
Compact Feature Learning for Multi-domain Image Classification

Yajing Liu1, Xinmei Tian1(B), Ya Li2, Zhiwei Xiong1, Feng Wu1

1University of Science and Technology of China, Hefei, China
2iFLYTEK Research, Hefei, China

lyj123@mail.ustc.edu.cn, xinmei@ustc.edu.cn,

yali8@iflytek.com, zwxiong@ustc.edu.cn, fengwu@ustc.edu.cn

Abstract

The goal of multi-domain learning is to improve the per-

formance over multiple domains by making full use of all

training data from them. However, variations of feature dis-

tributions across different domains result in a non-trivial

solution of multi-domain learning. The state-of-the-art

work regarding multi-domain classification aims to extract

domain-invariant features and domain-specific features in-

dependently. However, they view the distributions of fea-

tures from different classes as a general distribution and try

to match these distributions across domains, which lead to

the mixture of features from different classes across domains

and degrade the performance of classification. Addition-

ally, existing works only force the shared features among

domains to be orthogonal to the features in the domain-

specific network. However, redundant features between the

domain-specific networks still remain, which may shrink the

discriminative ability of domain-specific features. There-

fore, we propose an end-to-end network to obtain the more

optimal features, which we call compact features. We pro-

pose to extract the domain-invariant features by matching

the joint distributions of different domains, which have dis-

tinct boundaries between different classes. Moreover, we

add an orthogonal constraint between the private features

across domains to ensure the discriminative ability of the

domain-specific space. The proposed method is validated

on three landmark datasets, and the results demonstrate the

effectiveness of our method.

1. Introduction

Image classification is one of the fundemental branches

of computer vision tasks and has achieved impressive suc-

cess with the advances of deep learning [11, 13]. How-

ever, due to the various exteral factors, such as viewpoint

changes and background noise, in the real world, a classifier

trained on one domain is likely to perform poorly on another

domain. What’s more, labeling enough samples in each

Figure 1. The two curves in (a) represent two classifiers in two

domains. Features in each domain can be well-separated by its

own classifier. However, when features from different domains

are put together, the features from different classes across domains

are mixed up. Therefore, we apply a shared classifier to match the

conditional distributions P (Y |Fs(X)) across domains. As shown

in (b), features from different classes are well separated.

domain is time consuming. To address these drawbacks,

multi-domain learning aims to make full use of the training

data to simulataneously improve the general classification

performance over all domains [15]. Previous works regard-

ing multi-domain learning trains classifiers in a collabrative

way based on multi-task learning [23]. These approaches

decompose the classifier in each domain into a shared part

and a domain-specific part. The sharing knowledge used in

the network significantly improves the classification perfor-

mance over all domains. Unfortunately, these networks do

not consider the matching of distributions across domains.

Consequently, the shared knowledge cannot realize its full

potential to improve the general classification performance

in related domains.

Recent works [4, 17, 3] use a network with the adver-

sarial loss to overcome the aforementioned drawbacks. Let

X , Fs(X) and Y denote the images, shared features after

transformation and category labels, respectively. Adversar-

ial training is applied to match the marginal distributions of

shared features Fs(X). Under the assumption that the cor-

relations P (Y |Fs(X)) between the marginal distributions
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Figure 2. Redundant common features probably arise in the private

space in previous works as shown in (a). The redundancy exists in

the private network, then the private network does not make full

use of the parameters and learning spaces. This can decrease the

discriminability of the learned features, and thus increases the dif-

ficulty of accurate classification. In (b), we apply the orthogonal

restriction between private features across domains in order to pre-

vent the redundant features between domain-specific spaces.

P (Fs(X)) and P (Y ) keep stable across domains, early ap-

proaches deem the distributions of features in the same class

are matched. Unfortunately, the assumption does not al-

ways hold in practice. As shown in Figure 1(a), although

the features in each domain can be well-separated by its own

classifier, when they are put together only with the match-

ing of marginal distributions Fs(X), features from different

classes across domains can be mixed up. To separate sam-

ples from different classes, we apply a shared classifier that

matches the conditional distributions P (Y |Fs(X)) of the

features. In this way, joint distributions P (Fs(X), Y ) of

different domains are matched, and samples from different

classes are well separated as shown in Figure 1(b).

