1].

Radon integrals can be categorized into classical Radon

integral (planar), spherical Radon transform (SRT) and

elliptical (ellipsoid) Radon transform (ERT). The planar

Radon transform with its high dimensional model [4] is

well known in the CT field. The spherical Radon trans-

form (SRT) with its inverse solution design can be found

in [20, 15]. A similar inverse formula for the confocal mea-

surement setup applies for the SRT model used in ultra-

sound [15] and NLOS imaging [13]. The elliptical Radon

transform (ERT) has been studied by Moon et al. [12]. An

inverse to the ERT was proposed in [6] and is similar to (but

not the same as) the NLOS non-confocal filtered backpro-

jection method [18, 7, 3].

3. Contributions

Our contributions in this work are as follows:

• We formulate a generic measurement equation for time

of flight NLOS imaging with limited visible wall size

and analyze the information sampled by the NLOS

capturing process in the spatial frequency domain.

This allows us to make statements about visible and

invisible features in the measurement space that are

independent of all linear deterministic reconstruction

methods.

• Based on our model, we analyze some commonly used

scene features resulting in a simple rule to predict fea-

ture visibility for NLOS imaging.

• We confirm our conclusion with experimental data.

• To further demonstrate the nature of the missing

data, we also provide an exemplary challenge scene.

Scenes like these lead to identical NLOS measurement

datasets despite having different scene geometries.

4. NLOS imaging problem

In this section, we are going to provide basic mathemati-

cal tools for modeling the NLOS imaging problem in a gen-

eral way by introducing the NLOS measurement function

and its properties. Then we introduce the concept of lim-

ited aperture NLOS imaging which results in an incomplete

measurement space. This incomplete measurement space is

essential for the next section dealing with our measurement

analysis in the spatial Fourier domain in Sec. 5.

4.1. NLOS Measurement Function

The NLOS measurement scenarios are illustrated in Fig-

ure 2 on the left, and two measurement setups are shown

in the subfigures a and b. In an NLOS measurement, the

scene is illuminated from a point pi (illumination position)

and light returning from the scene is recorded at a detection

point pd (detection position) after a certain time interval t.
Both pi and pd are within the finite area of the relay wall

that we call the NLOS sampling aperture. In practice, this

sampling aperture is bounded by the limited field of view

because of the remote detection.

We use f(p) to represent the unknown 3D scene we

would like to recover. Here f(p) is a function of the vector

p = (x, y, z) storing the reflectance values in space. We

assume uniform scattering, thus the reflectance value is an-

gle independent. The function g represents one single time

response measurement at illumination position pi and de-

tection position pd. Thus, each time resolved measurement

g(pi,pd, t) is a function of illumination position pi, detec-

tion position pd and time t. The NLOS measurement is

made up of a set of detection positions (detection grid) from
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Figure 2. Illustration of a NLOS measurement: The panels a and b show two popular NLOS measurement setups. Subfigure a shows

the confocal measurement which means the illumination and detection point are co-located, while b shows the non-confocal measurement.

The green curves in a and b sketch the acquired time responses, i.e., the integration of reflecting scene features along each circle (confocal

case) or ellipse (non-confocal case).

a single or multiple subsequent point illuminations on the

wall. We use G = {g1, g2, g3, ..., gn} to represent all mea-

surements. We focus on illustrating the transformation from

f(p) to one single measurement g(pi,pd, t) first. Then it is

straightforward to understand the transformation from f(p)
to the entire measurement set G. Subfigures a and b of Fig-

ure 2 represent the confocal and non-confocal measurement

setups. Since the non-confocal case is the more general ver-

sion of NLOS measurement, we start our forward modeling

from the non-confocal measurement.

We can use an integral operator A : f(p) → g(pi,pd, t)
to represent the linear transform from the unknown function

f(p) to a temporal measurement at given detection and illu-

mination positions and time g(pi,pd, t). This results in the

NLOS measurement equation:

g(pi,pd, t) =

∫

R3

Υ(di, dd) · δ(di + dd − t · c) · f(p) dp .

