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Abstract

Since it is difficult to collect face images of the same sub-

ject over a long range of age span, most existing face aging

methods resort to unpaired datasets to learn age mappings.

However, the matching ambiguity between young and aged

face images inherent to unpaired training data may lead to

unnatural changes of facial attributes during the aging pro-

cess, which could not be solved by only enforcing identity

consistency like most existing studies do. In this paper, we

propose an attribute-aware face aging model with wavelet-

based Generative Adversarial Networks (GANs) to address

the above issues. To be specific, we embed facial attribute

vectors into both the generator and discriminator of the

model to encourage each synthesized elderly face image to

be faithful to the attribute of its corresponding input. In ad-

dition, a wavelet packet transform (WPT) module is incor-

porated to improve the visual fidelity of generated images

by capturing age-related texture details at multiple scales

in the frequency space. Qualitative results demonstrate the

ability of our model in synthesizing visually plausible face

images, and extensive quantitative evaluation results show

that the proposed method achieves state-of-the-art perfor-

mance on existing datasets.

1. Introduction

Face aging, also known as age progression [16], aims at

rendering a given face image with aging effects while still

preserving personalized features. Applications of face ag-

ing techniques range from social security to digital enter-

tainment, such as predicting contemporary appearance of

missing children and cross-age identity verification. Due

to the practical value of face aging, many approaches have
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Race

     Asian           White     Asian           White    White            Black    White            Black     Black            Asian     Black            Asian

Glasses

Gender

      Male          Female      Male          Female     Female          Male    Female          Male     Female          Male    Female          Male

 Test Face       Output  Test Face       Output  Test Face       Output

Figure 1. Examples of face aging with mismatched facial attributes

generated by face aging model without facial attribute embedding.

Four attributes (Race, Gender, Glasses, and Bald) are considered

and three sample results are presented for each. Labels of ‘Race’

and ‘Gender’ are all obtained via advanced publicly available APIs

of Face++ [13] and placed underneath each image.

been proposed to address this problem in the last two

decades [8, 20, 19, 21, 7]. With the rapid development of

deep learning, deep generative models are widely adopted

to synthesize aged face images [23, 3, 4]. However, the

most critical problem of these methods is that multiple face

images of the same person at different ages are required at

training stage, which is extremely expensive to collect in

practice and thus their applications are largely limited.

To deal with this problem, many recent studies resort to

unpaired face aging data to train the model [23, 28, 25, 9].

However, these approaches mainly focus on face aging it-

self while neglecting other critical conditional information

of the input (e.g., facial attributes), thus fail to regulate

the training process. Consequently, training face image

pairs with mismatched attributes would mislead the model
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into learning translations other than aging, causing serious

ghosting artifacts and even incorrect facial attributes in gen-

eration results. Fig. 1 shows some face aging results with

mismatched attributes. In the rightmost face aging result

under ‘gender’, beard is mistakenly attached to the input

female face image. This is because the model learns that

growing a beard is a typical sign of aging but has no way

to know that this does not happen to a woman, as face im-

age pairs of young woman and old man could be treated

as positive training samples if no conditional information is

considered.

To suppress such undesired changes of semantic infor-

mation during the aging process, many recent face aging

studies attempt to supervise the output by enforcing iden-

tity consistency [28, 1, 25, 9]. However, as shown in Fig. 1,

personalized features are well preserved in the output for

all sample results, nevertheless, obvious unnatural changes

of facial attributes are still observed. In other words, well

maintained identity-related features do NOT imply reason-

able aging results when training with unpaired data. There-

fore, merely enforcing identity consistency is insufficient to

eliminate matching ambiguities in unpaired training data,

thus fails to achieve satisfactory face aging performance.

To solve the above-mentioned issues, in this paper, we

propose a framework based on generative adversarial net-

works (GANs). Different from existing methods in the lit-

erature, we involve semantic conditional information of the

input by embedding facial attribute vectors in both the gen-

erator and discriminator, so that the model could be guided

to output elderly face images with attributes faithful to each

corresponding input. Furthermore, to enhance aging details,

based on the observation that signs of aging are mainly rep-

resented by wrinkles, laugh lines, and eye bags, which could

be treated as local textures, we employ wavelet packet trans-

form to extract features at multiple scales in the frequency

space efficiently.

To summarized, the main contributions are as follows:

• Facial attributes are incorporated as conditional infor-

mation into both the generator and discriminator for

face aging, since identity preservation is insufficient

for generating reasonable results.

• Wavelet packet transform is adopted to extract features

of texture details at multiple scales in the frequency

domain for generating fine-grained details of aging ef-

fects.