Another problem that arises in existing works [4, 17, 3]

is that they make assumptions that domain-specific features

can be learned automatically just utilizing the orthogonal

constraint between the domain-specific space and the shared

space. However, the orthogonal property between domain-

specific spaces cannot be guaranteed, which results in the

redundant features between domain-specific spaces. As

shown in Figure 2(a), if the redundancy exists in the private

network, the private network does not make full use of the

parameters and learning spaces. This can decrease the dis-

criminability of the learned features, and thus increases the

difficulty of accurate classification. Furthermore, the shared

space is not well learned for the reason that the shared fea-

tures occur in the private space instead. Considering these

drawbacks, as in Figure 2(b),we apply an orthogonal reg-

ularization between private features across domains to pre-

vent the redundant features between domain-specific spaces

and then ensure the uniqueness of each private space.

In this paper, we propose a compact feature learning

method that guarantees the uniqueness of each domain-

specific space and prevents the mixture of samples from dif-

ferent classes across domains during domain-invariant fea-

ture learning. The contributions of our work can be summa-

rized as follows:

• The proposed network realizes compact feature learn-

ing, which extracts independent domain-specific fea-

tures and the domain-invariant features with distinct

class boundaries.

• We train an adversarial network with a shared classi-

fier across domains, in which the joint distributions

P (Fs(X), Y ) can be automatically matched. Then the

features in different classes across domains can be well

separated.

• We propose an orthogonal regularization between pri-

vate spaces to ensure the uniqueness of the private

space and eradicate the redundant information in the

network.

We conduct extensive experiments on several multi-

domain datasets and the results demonstrate the effective-

ness of our approach.

2. Related Work

Multi-domain learning aims to improve the classification

performance in general domains by making full use of the

information in each domain. Previous works have proposed

to improve the performance of multi-domain learning using

multi-task learning.

Existing approaches in multi-task learning based on neu-

ral networks can be broadly categorized into two meth-

ods: the parameter sharing methods [19], which entail the

parameter restriction of hidden layers; the feature sharing

methods, in which task-invariant representations can au-

tomatically be learned through the architecture of the net-

work. In parameter restriction studies, Caruna et al. [2] re-

alizes complete parameter sharing across tasks in lower lay-

ers, while task-specific output layers are maintained at the

end of each task. Additionally, Duong et al. [6] and Yang et

al. [24] respectively apply l2 regularizations and trace norm

regularizations between parameters to encourage the learn-

ing of common knowledge across tasks. However, the loca-

tion of the shared layers in parameter restriction approaches

is determined before training, which constrains the flexi-

bility of the network [8]. For feature sharing approaches,

the cross-stitch network [18] aims to linearly combine the

outputs from the identical layers in each task-specific net-

work, while the cross-stitch units determine the influence

degree of the shared knowledge from each task. Moreover,

cross-connect network [8] uses 1×1 convolution layers to

connect the identical layers in each network for different

tasks, which increases the flexibility of the network. How-

ever, all of these networks have no consider matching of

distributions of the task-invariant features across tasks, sub-

sequently degrading the performance of these works.
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Unlike above methods, recent works aim to extract

the shared knowledge through Bregman Divergence-Based

Regularization [21] and the adversarial training network,

which performs well in transfer learning and multi-domain

learning. Transfer learning generally aims to learn invariant

representations or parameters in different domains. How-

ever, multi-domain classification aims to learn invariant rep-

resentations while preserving the private representations.

Liu et al. [17] obtains the domain-invariant information

in multiple related domains through the adversarial train-

ing strategy while eliminating redundant features between

the private and shared spaces via orthogonal regularization.

Chen et al. [3] proposes to use the negative log-likelihood

loss and the l2 loss instead of the adversarial loss alone.