(1)

In the literature, this integral is ofter referred to as the El-

liptical Radon Transform (ERT). The delta function kernel

in this equation describes the geometry of the integration,

and c denotes the speed of light. To simplify notation, we

use the distance terms di = |p − pi| and dd = |p − pd|
which represent the distances between the integral variable

p and illumination/detection position, respectively. The

term Υ(di, dd) stands for the intensity drop-off associated

with distances traveled by the light. This intensity term

is normally not included in the ERT, however we add it in

this treatment as it is needed to correctly model the physical

measurement process. The integration (1) can be performed

for an entire family of thin ellipsoid surfaces having differ-

ent foci pi and pd.

Any set of NLOS measurements made from locations

within the NLOS aperture area can be expressed as a set of

these measurement functions. The integral in Equation (1)

is difficult to treat analytically because of non-constant cur-

vatures. Therefore we also consider two simplified scenar-

ios. If we allow only measurements where pi = pd, we

obtain the confocal NLOS measurement (Figure 2 a)

g(pi,pi, t) =

∫

R3

Υ(di) · δ(2 · di − t · c) · f(p) dp . (2)

This integral without intensity term Υ(di) is also known in

the literature as the spherical Radon transform (SRT) [20,

15].

Another useful tool to approximate the measurement

function is to locally replace the elliptical integral by in-

tegrals over planes that are tangential to the ellipsoids. This

refers to a zoom-in version of the integration at a local vol-

ume. Since the integral is a linear operator, the measure-

ment can be represented as superposition of all individual

inputs (linearity). Then for each individual input, the local

integral version can be approximated by the planar integral.

This means:

We linearize the unknown 3D function f(p) by a sum-

mation of local functions f1, f2, ..., fn which store the fea-

tures representing the 3D image. Each local function repre-

sents a local pattern within cube volumes at different posi-

tions such that each subspace contains only small sections

of the ellipsoids. Each ellipsoid g(pi,pi, t) can within that

subspace be approximated by planes g′(t, θ, φ) where the

planar angles θ and φ are such that the plane normal vec-

tor points to the center of the ellipsoid and t is proportional

to twice the distance between the ellipsoid center and the

plane. In polar coordinates, this yields

g′(θ,φ)(t) =

∫∫∫

∞

−∞

f(x, y, z)· (3)

δ(sin θ cosφx+ sin θ sinφy + cos θz − t · c) dx dy dz .

This planar approximation has been described before in

[18, 7] to approximate the NLOS imaging result from non-

confocal streak camera measurements. It is also similar in
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nature to the approximation made when using a piecewise

definition of a locally varying point spread function as is of-

ten done in point spread function deconvolution problems.

Above all, we provide the basic tools for describing the

NLOS forward model which we are going to use in Sec-

tion 5. There, we provide our main tools to analyze the

incomplete measurement space effect. Our idea is to mimic

the imaging system by illustrating the information content

in the Fourier domain by the modulation transfer function

(MTF) dependent on a given limited aperture.

5. NLOS Measurements in the Fourier domain

A complete description of a measurement of a section

of f(p) can be described as the set of all g(pi,pd, t) for

which pi and pd are in the NLOS aperture plane and t is

such that the measurement ellipsoid goes through f(p). To

obtain insight into the patterns in the scene that are sam-

pled by this measurement, we want to analyze them in the

Fourier domain. The Fourier domain NLOS measurement

function can be understood as a Modulation Transfer Func-

tion (MTF) of NLOS imaging.

For the planar Radon transform (PRT, Equation (3)), the

Fourier transform of g′ can be computed analytically using

the projection-slice theorem.

