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Abstract

In this paper, we propose to learn a deep fitting de-
gree scoring network for monocular 3D object detection,
which aims to score fitting degree between proposals and
object conclusively. Different from most existing monocular
frameworks which use tight constraint to get 3D location,
our approach achieves high-precision localization through
measuring the visual fitting degree between the projected
3D proposals and the object. We first regress the dimen-
sion and orientation of the object using an anchor-based
method so that a suitable 3D proposal can be constructed.
We propose FQNet, which can infer the 3D IoU between
the 3D proposals and the object solely based on 2D cues.
Therefore, during the detection process, we sample a large
number of candidates in the 3D space and project these 3D
bounding boxes on 2D image individually. The best candi-
date can be picked out by simply exploring the spatial over-
lap between proposals and the object, in the form of the
output 3D IoU score of FQNet. Experiments on the KITTI
dataset demonstrate the effectiveness of our framework.

1. Introduction

2D perception is far from the requirements for people’s
daily use as people live in a 3D world essentially. In many
applications such as autonomous driving [4, 7, 23, 2, 14]
and vision-based grasping [37, 31, 27], we usually need to
reason about the 3D spatial overlap between objects in order
to understand the realistic scene and take further action. 3D
object detection is one of the most important problems in
3D perception, which requires solving a 9 Degree of Free-
dom (DoF) problem including dimension, orientation, and
location. Although great progress has been made in stereo-
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Figure 1. Comparison between our proposed method and tight-
constraint-based method. The upper part is the commonly used
approach by many existing methods, which neglects the spatial
relation between 3D projection and object, and is very sensitive to
the error brought by 2D detection. The lower part is our proposed
pipeline which reasons about the 3D spatial overlap between 3D
proposals and object so that it can get better detection result.

based [26, 9, 10], RGBD-based [30, 39, 21, 40, 35] and
point-cloud-based [41, 29, 16, 11, 28, 24, 1, 3, 47] 3D ob-
ject detection methods, monocular-image-based approaches
have not been thoroughly studied yet, and most of existing
works focus on the sub-problem, such as orientation esti-
mation [8, 43, 32]. The primary cause is that under monoc-
ular setting, the only cue is the appearance information in
the 2D image, and the real 3D information is not avail-
able, which makes the problem ill-conditioned. However, in
many cases, such as web images, mobile applications [15],
and gastroscopy, the information of depth or point-cloud is
not available or unaffordable. Moreover, in some extreme
scenarios, other sensors can be broken. Therefore, consider-
ing the rich source of monocular images and the robustness
requirements of the system, monocular 3D object detection
problem is of crucial importance.

In monocular 3D object detection problem, dimension
and orientation estimation are easier than location estima-
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tion, because the only available information, appearance, is
strongly related to the former two sub-problems. On the
contrary, it is not practical to directly regress location using
a single image patch, since nearby and faraway objects with
same pose are substantially identical in appearance.

Tight constraint [32, 25] is a commonly used method in
monocular 3D object detection problem, which solves the
location by placing the 3D proposal in the 2D bounding box
compactly. However, the tight constraint has two significant
drawbacks: 1) Image appearance cue is not used; thus it
cannot benefit from a large number of labeled data in the
training set. 2) Its performance highly depends on the 2D
detection accuracy, as shown in Figure 1.

Inspired by the observation that people can easily distin-
guish the quality of 3D detection results through projecting
these 3D bounding boxes on the 2D image and checking
the relation between projections and object (fitting degree),
we believe that exploring the 3D spatial overlap between
proposals and ground-truth is the key to solve the location
estimation problem. In this paper, we first regress the di-
mension and orientation of the object using an anchor-based
method so that we can construct a suitable 3D proposal. The
reason why we emphasize the importance of the regression
step is that without an appropriate proposal, checking the
fitting degree is impractical. Then, we propose Fitting Qual-
ity Network (FQNet) to infer 3D Intersection over Union
(IoU) between 3D proposals and object only using 2D in-
formation. Our motivation is that though the 3D location
is independent of 2D appearance, drawing the projection
results on the 2D image can bring additional information
for the convolutional neural network (CNN) to better un-
derstand the spatial relationship between the original 3D
bounding boxes and the object. As long as the network
learns the pattern of the projected 3D bounding boxes, it
can gain the power of judging the relation between 3D pro-
posals and the object, and achieve high-precision 3D per-
ception. Figure | gives an illustration of the essential dif-
ference between our idea and existing tight constraint-based
method. We can see that our method is not sensitive to the
error of 2D detection results. To the best of our knowledge,
we are the first to solve the monocular 3D detection prob-
lem by exploring the fitting degree between 3D proposals
and object. We conducted experiments on the challenging
KITTT dataset and achieved state-of-the-art monocular 3D
object detection performance, which demonstrates the ef-
fectiveness of our framework.

2. Related Work

Monocular 3D Object Detection: Monocular 3D object
detection is much more difficult than 2D object detection
because of the ambiguities arising from 2D-3D mapping.
Many methods have taken the first step, which can roughly
categorize into two classes: handcrafted approaches and

deep learning based approaches.

Most of the early works belong to the handcrafted ap-
proaches, which concentrated on designing efficient hand-
crafted features. Payet and Todorovic [33] used image
contours as basic features and proposed mid-level features,
called bags of boundaries (BOBs). Fidler ef al. [18] ex-
tended the Deformable Part Model (DPM) and represented
an object class as a deformable 3D cuboid composed of
faces and parts. Pepik et al. [34] included viewpoint infor-
mation and part-level 3D geometry information in the DPM
and achieved robust 3D object representation. Although
these handcrafted methods are very carefully designed and
perform well on some scenarios, their generalization ability
is still limited.