The combination of domain-invariant features and domain-

specific features significantly improves the performance in

text classification for multi-domain learning. In this paper,

we focus on the multi-domain learning for image classifi-

cation problems and realize the compact feature learning,

consequently obtaining a remarkable result.

3. Approach

We first introduce multi-domain learning and define the

notation used in this paper. Then we present details of the

proposed multi-domain learning approach.

3.1. Multidomain learning

Suppose the feature and the label spaces are represented

by X and Y respectively. A domain defined on X × Y can

be represented by a joint probability distribution P (X,Y ).
For simplicity, Pm(X,Y ) denotes the joint distribution of

the datasets in the m-th domain and Pm(X) denotes the

marginal distribution of the datasets. Each dataset is asso-

ciated with a sample Dm = {xi, yi}
Nm

i=1
, where Nm is the

sample size of the m-th domain. Given C related domains

P1(X,Y ), P2(X,Y ), . . . , PC(X,Y ) and their correspond-

ing datasets Dm = {xi, yi}
Nm

i=1
, the goal of multi-domain

learning discussed in this paper is to learn a multi-branch

model f : Xm → Ym, m = {1, 2, . . . , C} to classify

all datasets correctly in parallel. Multi-domain learning

considers the distribution bias between different domains,

which might be caused by the camera’s viewpoint, back-

ground noise or image style, etc. And then it aims to learn

a general multi-branch model to improve the performance

over all domains simultaneously.

3.2. Proposed multidomain classification model

As shown in Figure 3, our multi-domain classification

model is composed of three components: the shared feature

learning network, the private feature learning network and

the classification network for each domain.

To extract domain-invariant features through the match-

ing of joint distributions of features P (Fs(X), Y ) across

domains, the joint adversarial shared network is applied. It

is in the middle of the architecture with blue colors in Fig-

ure 3. Image features are extracted with several convolution

neural networks. Besides, the matching of feature distri-

butions is guaranteed by one image classification network

and one discriminator simultaneously. The multi-player ad-

versarial discriminator is applied to ensure the match of

marginal distributions P (Fs(X)) of features [16]. Addi-

tionally, the shared classifier matches the conditional dis-

tributions P (Y |Fs(X)) across domains. Consequently, the

joint distributions of shared features P (Y,Fs(X)) in differ-

ent domains are matched.

The private network aims to learn the domain-specific

information which preserves the characteristics of each do-

main. It is shown at two sides of the shared network in

Figure 3. To obtain the domain-specific knowledge and fur-

ther promoting domain-invariant feature learning, we intro-

duce two types of orthogonal regularizations: the regular-

ization between private features and shared features in each

domain; the regularization between private features across

domains. Consequently, the independence of each feature

space can be guaranteed. At training and testing process, the

learned shared features Fs(x) and private features Fp(x)
are concatenated and fed into the classification network for

each domain. We call the shared features and private fea-

tures as compact features Fcompact:

Fcompact = [Fs(x),Fp(x)] (1)

The main learning goal in our multi-domain learning archi-

tecture can be formulated as:

Ldomain = −

C
∑

m=1

1

Nm

Nm
∑

i=1

log[Cm(ymi |Fcompact)] (2)

we denote the classifier in each domain by Cm. The pro-

posed compact feature learning improves the classification

performance of each domain.

3.3. Joint adversarial shared network

Previous methods are proposed to obtain domain-

invariant features through matching the marginal distribu-

tions of features P (Fs(X)). Each domain has its own clas-

sifier, which has no restriction of the matching of condi-

tional distributions P (Y |Fs(X)) across domains. With-

out considering their class labels in the adversarial training,

domain-invariant features in different classes are probably

mixed up. To address this drawback, our approach separates

shared features from different classes through applying an

adversarial training algorithm with a shared classifier.