• Extensive experiments have been conducted to demon-

strate the ability of the proposed method in rendering

accurate aging effects and preserving information of

both identity and facial attributes. Quantitative results

indicate that our method achieves state-of-the-art per-

formance.

2. Related Work

In the last few decades, face aging has been a very

popular research topic and a great amount of algorithms

have been proposed to tackle this issue. In general, these

methods could be divided into three categories: physical

model-based methods, prototype-based methods, and deep

learning-based methods.

Physical model-based methods mechanically simulate

the changes of facial appearance w.r.t. time by modeling

the anatomical structure of human faces. Todd et al. [22]

modeled the translation of facial appearance by revised car-

dioidal strain transformation. Subsequent works investi-

gated the problem from various biological aspects includ-

ing muscles and overall facial structures [8, 20]. However,

physical model-based algorithms are computational expen-

sive and large amount of image sequences of the same sub-

ject are required to model aging effects.

Data-driven prototyping approaches [19, 21, 7] come

into view the next, where faces are divided into age groups

and each group is represented by an average face (proto-

type) computed from the training data. After that, transla-

tion patterns between prototypes are regarded as effects of

aging. The main problem of prototyping methods is that

personalized features are eliminated when calculating av-

erage faces, thus the identity information is not well pre-

served.

In recent years, deep generative models with temporal

architectures are adopted to synthesize images of elderly

faces [23, 3, 4]. However, in most of these works, face

image sequence over a long age span for each subject is

required thus their potential in practical use is limited. With

the success of GANs [5] in generating visually appealing

images, many efforts have been made to tackle the prob-

lem of face aging using GAN-based framework [28, 25, 9,

17, 24, 10]. Zhang et al. [28] proposed a conditional adver-

sarial autoencoder (CAAE) to achieve age progression and

regression by traversing in low-dimensional manifold. The

work most similar to ours is [25], in which a GAN-based

model with pyramid architecture is proposed, and identity

loss is adopted to achieve permanence. Besides preserving

identity information, we focus on alleviating the influence

of matching ambiguity of unpaired training samples and en-

suring attribute consistency by embedding facial attribute

vectors in the model.

3. Approach

In a unpaired face aging dataset, each young face im-

age might map to many elderly face candidates during the

training process, and image pairs with mismatched seman-

tic information may mislead the model into learning trans-

lations other than aging. To solve this problem, we present a

GAN-based face aging model that takes young face images
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Figure 2. An overview of the proposed face aging framework. An hourglass-shaped generator G learns the age mapping and outputs

lifelike elderly face images. A discriminator D is employed to distinguish synthesized face images from generic ones, based on multi-scale

wavelet coefficients computed by the wavelet packet transform module. The p-dimensional attribute vector describing the input face image

is embedded to both the generator and discriminator to reduce matching ambiguity inherent to unpaired training data.

and their semantic information (i.e. facial attributes) as in-

put and outputs visually plausible aged faces accordingly.

The network consists of two parts: a facial attribute em-

bedded generator G and a wavelet-based discriminator D.

The generator network embeds facial attributes into young

face images and synthesizes aged faces. The discriminator

network is used to encourage the generation results to be in-

distinguishable from generic ones and to possess attributes

same as the corresponding input. An overview of the pro-

posed framework is presented in Fig. 2.

3.1. Facial Attribute Embedded Generator

Existing face aging studies [9, 25, 28] only take young

face images as inputs and then directly learn age map-

pings using GAN-based networks. Although constraints on

identity information and pixel values are usually imposed

to restrict modifications made to input images, facial at-

tributes may still undergo unnatural translations (as shown

in Fig. 1). Unlike previous works, we propose to incor-

porate both low-level image information (pixel values) and

high-level semantic information (facial attributes) into the

face aging model to regularize image translation patterns

and reduce the ambiguity of mappings between unpaired

young and aged faces. To be specific, the model takes

young face images and their corresponding attribute vectors

as input, and generates elderly face images with attributes

in agreement with the input ones.

Rather than supervising the attributes of generation re-

sults by simply adopting an additional loss term, we embed

the attribute vector in the generator so that semantic facial

information is well considered in the generation process and

encourages the model to produce face images with consis-

tent attributes more effectively. To be specific, we employ

an hourglass-shaped fully convolutional network as the gen-

erator, which has achieved success in previous image trans-

lation studies [6, 29]. It consists of an encoder network, a

decoder network, and four residual blocks in between as the

bottleneck. The input facial attribute vector is replicated and

concatenated to the output blob of the last residual block as

they both contain high-level semantic features. After the

combination, the decoder network transforms the concate-

nated feature blob back to the image space.