5.1. Projection slice theorem

The projection slice theorem (PST) is well-known and

widely used in the area of computed tomography and other

fields. We will give a short explanation of the 2D version

here; the 3D version is shown in the supplemental docu-

ment. The PST provides an elegant tool for using projec-

tions (i.e., integrals) along parallel lines of an unknown 2D

scene: it shows that the 1D Fourier transform of such pro-

jections actually represents one line through the origin of

the 2D Fourier spectrum of the unknown scene. Repeat-

ing the process for different projection angles provides the

missing lines; scene reconstruction is then easily achieved

by inverse 2D FT.

The unknown 2D function is denoted by f(x, y). Let us

first assume that the projection angle θ is zero. The pro-

jection dependent on the displacement u with respect to the

origin and vertically to the projection direction is then given

by [2]

fproj(u, θ = 0) =

∫∫

f(x, y)δ(x− u)dxdy

=

∫

f(u, y)dy .

Performing the 1D Fourier transform with respect to u

yields

Fu{fproj(u, 0)} =

∫∫

f(u, y)e−j2πfuududy (4)

=

∫∫

f(x, y)e−j2πfxxdxdy

=

∫∫

f(x, y)e−j2π(fxx+fyy)dxdy

∣

∣

∣

∣

fy=0

.

This corresponds to the 2D Fourier transform of the un-

known function f(x, y) at the line with fy = 0. Repeating

the projection with different angles θ results in the corre-

sponding line of the 2D Fourier transform; note that rotation

in the spatial domain corresponds to a rotation by the same

angle in the frequency domain. By considering all angles θ
from 0 to 2π and adding all Fourier spectrum lines, the full

function f(x, y) can then be reconstructed by inverse 2D

Fourier transform. It is advisable to apply a high pass filter

before the inverse Fourier transform, as high frequencies

are underrepresented because of the spectral lines meeting

in the origin, but diverging for higher frequencies, which

means that there is less information available for these fre-

quencies. This is called filtered backprojection [4].

In the 3D case, the projection along parallel planes and

subsequent 1D Fourier transform of the calculated (scalar)

projection values for each plane provides one line of the

3D spectrum of f(p). Rotating the projection planes about

the origin provides the spectrum along all lines through the

origin. See the supplementary document for details.

5.2. Local Fourier cone

The left part of Figure 5 shows the measurement for two

cases where the illumination and detection points are co-

located at a or b at either side of the relay wall. In the middle

of that figure, we can see that the collected time response for

those two cases are projections along directions with angles

Θ1 or Θ2 with respect to the relay wall. The exact projec-

tions are performed along ellipsoids; however, we approxi-

mate these as planes. As it is shown on the right of Figure

5, the Fourier slice theorem states that the 1D Fourier trans-

form of the projections of the scene along parallel planes at

angle Θ in the primal domain is equal to a slice at angle Θ
in the 2D Fourier spectrum of the scene. To create a cone

we then simply draw the corresponding lines for all acces-

sible points on the relay wall. By using a limited size relay

wall, the black part of the spectrum is not contained in any

measurements.

Null space and cone variation: As shown in Fig. 3,

given the same size of the limited aperture, the closer the

considered volume is to the sampling aperture, the larger

the visible angle range of this cone is (compared with po-

sition 1 and position 4 in Fig. 3). Moreover, offset with

regard to the center of the aperture also tilts this sampling
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Figure 3. Local Measurement MTF: Fourier domain representations of the NLOS Measurement Function for five points in the unknown

geometry. The left graphic represents the geometric setup. We construct a half meter limited aperture with five volumes of interest varying

in depth and horizontal offset. The panels show the measurement function for all points for the different models. Planar corresponds to

the PRT, confocal to the SRT, and non-confocal to the SRT. For each point, the first column shows the computed patterns, the middle

column shows the same pattern zoomed in, and the right column shows the zoomed in pattern after correcting for the lower values at higher

frequencies to enhance visualization.