This shared classifier and the domain adversarial net-

work cope with all domain-invariant features in the same

manner. The domain adversarial network is connected with

the feature exacting network through a gradient reversal

layer (GRL), which layer [9] forwards the input to the fol-

lowing layers but reverses the gradient during the backward

7195



Figure 3. The proposed multi-domain classification model. The joint adversarial shared network is in the middle of the architecture with

blue colors. A domain discriminator and a shared classifier are applied at the end of the shared feature extracting network to guarantee the

joint distribution matching of features. The private network is shown at two sides of the shared network. Feature orthogonal regularization

is applied between private features across domains, in addition to private features and shared features in each domain. Compared with [3],

we add the joint adversarial loss and the orthogonal regularizations between private features across domains.

propagation. We define the minimax game of joint adver-

sarial learning(jal) as follow:

Ljal = min
Fs,Cs

max
d1,...,dc

(−
C
∑

m=1

1

Nm

Nm
∑

i=1

log[Cs(yi|(Fs(xi))]

+

C
∑

m=1

1

Nm

Nm
∑

i=1

log[dm(Fs(xi))])

(3)

where dm is the m-th domain discriminator and Fs, Cs
represent the shared feature extracting network and

the shared classification network, respectively. Since

we constrain Cs to a simple linear transformation or

shallow network, Cs(Y |Fs(X)) can be simplified as

P i
Fs

(Y |X). Under the assumption that the shared

classifier predicts the samples from the same class in

different domains as the same accurate one-hot label,

the network can perfectly match the conditional distribu-

tions across different domains. It can be formulated as

P 1

Fs
(Y |X) = . . . = PC

Fs
(Y |X) = PFs

(Y |X) . At the

same time, under the restriction of the negative gradients,

the shared feature extracting network expects that the ex-

acted features can mislead the domain classification results,

but the discriminator tries its best to correctly classify

the domain category of features [10]. Consequently, the

domain discriminator results in the minimax game in the

network, which leads to the domain-invariant property

of the shared features. At the end of the training phase,

the network will reach a point that each network cannot

improve its performance and the domain-invariant features

in joint distribution matching are obtained.

• Proof of joint distribution matching

The cost function of the minimax game in the network

can be formulated as:

φ = min
Fs

max
d1,...,dc

C
∑

m=1

1

Nm

Nm
∑

i=1

log[dm(Fs(xi))],

s.t.

C
∑

m=1

dm((Fs(x))) = 1

(4)

The marginal distribution and the joint distribution of

shared features after transformation in the i-th domain are

denoted by P i
Fs

(X) and P i
Fs

(X), respectively.

The optimal procedure in the network is consist of two

stages. In Stage 1, the discriminator is unrelated to the

distribution of Y , then, we provide the optimal discrimina-

tor under a fixed transformation Fs from [10, 16] directly.

In Stage 2, we obtain the optimal domain-invariant feature

transformation under the shared classifier and the fixed dis-

criminator in Stage 1.

Stage 1. Let x′, y = Fs(x). For a fixed transforma-

tion Fs, the optimal prediction probabilities d1Fs
, . . . , dCFs

of discriminator d are:

dm∗
Fs

(x′) =
Pm∗
Fs

(x′)
∑C

m=1
Pm∗
Fs

(x′)
(5)
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Stage 2.When we obtain the optimal point of d, let

φ′ = min
Fs

C
∑

m=1

1

Nm

Nm
∑

i=1

log[dm(Fs(xi))],

= min
Fs

C
∑

m=1

1

Nm

Nm
∑

i=1

log[
Pm
Fs

(x′)
∑C

m=1
Pm
Fs

(x′)
]

(6)

φ′ achieves the value −ClogC in the global mini-

mum, and the balanced point is achieved if and only if

P 1

Fs
(X,Y ) = · · · = PC

Fs
(X,Y )

Proof. Under the assumption that we can obtain the

optimal shared classifier, we can arrive the optimal point

P 1

Fs
(Y |X) = · · · = PC

Fs
(Y |X) = PFs

(Y |X). Then we

can obtain:

φ′ =

C
∑

m=1

1

Nm

Nm
∑

i=1

[log[
Pm
Fs

(x′)
∑C

m=1
Pm
Fs

(x′)
] + logC]− ClogC

=

C
∑

m=1

1

Nm

Nm
∑

i=1

log[
Pm
Fs

(x′)PFs
(y|x′)

1

C

∑C

m=1
Pm
Fs

(x′)PFs
(y|x′)

]− ClogC

=
C
∑

m=1

1

Nm

Nm
∑

i=1

log[
Pm
Fs

(x′, y)
1

C

∑C

m=1
Pm
Fs

(x′, y)
]− ClogC

= C · JSD(P 1

Fs
(X,Y ), . . . , PC

Fs
(X,Y ))− ClogC

(7)

since the Jensen-Shannon divergence(JSD) loss is non-

negative, the only zero solution arrives at P 1

Fs
(X,Y ) =

P 2

Fs
(X,Y ) = · · · = PC

Fs
(X,Y ), which implies that the

joint distributions of learned feature representations across

domains are perfectly matched. Moreover, φ′ achieves the

global minimum −ClogC.

3.4. Orthogonal regularization

Private neural networks are shown on two sides of the

shared network in Figure 3. They aim to learn domain-

specific information that can not be learned in the shared

network, which mostly preserve the discriminative ability

and provide strong support for the domain-invariant fea-

tures. To obtain the domain-specific knowledge, we in-

troduce two types of orthogonal regularizations: the or-

thogonal regularization between domain-invariant features

and domain-specific features in each domain; the orthogo-

nal regularization between domain-specific features across

domains. We call the first kind of regularization as intra-

domain orthogonal regularization and the second as extra-

domain orthogonal regularization.

In previous works, they only apply a soft subspace or-

thogonal regularization [1] between the private and the

shared space in each domain to ensure their independence,

which can be formulated as follows:

Rintra orth =
∑C

m=1

‖S⊤
mHm‖2F (8)

where Sm is the matrix whose rows are the domain-invariant

features in the m-th domain, and Hm is the matrix whose

rows are the domain-specific features in the m-th domain.

There exists a potential drawback in this model: the

domain-invariant features can simultaneously occur in mul-

tiple private networks among different domains. Let

H1,H1

p represents the entire feature space and private fea-

ture space in domain 1, H2,H2

p represents the entire fea-

ture space and the private feature space in domain 2, and S
represents the shared space between domains; then, we can

formulate the loss in previous work as:


















H1 = H1

p + S

H2 = H2

p + S

H1

p ∩ S = {0}

H2

p ∩ S = {0}

(9)

The solution is not unique and can be represented as:










H1

p = H1∗
p + S ′

H2

p = H2∗
p + S ′

S = S∗ − S ′

(10)

where H1∗
p ,H2∗

p ,S∗ represent the optimal feature spaces;

S ′ is the complementary subspace of S in S∗. The duplicate

subspace S ′ probably arises in the private feature spaces,

then the individual network loses its own characteristics.

Therefore, we apply the subspace orthogonal regularization

between private features across domains. We express the

extra-domain regularization as:

Rextra orth =

C
∑

m1=1

C
∑

m2=1,
m2 6=m1

‖H⊤
m1

Hm2
‖2F (11)

where we denote the domain-specific features in the m1-

th and m2-th domains as Hm1
and Hm2

. Then, by forcing

S ′ = {0}, we obtain the optimal solutions H1∗
p ,H2∗

p ,S∗.

Furthermore, the disappearance of domain-invariant fea-

tures in the domain-specific feature space promotes the

learning of the shared network.

To reduce the correlation between private features and

shared features in each domain, we add the procedure of

training domain-specific features individually. We set all

domain-invariant features to zero and only train the domain-

specific features in this procedure:

Fzeros private = [zeros,Fp(x)] (12)

The private feature learning can be formulated as:

Lp = min
Fp

(−

C
∑

m=1

1

Nm

Nm
∑

i=1

log[Cm(ymi |Fzeros private)])

(13)

where Fp represents parameters in the private feature ex-

tracting network. The entire network realizes the optimal

independent feature learning with the well-designed regu-
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larizations and losses.