Since face aging could be considered as rendering aging

effects conditioned on the input young face image, we add

the input image to the output of the decoder to form a resid-

ual connection. Compared to synthesize the whole face im-

age, this structure automatically makes the generator focus

more on modeling the difference between input and output

face images, namely the representative signs of aging, and

be less likely to be distracted by visual content irrelevant

to aging, such as background. Finally, the numeric scale of

the resultant tensor is normalized by a hyperbolic tangent

(tanh) mapping and thus the generated elderly face image is

obtained.

3.2. Wavelet-based Discriminator

To force the generator to absorb the semantic informa-

tion of the input face image, a conditional discriminator

is employed. The discriminator has two main functions:

1) distinguish synthesized face images from generic ones;

2) check whether the attribute of each generation result is

faithful to that of the corresponding input.

To be specific, considering the fact that typical signs of

aging, such as wrinkles, laugh lines, and eye bags, could be

regarded as local image textures, we adopt wavelet packet

transform (WPT, see Fig. 3) to capture age-related textu-
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Figure 3. Demonstration of wavelet packet transform. (a) Low-

pass and high-pass decomposition filters (hlow and hhigh) are ap-

plied iteratively to the input on k-th level to compute wavelet coef-

ficients on the next level; (b) a sample face image with its wavelet

coefficients at different decomposing levels.

ral features. Specifically, multi-level WPT is performed to

provide a more comprehensive analysis of textures in the

given image, and wavelet coefficients at each decomposing

level are fed into a convolutional pathway of the discrimi-

nator. Note that this is different from [9], since wavelet co-

efficients are only used for discrimination in our work and

no prediction or reconstruction is involved.

To make the discriminator gain the ability of telling

whether attributes are preserved in generated images, the

input attribute vector is also replicated and concatenated to

the output of an intermediate convolutional block of each

pathway. At the end of the discriminator, same-sized out-

puts of all pathways are fused to form a single tensor, and

adversarial loss is then estimated against the label tensor.

Compared to extracting multi-scale features by a se-

quence of convolutional layers as in [25], the advantage of

using WPT is that the computational cost is significantly

reduced since calculating wavelet coefficients could be re-

garded as forwarding through a single convolutional layer.

Therefore, WPT greatly reduces the number of convolutions

performed in each forwarding process. Although this part

of the model has been simplified, it still takes the advantage

of multi-scale image texture analysis, which is helpful in

improving the visual fidelity of generated images.

3.3. Overall Objective Functions

Training of GAN model simulates the process of opti-

mizing a minimax-max two-player game between the gen-

erator G and the discriminator D. Unlike regular GANs [5],

we adopt least square loss instead of negative log likeli-

hood loss for that margins between generated samples and

the decision boundary in the feature space are also mini-

mized, which further improves the quality of synthesized

images [12]. Practically, we pair up young face images

xi and their corresponding attribute vectors αi of dimen-

sion p, denoted as (xi, αi) ∼ Pyoung(x, α), and take them

as input to the model. Only generic aged faces with at-

tributes same as the input, i.e. (xi, αi) ∼ Pold(x, αi), are

considered as positive samples, and real young faces, i.e.

(xi, αi) ∼ Pyoung(x, α), are regarded as negative samples

to help D gain discriminating ability on aging effects.

Mathematically, the objective function for G and D

could be written as follows,

LGAN (G) = E(xi,αi)∼Pyoung(x,α)[(D(G(xi, αi), αi)−1)2]
(1)

LGAN (D) =E(xi,αi)∼Pold(x,αi)[(D(xi, αi)− 1)2]+

E(xi,αi)∼Pyoung(x,α)D(G(xi, αi), αi)
2+

E(xi,αi)∼Pyoung(x,α)D(xi, αi)
2

(2)

where Pyoung and Pold denote the distribution of generic

face images of young and old subjects, respectively.

In addition, pixel loss and identity loss are adopted to

maintain consistency in both image-level and personalized

feature-level. To be specific, we utilize the VGG-Face de-

scriptor [14], denoted by φ, to extract the identity related

semantic representation of a face image. These two loss

terms could be formulated as,

Lpix = E(xi,αi)∼Pyoung(x,α)||G(xi, αi)− xi||
2
F (3)

Lid = E(xi,αi)∼Pyoung(x,α)||φ(G(xi, αi))− φ(xi)||
2
F (4)

In conclusion, overall objective functions of the pro-

posed model could be written as follows,

LG = LGAN (G) + λpixLpix + λidLid (5)

LD = LGAN (D) (6)

where λid and λpix are coefficients balancing the impor-

tance of critics on identity and pixels, respectively. We op-

timize the model by minimizing LG and LD alternatively

until the optimality is reached.