Local pattern Fourier spectrumScene Local scene features Fourier spectra of local 

scene features 

…

Figure 4. Local scene features: This figure shows a set of common NLOS scene features in the red boxes and their Fourier transforms.

Rotating of the features simply corresponds to rotating by the same angle in the Fourier domain. The patterns are (top left to bottom right)

a smooth planar surface, a rough planar surface, the edge of a planar surface, a corner between two surfaces, a gap in a planar surface,

a convex curved surface, and two concave curved surfaces. The spectrum of a planar surface is a line. Roughness, curvature, and edges

result in spectra that also cover other regions of the Fourier space.

Limited Wall

Local Window

x

y

Θ1

x

y

Θ2
fx

fy

Θ1Θ2
Frequency Domain

t

t𝑎 𝑏
Figure 5. Fourier slice theorem and cone generation.

cone in the Fourier domain (refer to positions 2, 3 and 5 in

Figure 3). Overall, things outside this cone will never be

sampled in the Fourier domain by the limited aperture un-

less the aperture size is increased. This means that, e.g., a

wall placed perpendicularly to the relay wall has a Fourier

transform which, apart from the DC value at frequency 0,

will fully vanish in the missing cone and cannot be seen in

any reconstruction not accounting for the missing cone.

Model validity: To verify the model validity, we per-

form a computation for planar, confocal and non-confocal

measurement (fixed illumination as one focus at the center)

with the same limited aperture. With an acceptable error

in the discrete model, we can see from Fig. 3 that the lo-

cal planar model gives a good boundary estimation for the

confocal and non-confocal cases. Notice that we fixed one

focus pi in the non-confocal case resulting in a more nar-

row MTF pattern. By moving the non-confocal illumination

spot, this narrow cone slightly rotates which could achieve

a similar angle coverage in the confocal measurement.

6. Measurement of scene features

Local scene features: To use the proposed analysis, we

need to decompose any complicated NLOS imaging scenes

into simple features such as planes etc. This is shown in

Fig. 4, which also displays their Fourier spectra which de-

fines their reconstructability, cf. Fig. 5 and the following

paragraph. Most of the simple features can be represented

as a thin surface with different roughness level as well as

edge like discontinuity patterns and curvatures. Rotation of

the patterns in space simply corresponds to the same rota-

tion in the Fourier domain.

MTF with scene features: To assess visibility of the
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targets we have to consider the overlap between the target

spectra and the MTF sampling cone. This will be shown

illustratively in the results, see Section 6.2. Note that the

most valuable information is encoded in the high frequency

components of the cone. The center of the cone is at the

origin and thus samples the low spatial frequencies. The

high frequency components far away from the origin are

necessary to create high resolution reconstructions.

Limited aperture ill-posed example: Limited aperture

NLOS imaging with arbitrary targets should be viewed as

an ill-posed problem. Consider a simple patch with dif-

ferent rotation angles with respect to the limited aperture.

Once it is facing the sampling aperture and located at its

center, its local Fourier spectrum is optimally covered by

the MTF Fourier cone. However, when the patch pattern

rotates, its Fourier pattern also rotates by the same angle.

Once it rotates outside the angle covered by each local

cone, the recorded information only includes the origin in

the Fourier plane, corresponding to a constant or zero spa-

tial frequency. See the experiments in Sec. 6.2 for an il-

lustration of this effect. Overall, this means we can still

see that a structure is there (after all, there is light com-

ing back) but we cannot actually uniquely reconstruct it.

On the other hand, a local pattern containing high spatial

frequency contents like edges or surface roughness has a

much broader spectrum and at least part of it always over-

laps with the measurement cone making it at least partially

reconstructible.

Rule-of-thumb criterion: From this, we can also derive

a simple rule for visibility of scene patches. Since a planar

scene segment is represented by a line through the origin

in the Fourier domain, the segment will be completely vis-

ible if the line lies within the sampled cone, and invisible

if it is at an angle outside the cone. In the primal domain

this means that a segment is only visible when its normal

vector points toward the relay wall.