3.5. Training procedure

The aforementioned losses and regularizations can be

linearly combined as follows:

Lall = Ldomain + λ1Ljal + λ2Rintra orth + λ3Rextra orth

(14)

where λi denotes the weight of each restriction. The

stochastic gradient descent is applied to update the param-

eters in the network and the gradient reversal layer reverses

the gradient from the domain discriminative network to up-

date the parameters in the feature extracting network. The

entire training procedure is shown in Algorithm 1, the opti-

mization process stops until finding the saddle point in neu-

ral networks.

Algorithm 1 The training procedure for proposed compact

feature learning

Input:

C labeled datasets {Xm, Ym}Cm=1
; Initiated shared fea-

ture extractor Fs; Initiated private feature extractor Fp;

Shared category classifier Cs; Domain discriminator D;

Domain category classifier {Cm}Cm=1
;

Output:

Well-trained shared feature extractor F∗
s ; Initiated pri-

vate feature extractor F∗
p ; Domain category classifier

{Cm}Cm=1
;

1: while not converged do

2: Sample mini-batch from {Xm, Ym}Cm=1

3: for m = 1 : C do

4: Update Fp, Fs, Cm by Eq.2, Eq.8, Eq.11;

5: Update Fp by Eq.13, fix the classifiers in each do-

main and set the shared features to zeros, then up-

date the parameters in Fp;

6: Update Fs, Cs, D by Eq.3, reverse the gradient

from the discriminator during the backward prop-

agation to update the parameters in the Fs;

7: end for

8: end while

9: return F∗
p = Fp;F

∗
s = Fs; C

∗
m = Cm;

4. Experiments

We evaluate our proposed method on three image clas-

sification datasets: the MNIST dataset, the VLCS dataset

[22, 12] and the PACS [14] dataset. We compare our pro-

posed methods with these following works:

• Indiv: Different networks are applied to deal with dif-

ferent domains. Each network is trained individually

without any connection with the networks for related

domains.

Table 1. Performance comparison between different methods for

multi-domain learning with respect to accuracy(%) on MNIST

dataset.

Method
Domain 1 Domain 2

Mnist Mnist m

Indiv 96.01 85.76

Indiv l2 96.32 85.93

Cross stitch 96.38 86.34

Cross connect 96.28 87.09

Share 96.48 86.16

MAN 96.48 86.62

JARN 96.56 88.54

JOARN 97.10 89.34

Figure 4. Visualization of examples in MNIST-M and MNIST

dataset.

• Indiv l2 [6]: Each domain has an individual network,

and the l2 distance regularization among parameters

between the networks for different domains is applied.

• Cross stitch [18]: Different networks are applied to

address different domains. The outputs in identical

shallow layers of each domain are linearly combined

for feature sharing.

• Cross connect [8]: Different networks are applied to

address different domains. 1×1 convolution layers be-

tween identical layers in each domain are applied to

learn the influence degree of each feature map in the

related domains.

• Share: Instead of the individual network for each do-

main, a single network is applied to simultaneously ad-

dress all related domains.

• MAN [3]: The adversarial training strategy is applied

to obtain domain-invariant information and orthogonal

regularizations are applied to eliminate redundant fea-

tures between the private and shared feature spaces.

• JARN (joint adversarial restriction network): The

joint adversarial loss is applied to obtain the joint dis-

tribution matching and orthogonal regularizations are

applied to eliminate redundant features between the

private and shared feature spaces.

• JOARN (joint orthogonal and adversarial restriction

network): Losses and regularizations in Eq.14 are ap-

plied in JOARN.