4. Experiments

4.1. Dataset

MORPH [15] is a large aging dataset containing 55,000

face images of more than 13,000 subjects. Data samples in

MORPH are color images of near-frontal faces exhibiting

neutral expressions under uniform and moderate illumina-

tion with simple background. CACD [2] contains 163,446

face images of 2,000 celebrities captured in much less con-

trolled conditions. Besides large variations in pose, illumi-

nation, and expression (PIE variations), images in CACD

are collected via Google Image Search, making it a very

challenging dataset due to the mismatching between actual

face presented in each image and associated labels provided

(name and age).
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Test Face      31 – 40       41 – 50         51+ Test Face      31 – 40       41 – 50         51+ Test Face      31 – 40       41 – 50         51+

22 Years Old 27 Years Old 26 Years Old

29 Years Old 21 Years Old27 Years Old

Figure 4. Sample results on Morph (first row) and CACD (second row). The first image in each result is the input test face image and

subsequent 3 images are synthesized elderly face images of the same subject in age group 31-40, 41-50 and 51+, respectively.

Test Face

Results of 
Prior Work

Results of 
Our Work

(translation to 51+)

48 42 [51-60] [51-60] 51+ 51+ 50+ 50+

18 22 21 28 27 29 28 26

Figure 5. Performance comparison with prior work on Morph (zoom in for a better view of the aging details). The second row shows the

results of prior work, where four methods are considered and two sample results are presented for each. These four methods are (from left

to right): CONGRE [18], HFA [26], GLCA-GAN [9], and PAG-GAN [25]. The last row shows the results of our method.

As for facial attributes, MORPH provides researchers

with labels including age, gender, and race for each im-

age. We choose ‘gender’ and ‘race’ to be the attributes

that are required to be preserved, since these two attributes

are guaranteed to remain unchanged during natural aging

process, and are relatively objective compared to attributes

such as ‘attractive’ or ‘chubby’ used in popular facial at-

tribute dataset CelebA [11]. For CACD, since face images

with race other than ‘white’ only takes a small portion of

the entire dataset, we only select ‘gender’ as the attribute

to preserve. To be specific, we go through the name list of

the celebrities and label the corresponding images accord-

ingly. This introduces noise in gender labels due to the mis-

matching between the annotated name and the actual face

presented in each image, which further increases the diffi-

culty for our method to achieve good performance on this

dataset. It is worthwhile to note that the proposed model

is highly expandable, as researchers may choose whatever

attributes to preserve simply by incorporating them in the

conditional facial attribute vector and arrange training im-

ages pairs accordingly.

4.2. Implementation Details

All face images are cropped and aligned according to the

five facial landmarks detected by MTCNN [27]. Following

the convention in [25, 9], we divide the face images into

four age groups, i.e., 30-, 31-40, 41-50, 51+, and only con-

sider translations from 30- to the other three age groups.

To evaluate the performance of the proposed method ob-

jectively, all metric measurements are conducted via stable

public APIs of Face++ [13]. Thresholds adopted in our

face verification experiments (threshold=76.5, FAR=1e-5)

are the same as those used in [25]. Therefore, quantitative

results of our experiments are comparable to those reported

in [25].

We choose Adam to be the optimizer of both G and D

with learning rate and batch-size set to 1e−4 and 16, respec-

tively. Pixel-level critic is applied every 5 iterations, and D

is updated at every iteration. As for trade-off parameters,

λpix and λid are firstly set to make Lpix and Lid to be of the

same order of magnitude as LGAN (G), and then divided by

10 to emphasize the importance of the adversarial loss. All

experiments are conducted under 5-fold cross validation on

a Nvidia Titan Xp GPU.

4.3. Qualitative Results of Face Aging

Sample results on Morph and CACD are shown in Fig. 4.

It is clear that our method is able to simulate translations be-

tween age groups and synthesize elderly face images with

high visual fidelity. In addition, our method is robust to vari-

ations in terms of race, gender, expression, and occlusion.

Performance comparison with prior work on Morph is

shown in Fig. 5. Traditional face aging methods, CON-

GRE [18] and HFA [26], only render subtle aging effects
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Table 1. Age estimation results on Morph and CACD (differences of mean ages are measured in absolute value).