Overall, for NLOS imaging scenarios, more higher spa-

tial frequency components of unknown targets subsequently

result in more fluctuations in the temporal measurements.

For this reason, they lead to a higher chance to actually see

the target by using all deterministic linear inverse solutions

from a limited aperture.

6.1. Completely invisible feature example

To provide further evidence for the existence of a uni-

versal, reconstruction independent null-space, we provide a

set of example scenes that are simple enough to be treated

analytically for a confocal measurement set. To do this, we

replace f(p) by specific functions to represent the scene

features inside the integral measurement equations (1) and

(2). To simplify the calculation, we consider only a two

dimensional scenario of a confocal NLOS measurement.

Smooth wall example (Challenge scene): As it is

x

y

x

y

(x0, 0)

x

y

(x0, 0)

g(i)

2x0/c

1

g(i)

2x0/c

1

g(i)

xmin

1

2

Wall

(x0, 0)

angle

xmax

Figure 6. Three wall examples. The first column represents the ge-

ometry, the second column stands for the measurement g(i) after

the intensity correction from t(i). The scenes in the first two rows

lead to identical captured data.

shown in Figure 6, the unknown target is a smooth wall at

an angle to the relay wall described by δ(cos(θ)x−sin(θ)y)
for y ≥ 0. For confocal NLOS measurements, our illumina-

tion and detection are co-located at the x-axis meaning that

pi = pd = (x0, 0), x0 ≥ 0. Since the distance correction

simply amplifies the signal at each given time index i, we

use the notation C(i) to represent this correction term. We

use the term g(i) to represent the reflectance integration at

each time index i. By plugging this special function into the

Radon integral, we obtain the following equation:

g(i) = C(i) ·

∫

∞

0

∫

∞

−∞

δ(cos(θ)x− sin(θ)y)·

δ((x− x0)
2 + y2 − (

c · i

2
)2) dx dy .

(5)

By performing the distance correction C(i) to account for

the distortion from the intensity drop off, the measurement

g(i) simply represents a set of reflectance integrals in the

unknown space.

Using the fact that δ(cos(θ)x − sin(θ)y) is only 1 for

cos(θ)x = sin(θ)y, we can replace x by y tan(θ) and fur-

ther simplify the equation by getting rid of integral variable

x as follows:

g(i) = C(i) ·

∫

∞

0

δ((tan(θ)y − x0)
2 + y2 − (

c · i

2
)2) dy

(6)

From this equation, it is clear to see that the final mea-
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Figure 7. Simple letter S and rectangle patch rotation experiments The first row represents the schematic of the setup including the

entire visible wall, limited aperture, targets (letter S and patch) as well as reconstruction volume. The next two rows show the maximum

projection along the depth dimension, thus a 2D bird view and 2D front view are provided. For clear illustration, we present results using

two-color (bright and dark view). The thickness of the letter S and the rectangular patch approximately equals 5 cm and 0.5 cm. As the

angle increases, the ill-posed effect becomes more obvious, and certain features are missing in the measurement space and therefore cannot

be resolved by the reconstruction

surement can be viewed as a sum of 1 or 0 at any given

time index î when the kernel inside the integral (tan(θ)y −

x0)
2 + y2 − ( c·̂i2 )2 = 0. This parabolic equation may have

zero, one or two solutions with fixed θ, x0. This means the

final measurement g may be 0, 1 or 2 at any given time in-

dex. A simple observation is that, once the wall reaches

angle θ = π/2, the value of the integral is the same for

all pi = (x0, 0), x0 ≥ 0 on the aperture line. The signal

g with different wall rotation angles is shown in Figure 6.

Thus, all scenes with walls at angles above θ = π/2 re-

sult in the same NLOS data and are thus not distinguishable

without any prior constraints. Extending this treatment to a

3D space results in more complex equations and is therefore

less instructive. It is subject of further study.