To ensure the fairness of the experiments, the same archi-

tecture is applied in these aforementioned works.
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(a) Initial shared features (b) Shared features with restriction (c) Initial private features (d) Private features with restriction

Figure 5. The visualization of extracted features in MNIST and MNIST-M. Different colors refer to different classes. From Figure 5(a) and

Figure 5(b), we can observe that with the help of the discriminator and the shared classifier, the distribution of shared features becomes

nondiscriminative across domains and has a clear and distinct boundaries between classes. From Figure 5(c) and Figure 5(d), the domain-

specific features obtain uniqueness and discriminability in each domain with the orthogonal restriction between them.

(a) Accuracy curve of voc2007 (b) Accuracy curve of sun09

Figure 6. Accuracy curves in VLCS. The combination of domain-

invariant features and domain-specific features can significantly

improve the classification performance in each domain.

4.1. MNIST and MNISTM Dataset

4.1.1 Settings

Examples from MNIST-M and MNIST datasets are shown

in Figure 4. The MNIST-M dataset is composed of MNIST

dataset and patches randomly extracted from BSD500. The

variation of backgrounds means the change of image do-

mains. Obviously, the classification in MNIST-M is more

difficult than that in MNIST because of the more compli-

cated background in the pictures. We randomly select 1000

training samples in each domain. All 10000 test examples

in each dataset are used. The architecture that we used is

identical to that in [1]. It has two convolution layers and

three fully connected layers. We connect the GRL layer

to the first fully connected layer in the main network. The

domain-invariant features and domain-specific features are

extracted at the same position.

4.1.2 Visualization and analysis

As indicated in Table 1, we can see that the improvement

in different domains is unbalanced since the shared fea-

tures account for different importance in the classification

problems across datasets. Previous works such as indiv l2,

cross stitch, and cross connect only obtain limited improve-

ment in multi-domain learning. This is because they do not

consider the matching of domain-invariant feature distribu-

tions across domains. Then, the domain-invariant features

cannot be well learned. MAN achieves better performance

since it obtains domain-invariant features through adversar-

ial training, and the domain-specific features and domain-

invariant features are extracted individually to prevent the

interfering between them. Our JARN outperforms MAN.

The shared classifier is applied in JARN to get the joint dis-

tribution matching of domain-invariant features. JOARN

obtains a better result and outperforms all other methods.

To obtain an intuitive observation of the influence of

our proposed regularizations in the network, we use the t-

SNE projection to visualize the domain-invariant features

and domain-specific features in different situations. From

Figure 5(a), we can observe two drawbacks of the shared

features with no restriction. One drawback is the network

can only learn the partial matching between the distribu-

tions of shared features across domains. The other is the

cross-domain features in different classes are mismatched

at the interfacial boundaries, which produces the difficulty

in classification. As shown in Figure 5(b), with the ad-

versarial loss and the shared classifier, the distribution of

shared features becomes nondiscriminative across domains

and has a clear and distinguishable boundary for the main

learning goal. On the other side, the network prefers to learn

domain-specific features of different properties in different

domains in Figure 5(c). Along with the increasing com-

plexity of the dataset, there is probable intersection between

domain-specific feature spaces. In Figure 5(d) the private

features in each domain obtain the uniqueness and discrim-

inability with the orthogonal restriction between them.

4.2. VLCS Dataset

4.2.1 Setting

VLCS is a real world image classification dataset. We

select 3 different types of subdatasets in it for three do-

mains: PASCAL VOC2007 (V) [7], LabelMe (L) [20]

and SUN09 (S) [5]. Each subdataset contains five com-

mon classes: “bird”, “car”, “chair”, “dog” and “person”.

Each subdataset is randomly split into two parts: 70% for

training and 30% for testing. To be consistent with earlier

researches and facilitate comparison experiments, we only
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Table 2. Performance comparison between different methods for multi-domain learning with respect to accuracy(%) on VLCS dataset.