Morph CACD

Age group 31 - 40 41 - 50 51 + Age group 31 - 40 41 - 50 51 +

Estimated Age Distributions Estimated Age Distributions

Generic 38.60 47.74 57.25 Generic 38.51 46.54 53.39

Synthetic 38.47 47.55 56.57 Synthetic 38.88 47.42 54.05

Difference of mean ages Difference of mean ages

CAAE 10.08 15.49 21.42 CAAE 5.76 11.53 17.93

GLCA-GAN 0.23 3.61 8.61 GLCA-GAN 1.72 2.07 2.85

PAG-GAN 0.38 0.52 1.48 PAG-GAN 0.70 0.22 0.57

Ours 0.13 0.19 0.68 Ours 0.37 0.58 0.66

(a)

(d)(c)

(b)

Figure 6. Distributions of the estimated ages. (a) synthetic faces on

Morph; (b) synthetic faces on CACD; (c) generic faces on Morph;

(d) generic faces on CACD.

within tight facial area, which fails to accurately simu-

late the aging process. In contrast, GAN-based methods,

GLCA-GAN [9] and GAN with pyramid architecture pro-

posed in [25], referred to as PAG-GAN, have achieved

significant improvement on the quality of generation re-

sults. However, our method further generates face images

of higher resolution (2×) with enhanced details compared

to GLCA-GAN, and reduces ghosting artifacts in the results

compared to PAG-GAN (e.g. finer details of hair and beard).

4.4. Aging Accuracy and Identity Preservation

In this subsection, we report evaluation results on ag-

ing accuracy and identity preservation. The performance

of the proposed model is compared with previously state-

of-the-art methods CAAE [28], GLCA-GAN [9] and PAG-

GAN [25] to demonstrate the effectiveness.

Aging Accuracy: Age distributions of both generic and

synthetic faces in each age group are estimated, where less

discrepancy between real and fake images indicates more

accurate simulation of aging effects. On Morph and CACD,

face images of age under or equal to 30 are considered as

testing samples, and their corresponding aged faces in the

other three age groups are synthesized. We estimated the

apparent age of both generation results and natural face im-

ages in the dataset using Face ++ APIs for fair comparison.

Age estimation results on Morph and CACD are shown

in Table 1 and Fig. 6. We compare our method with pre-

vious works in terms of differences between mean ages.

On Morph, it could be seen that estimated age distribu-

tions of synthetic elderly face images well match that of

natural images for all age groups. Our method consistently

outperforms other approached in all three aging processes,

demonstrating the effectiveness of our method. Signs of ag-

ing in results of CAAE are not obvious enough, leading to

large age estimation errors. On CACD, due to the existence

of mismatching between face images and associated labels,

slight performance drop could be observed. Still, the pro-

posed method achieves results comparable to previous state-

of-the-art. This shows that our method is relatively robust

to noise in attribute labels and thus lower the requirement

on the accuracy of the prior attribute detection process.

Identity Preservation: Face verification experiments

are conducted to check whether the identity information has

been preserved during the face aging process. Similar to

previous literature, comparisons between synthetic elderly

face images from different age groups of the same subject

are also conducted to inspect if the identity information is

consistent among three separately trained age mappings.

Results of face verification experiments are shown in Ta-

ble 2. On Morph, our method achieves the highest verifi-

cation rate on all three translations and outperforms other

approaches by a clear margin, especially in the hardest case

(from 30- to 51+). This demonstrates that the proposed

method successfully achieves identity permanence during

face aging. On the more challenging dataset CACD contain-

ing mismatched labels, the performance of our method is

comparable to PAG-GAN with minor difference. Notably,

as the time interval between two face images of a single

subject increases, both verification confidence and accuracy
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Table 2. Face verification results on Morph and CACD.

Morph CACD

Age group 31 - 40 41 - 50 51 + Age group 31 - 40 41 - 50 51 +

Verification Confidence Verification Confidence

30 - 95.77 94.64 87.53 30 - 93.67 91.54 90.32

31 - 40 - 95.47 89.53 31 - 40 - 91.74 90.54

41 - 50 - - 90.50 41 - 50 - - 91.12

Verification Rate (%) Verification Rate (%)

CAAE 15.07 12.02 8.22 CAAE 4.66 3.41 2.40

GLCA-GAN 97.66 96.67 91.85 GLCA-GAN 97.72 94.18 92.29

PAG-GAN 100.00 98.91 93.09 PAG-GAN 99.99 99.81 98.28

Ours 100.00 100.00 98.26 Ours 99.76 98.74 98.44

Table 3. Facial attributes preservation rates for ‘Gender’ and ‘Race’ on Morph and CACD.