6.2. Experiments

We perform two experiments of ill-posed scenarios

which are first predicted by our proposed local cone model.

For the reconstruction process, we choose a filtered back-

projection [18, 7, 3] without thresholding process. For vi-

sualization, we choose the maximum projection along the

depth dimension in the front view. Also, we provide a max-

imum projection for the bird view.

In Figure 7 we show a rotating letter S and planar patch

example. As shown in the result, the simple patch pattern

is completely resolvable when facing directly to the limited

aperture. In this situation all patch normals are pointing at

the relay wall aperture. As the targets rotate, normals start

pointing past the aperture and the planes start to disappear.

Not all target patches disappear simultaneously due to the

local variations in Fourier cone discussed above. Eventu-

ally, all patch normals point outside the aperture and the

entire targets are outside the Fourier cone. We can only re-

solve the high spatial frequency pattern at edges in the final

reconstruction.

Another three patches example was already shown in

Figure 1. Having now the theoretical tools at hand, we see

in Fig. 8 that both patches a and c have the same magnitude

spectrum, but because of the spatially dependent measure-

ment cone, only the offset of patch c is captured. In the

reconstruction, this patch is therefore almost entirely invis-

ible.

7. Discussion and Conclusion

Using a limited aperture NLOS sampling measurement

and a simple patch target, the following statements can

be made based on our presented model for non-resolvable

scene features.

• Consider a patch that is directly facing to and located

inside the sampling aperture window. The closer it is

to the sampling wall, the more resolvable it becomes

and the reconstruction quality increases.

• Target surfaces offset or rotated in the unknown vol-

ume are only visible if their normal vector points to

the relay wall aperture.

• While it is not possible to reconstruct missing patches,

we can detect if missing patches exist as they still re-

flect light.

• When comparing reconstruction quality among differ-

ent inverse methods, it is important to be aware of

how much information is available in the measurement
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Figure 8. Explanation of the missing feature in Fig. 1 The mea-

surement cone is shown as gray area and illustrates the part of

the Fourier spectrum that is actually acquired by NLOS measure-

ments. It varies with the position in the 3D space that is to be

reconstructed. Both patches a and c of the scene are oriented the

same way; the spatial shift just corresponds to a phase shift in the

Fourier domain, but not in a change of the magnitude spectrum.

This means both patches have the same magnitude spectrum, but

due to the fact that the measurement cone is different at their re-

spective positions, the measurement of patch c only captures the

offset and not the rest of the spectrum. For this reason, this patch

cannot be reconstructed.

space. This means future datasets and research should

specify the sampling aperture/target location as well as

sampling aperture size.

Our statements apply to any NLOS measurement that in-

volves only the direct (3rd bounce) light from the hidden

scene. Missing features may be reconstructed by algorithms

by making use of higher order bounces, or missing informa-

tion may be filled in using priors. This hole filling solution

is different from deblurring and de-noising tasks common

in imaging. The modulation transfer functions we derive

are zero outside the Fourier cone (as opposed to just being

very small like a Gaussian). This means deblurring methods

based on deconvolution will fail, even for noiseless data.

The limited aperture NLOS scenario is essential to be un-

derstood for future inverse method design. All the determin-

istic linear inverse methods can only recover the scene fea-

tures which are contained in the limited measurement space.

Overall, based on our local MTF sampling cone model, it is

easy to see this limited aperture problem. By allowing any

targets around the corner, some scene features may not be

well represented, or completely missing in the incomplete

measurement space. Future inverse method design should

go beyond deterministic inverse methods by adding prior

constraints to the inverse model to specifically account for

this ill-posed limited aperture problem.

In this work we provide only an approximate analyti-

cal model that we back up with numerical computations of

the exact functions. An exact analytical expression for the

Fourier cone is subject of further research.
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