Indiv Indiv l2 Cross stitch Cross connect Share MAN JARN JOARN

Dataset pair 1
Voc2007 78.13 78.13 77.73 78.52 78.42 78.72 79.31 80.00

Sun09 78.40 78.60 78.80 78.90 78.90 78.80 81.03 81.54

Dataset pair 2
Voc2007 78.13 78.62 77.73 78.42 77.93 77.93 78.62 79.41

Labelme 73.13 73.5 74.13 73.25 74.13 73.88 74.5 76.13

Dataset pair 3
Sun09 78.40 78.80 78.90 78.60 78.49 78.30 78.70 80.02

Labelme 73.13 72.75 72.63 72.75 72.88 73.5 74.13 75.75

Table 3. Performance comparison between different methods for multi-domain learning with respect to accuracy(%) on PACS dataset.

Indiv Indiv l2 Cross stitch Cross connect Share MAN JARN JOARN

Dataset pair 1
Cartoon 91.65 91.94 92.26 91.80 91.65 91.80 92.65 93.35

Art painting 87.38 87.54 87.06 87.54 87.86 88.19 89.00 89.97

Dataset pair 2
Cartoon 91.65 91.94 92.08 91.94 91.51 91.51 92.93 93.21

Sketch 90.65 90.74 90.91 90.65 91.08 91.59 92.44 93.12

Dataset pair 3
Art painting 87.38 87.70 87.70 87.86 86.73 87.54 88.51 89.42

Sketch 90.65 90.91 91.16 91.08 91.33 91.93 92.10 93.54

use two subdatasets each time. However, new domains can

be easily extended by appending the affiliated private net-

work. Following previous works, the structures of shared

network and the private network in our multi-domain model

are the same as AlexNet[13], and the convolution layers are

initial with the pretrained Alexnet. Moreover, we extract the

FC6 features as the domain-invariant features and domain-

specific features[14], and we use three fully connected lay-

ers (1024−1024−2) in our domain discriminative network

then connect it with the FC6 layer in the main network via

the GRL.

4.2.2 Analysis

As shown in Figure 6, the domain-invariant features and

domain-specific features can efficiently classify the images,

and the combination of shared features and private features

significantly improves the classification performance. Ad-

ditionally, along with the training, the performance of each

network gradually improves and arrives at a stable stage.

The entire network realizes the optimal independent feature

learning. The experimental results are summarized in Ta-

ble 2. Similar conclusions can be obtained as in the exper-

iments of MNIST and MNIST-M. Note that the result of

MAN is worse than previous works sometimes. This out-

come is because the shared features in MAN only match

the marginal distributions, and the accuracy varies signifi-

cantly in the training process since the changes of the con-

ditional distributions P (Y |Fs(X)) across domains. More-

over, the redundant features in the domain-specific network

lead to the discriminablity of private features. Our network

extracts the shared features through matching joint distri-

butions P (Fs(X), Y ) across domains and obtains indepen-

dent private features, thus performs better than other ones.

4.3. PACS Dataset

We select three different image styles in PACS: art-

painting (A), cartoon (C) and sketch (S). Each image style

can be viewed as one domain. The image styles across do-

mains in PACS are of marked difference. We also split each

subdataset into two parts randomly: 70% for training and

30% for testing. There are 7 common categories in each

dataset: “dog”, “elephant”, “giraffe”, “guitar”, “horse”,

“house”, “person”. Additionally, the training architecture

of the PACS is identical to that of VLCS, except the features

are extracted from the FC7 layer [14] and the GRL layer is

connected to the FC7 layer. Note that PACS has a bigger do-

main bias across subdatasets than VLCS. Consequently, the

conditional distributions P (Y |Fs(X)) across domains vary

significantly and the matching of joint distributions of fea-

tures is of great important. From the results presented in Ta-

ble 3, we can observe that the proposed JARN and JOARN

algorithm achieve the better performance than others, which

demonstrate the effectiveness of our method.

5. Conclusion

In this paper, we propose compact feature learning to in-

dividually extract more optimal domain-invariant features

and domain-specific features. We train the adversarial net-

work with a shared classifier across domains, where the

joint distribution of each domain can be matched. More-

over, the orthogonal loss is applied to ensure the unique-

ness of each private space. Compact feature learning sig-

nificantly improves the general classification performance

over related domains, as the results demonstrate the effec-

tiveness of our method.
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