Preservation Rate (%) of ‘Gender’ Preservation Rate (%) of ‘Race’

Morph CACD Morph

Age group 31 - 40 41 - 50 51 + 31 - 40 41 - 50 51 + 31 - 40 41 - 50 51 +

GLCA-GAN 96.30 95.43 95.77 87.27 86.79 85.89 91.79 89.52 89.34

PAG-GAN 95.96 93.77 92.47 83.97 81.28 70.05 95.83 88.51 87.98

Ours 97.37 97.21 96.07 90.71 87.63 87.19 95.86 94.10 93.22

decrease, which is reasonable as greater changes in facial

appearance may occur as more time elapsed.

4.5. Facial Attribute Consistency

We evaluate the performance of facial attribute preser-

vation by comparing facial attributes estimated before and

after age progression, and results are listed in Table 3. On

Morph, facial attributes of the majority of testing samples

(up to 97.37% for ‘gender’ and 95.86% for ‘race’) are well

preserved in the aging process. In addition, our method out-

performs both GLCA-GAN and PAG-GAN by clear mar-

gins on translations to all age groups. On CACD, due to

the influence of mistakenly labeled data samples, clear per-

formance drop could be observed compared to the results

on Morph. However, our method still gives better perfor-

mance on facial attributes preservation than other methods.

The advantage of our method in preserving the ‘gender’ at-

tribute becomes greater as the age gap increases, and finally

reaches 17.14% (87.19% over 70.05%) when translating to

the oldest age group 51+. From Table 3, we could conclude

that undesired changes of facial attributes are more likely to

happen as the age gap increases, and incorporating condi-

tional information is beneficial for maintaining consistency

of target facial attributes in the aging process.

4.6. Ablation Study

In this part, experiments are conducted to fully ex-

plore the contribution of facial attribute embedding (FAE)

      Test Face            woFAE_woWPT       woFAE_wWPT        wFAE_woWPT            Proposed 

    Black Female            Black Male                Black Male             Black Female           Black Female
            19                              52                              50                            43                             53

                                           92.78                          91.08                       92.87                        89.94

    White Female           White Male               White Male             White Female           White Female
            30                              65                             65                             52                             64

                                           90.03                         76.85                       87.16                         81.66

(a)

(b)

Figure 7. Sample visual results of the ablation study. For each face,

the estimated age (first row) and detected attributes (second row)

are listed underneath. Values in the last row are face verification

confidence between generation results and the test face.

and wavelet packet transform (WPT) in simulating accu-

rate age translations. We investigate the impact of includ-

ing/excluding attribute embedding (w/wo FAE) and wavelet

packet transform (w/wo WPT) on age distribution, face ver-

ification rate, and attribute preservation rate. All experi-

ments in this subsection are conducted only on Morph as

labels are noisy on CACD dataset.

Visual illustrations of face images generated by vari-

ants of the proposed model are shown in Fig. 7. It is

clear that when both FAE and WPT are not involved

(woFAE woWPT), generation results suffer from severe
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Table 4. Comparison of results on facial attribute preservation and aging accuracy between variants of the proposed model (differences of

mean ages are measured in absolute value).

Gender Preservation Rate (%) Race Preservation Rate (%) Deviation of Estimated Ages

Age group 31-40 41-50 51+ 31-40 41-50 51+ 31-40 41-50 51+

woFAE / woWPT 95.72 94.21 93.60 95.04 93.55 90.83 0.44 1.72 3.03

woFAE / wWPT 96.15 94.90 93.61 93.89 88.63 90.21 0.68 0.41 2.31

wFAE / woWPT 97.21 96.91 95.85 95.22 94.35 91.43 0.82 0.52 4.82

Ours 97.37 97.21 96.07 95.86 94.10 93.22 0.13 0.19 0.68

Table 5. Face verification rates (%) of variants of the proposed

model on Morph

Age group 31-40 41-50 51+

woFAE / woWPT 100.00 100.00 99.92

woFAE / wWPT 100.00 99.88 98.06

wFAE / woWPT 100.00 100.00 98.86

Ours 100.00 100.00 98.26

ghosting artifacts. Due to the intrinsic matching ambiguity

of unpaired training data, the model without FAE mistak-

enly attaches moustache to the input female face image to

show the aging effect. Notably, growing a moustache does

not decrease the face verification confidence, as the gener-

ated face image still shares similar identity-related features

with the input. This again confirms our observation that

enforcing identity consistency is insufficient to obtain satis-

factory face aging results.

On the contrary, incorporating FAE suppresses the unde-

sired facial attribute drift by reducing the matching ambigu-

ity. To be specific, in Fig. 7, there is no more moustache in

generation results after adopting FAE thus facial attribute

consistency is achieved. Unfortunately, removing mous-

tache also wipes out aging-related textural details (wrinkles,

laugh lines, and eye bags), leading to relatively inaccurate

aging results (much younger than expected).

To solve this issue and generate more visually plausible

face images with vivid signs of aging, WPT is employed

as the initial layer of the discriminator. The contribution of

WPT could be easily seen by comparing the results obtained

under setting ‘woFAE / woWPT’ and ‘woFAE / wWPT’,

as well as ‘wFAE / woWPT’ and ‘Ours’. Although results

obtained under setting ‘woFAE / wWPT’ still suffer from

wrong facial attributes, ghosting artifacts are significantly

alleviated and lifelike aging effects are clearly observed.

Quantitative results for ablation study are shown in Ta-

ble 4 and 5. According to results in Table 4, introducing

facial attribute embedding (wFAE) increases preservation

rates for both ‘gender’ and ‘race’ under all three age map-

pings, especially in the case of translating to 51+. This

proves the effectiveness of attribute embedding as it aligns

unpaired age data in terms of facial attributes and thus re-

duces the intrinsic ambiguity in data mapping.

In addition, it is clear that adopting WPT reduces the

discrepancies between age distributions of generic and syn-

thetic images in all cases. However, WPT provides little

help in maintaining facial attribute consistency. This is be-

cause WPT only captures feature based on low-level vi-

sual data and could not bridge the semantic gap, so that the

framework still suffers from mismatched data samples.

Combining results in Table 4 and 5, it could be seen

that while attribute preservation rates still have room for

improvement, verification rates are about to reach perfec-

tion. This observation validates our statement that identity

preservation does not guarantee that facial attributes remain

stable during the aging process. Therefore, besides con-

straints on identity, supervision on facial attributes are also

helpful to reduce the intrinsic matching ambiguity of un-

paired data and achieve satisfactory face aging results.

5. Conclusion

In this paper, we propose a GAN-based framework to

synthesize aged face images. Due to the ineffectiveness of

identity constraints in reducing the matching ambiguity of

unpaired aging data, we propose to employ facial attributes

to tackle this issue. Specifically, we embed facial attribute

vectors to both the generator and discriminator to encour-

age generated images to be faithful to facial attributes of the

corresponding input image. To further improve the visual fi-

delity of generated face images, wavelet packet transform is

introduced to extract textual features at multiple scales effi-

ciently. Extensive experiments are conducted on Morph and

CACD, and qualitative results demonstrate that our method

could synthesize lifelike face images robust to both PIE

variations and noisy labels. Furthermore, quantitative re-

sults obtained via public APIs validate the effectiveness of

the proposed method in aging accuracy as well as identity

and attribute preservation.

Acknowledgements. This work is supported by the

National Natural Science Foundation of China (Grant No.

61702513, U1836217, 61427811).

11884



References

[1] Grigory Antipov, Moez Baccouche, and Jean-Luc Dugelay.

Face aging with conditional generative adversarial networks.

IEEE International Conference on Image Processing (ICIP),

pages 2089–2093, 2017.

[2] Bor-Chun Chen, Chu-Song Chen, and Winston H Hsu. Face

recognition and retrieval using cross-age reference coding

with cross-age celebrity dataset. IEEE Transactions on Mul-

timedia (TMM), 17(6):804–815, 2015.

[3] Chi Nhan Duong, Khoa Luu, Kha Gia Quach, and Tien D

Bui. Longitudinal face modeling via temporal deep restricted

boltzmann machines. In Proceedings of the IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

pages 5772–5780, 2016.

[4] Chi Nhan Duong, Kha Gia Quach, Khoa Luu, T Hoang Ngan

Le, and Marios Savvides. Temporal non-volume preserv-

ing approach to facial age-progression and age-invariant

face recognition. In Proceedings of the IEEE International

Conference on Computer Vision (ICCV), pages 3755–3763,

2017.

[5] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Advances in

neural information processing systems (NIPS), pages 2672–

2680, 2014.

[6] Justin Johnson, Alexandre Alahi, and Li Fei-Fei. Percep-

tual losses for real-time style transfer and super-resolution.

In European Conference on Computer Vision (ECCV), pages

694–711, 2016.

[7] Ira Kemelmacher-Shlizerman, Supasorn Suwajanakorn, and

Steven M Seitz. Illumination-aware age progression. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 3334–3341, 2014.

[8] Andreas Lanitis, Christopher J. Taylor, and Timothy F

Cootes. Toward automatic simulation of aging effects on face

images. IEEE Transactions on Pattern Analysis and Machine

Intelligence (TPAMI), 24(4):442–455, 2002.

[9] Peipei Li, Yibo Hu, Qi Li, Ran He, and Zhenan Sun. Global

and local consistent age generative adversarial networks. In

International Conference on Pattern Recognition (ICPR),

pages 1073–1078, 2018.

[10] Qi Li, Yunfan Liu, and Zhenan Sun. Age progression and

regression with spatial attention modules. In arXiv preprint

arXiv:1903.02133, 2019.

[11] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.

Deep learning face attributes in the wild. In Proceedings

of the IEEE International Conference on Computer Vision

(ICCV), 2015.

[12] Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen

Wang, and Stephen Paul Smolley. Least squares generative

adversarial networks. In Proceedings of the IEEE Interna-

tional Conference on Computer Vision (ICCV), pages 2813–

2821, 2017.

[13] Megvii Inc. Face++ research toolkit. http://www.

faceplusplus.com.

[14] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, et al.

Deep face recognition. In British Machine Vision Conference

(BMVC), pages 41.1–41.12, 2015.

[15] Karl Ricanek and Tamirat Tesafaye. Morph: A longitudinal

image database of normal adult age-progression. In the Inter-

national Conference on Automatic Face and Gesture Recog-

nition (FG), pages 341–345, 2006.

[16] Xiangbo Shu, Jinhui Tang, Hanjiang Lai, Luoqi Liu, and

Shuicheng Yan. Personalized age progression with aging

dictionary. In Proceedings of the IEEE International Confer-

ence on Computer Vision (ICCV), pages 3970–3978, 2015.

[17] Jingkuan Song, Jingqiu Zhang, Lianli Gao, Xianglong Liu,

and Heng Tao Shen. Dual conditional gans for face aging and

rejuvenation. In Proceedings of the Twenty-Seventh Inter-

national Joint Conference on Artificial Intelligence (IJCAI),

pages 899–905, 2018.

[18] Jinli Suo, Xilin Chen, Shiguang Shan, Wen Gao, and Qiong-

hai Dai. A concatenational graph evolution aging model.

IEEE Transactions on Pattern Analysis and Machine Intelli-

gence (TPAMI), 34(11):2083–2096, 2012.

[19] Jinli Suo, Song-Chun Zhu, Shiguang Shan, and Xilin Chen.

A compositional and dynamic model for face aging. IEEE

Transactions on Pattern Analysis and Machine Intelligence

(TPAMI), 32(3):385–401, 2010.

[20] Yusuke Tazoe, Hiroaki Gohara, Akinobu Maejima, and Shi-

geo Morishima. Facial aging simulator considering geome-

try and patch-tiled texture. In ACM SIGGRAPH, 2012.

[21] Bernard Tiddeman, Michael Burt, and David Perrett. Pro-

totyping and transforming facial textures for perception

research. IEEE Computer graphics and applications,

21(5):42–50, 2001.

[22] James T Todd, Leonard S Mark, Robert E Shaw, and John B

Pittenger. The perception of human growth. Scientific Amer-

ican, 242(2):132–145, 1980.

[23] Wei Wang, Zhen Cui, Yan Yan, Jiashi Feng, Shuicheng Yan,

Xiangbo Shu, and Nicu Sebe. Recurrent face aging. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 2378–2386, 2016.

[24] Z. Wang, W. Luo X. Tang, and S. Gao. Face aging with

identity-preserved conditional generative adversarial net-

works. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2018.

[25] Hongyu Yang, Di Huang, Yunhong Wang, and Anil K. Jain.

Learning face age progression: A pyramid architecture of

gans. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 31–39, 2018.

[26] Hongyu Yang, Di Huang, Yunhong Wang, Heng Wang, and

Yuanyan Tang. Face aging effect simulation using hidden

factor analysis joint sparse representation. IEEE Transac-

tions on Image Processing (TIP), 25(6):2493–2507, 2016.

[27] Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and Yu Qiao.

Joint face detection and alignment using multitask cascaded

convolutional networks. IEEE Signal Processing Letters,

23(10):1499–1503, 2016.

[28] Zhifei Zhang, Yang Song, and Hairong Qi. Age progres-

sion/regression by conditional adversarial autoencoder. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pages 4352–4360, 2017.

11885



[29] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In Proceedings of the IEEE

International Conference on Computer Vision (ICCV), pages

2242–2251, 2017.

11886