Deep learning based approaches aim to benefit from
end-to-end training and a large amount of labeled data.
Chen et al. [8] generated a set of candidate class-specific
object proposals on a ground prior and used a standard
CNN pipeline to obtain high-quality object detections.
Mousavian et al. [32] presented MultiBin architecture for
orientation regression and tight constraint to solve the
3D translation. Kundu er al. [25] trained a deep CNN
to map image regions to the full 3D shape and pose of
all object instances in the image. Apart from these pure
monocular methods, there are some other methods which
use additional information for training. Xu and Chen [46]
proposed to fuse a monocular depth estimation module
and achieved high-precision localization. Chabot et al. [6]
presented Deep MANTA (Deep Many-Tasks) for simul-
taneous vehicle detection, part localization and visibility
characterization, but their method requires part locations
and visibility annotations. In this paper, we propose a
unified deep learning based pipeline, which does not
require additional labels and can be trained end-to-end
using a large number of augmented data.

Box Refinement Techniques: Our work has some
similarities to the box refinement techniques, which fo-
cused on improving the localization accuracy. In 2D object
detection, the most common method is the bounding box
regression, which was first proposed by Felzenszwalb et
al. [17] and has been used in many state-of-the-art detec-
tors, such as Faster R-CNN [36] and SPP-net [22]. Gidaris
and Komodakis [20] proposed LocNet to further improve
the object-specific localization accuracy through assigning
probabilities to the boundaries. While in monocular 3D
object detection, the work on this level has been limited.
Xiao et al. [45] proposed to localize the corners using a
discriminative parts-based detector. Many works also used
stronger representations to achieve high-precision local-
ization. For example, Zia et al. [48] used a fine-grained
3D shape model, Xiang and Savarese [44] introduced 3D
aspectlet based on a piecewise planar object representation

1058



2D Detection

e

Filter
Result

}— 2D Bounding Box

% Orientation & Dimension Estimation
A p
y Y ‘ . —>‘ Orientation
L Regression \
‘ Image Patch )
2 J| J Module . )
/ ‘ —»J Dimension
- \\7 » 4 N ——
m Location Estimation
=41 -
o
r ) Dense (
W ‘ Seed Candidate — . FQNet —  Location
. - Sampling \

Figure 2. The overall pipeline of our proposed monocular 3D object detection method, which only requires a single RGB image as input,
and can achieve a 3D perception of the objects in the scene. We show some intermediate results on the right.

and Pero et al. [12] proposed to use detailed geometric
models. In our case, we stick to the 3D bounding box
representation and learn the pattern of projected boxes on
the 2D image.

3. Approach

Our framework only requires a single image as input and
can output precise 3D detection results including dimen-
sion, orientation, and location of interested objects. Fig-
ure 2 shows the overall pipeline, where we first perform reg-
ular 2D detection' and then use an anchor-based regression
module to regress the dimension and orientation of each ob-
ject based on the image patch cropped by 2D detection re-
sults. For the 3D location, we first use tight constraint to get
a seed-candidate, then perform Gaussian dense sampling to
generate a large number of candidates within a small range
around the seed-candidate. To evaluate these candidates,
we train a Fitting Quality Network (FQNet) to infer the 3D
IoU between a large number of augmented samples and the
ground truth. Therefore, by estimating the fitting degree
between the candidates and the object, the candidate with
the highest score will be chosen as the 3D detection result.
Our framework separates the dimension and orientation es-
timation process from the location estimation because we

'We use a popular 2D detection algorithm [5] to produce the 2D detec-
tion results.

consider that these tasks are fundamentally different (ori-
entation and dimension are all appearance-related but the
location is not) and the results of dimension and orientation
regression have a significant impact on the location estima-
tion process.

3.1. Regression Module

The input of our regression module is the cropped
detection result of 2D object detection, while the output
is the dimension and orientation of each object. For
dimension, based on appearance, it is not difficult to infer
the type of cars, and cars of the same type usually have
similar length, width, and height. For orientation, it is a
bit more complicated since there are global orientation
and local orientation, but intuitively we can be sure that
different orientation will show different appearance.

Dimension Estimation: To regress the dimension as
accurate as possible, we propose an idea called anchor
cuboid, whose philosophy is similar to MultiBin [32].
We first perform k-means clustering on the training
dataset to find the K cluster centers of the dimension
and regard these cluster centers as 3D anchor cuboids.
During the regression process, the regression module
outputs confidence and offset for each 3D anchor cuboid
respectively, so the output is a 4K -dimensional vector
([ei, Aw;, Ahy, Al;], i = 1, ..., K), and the final regression
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result is the anchor cuboid with the highest confidence
adding corresponding offsets. We optimize this module
using the following loss function:

Lqg = —logo(ci)+[1—ToU (A +[Aw;x, Ahix, Ali+], G)]

1
where the ¢* = means among K anchor cuboid, the ¢*-th
anchor cuboid A;+ has the maximum IoU with the ground-
truth cuboid G, and [Aw;x, Ah;«, Al;+] are the offsets in
three different dimensions relative to anchor cuboid A;«.
The o(-) is the softmax function:

2

eci*
o(ci) = =K . (2
Dy €
and the function IoU(-,-) computes the 3D IoU between
two center-aligned cuboids:

volume(A) Nvolume(B)

I0U(A,B) =
oU(4, B) volume(A) U volume(B)

3)

There are two terms in the Equation (1). For the
first term, it encourages the module to give the highest
confidence to the anchor cuboid which has the maximum
IoU with the ground truth dimension G, and provides low
confidence for other anchor cuboids at the same time.
For the second term, it encourages the module to regress
the offset between the best anchor cuboid and ground
truth cuboid. Our loss function is volume-driven rather
than dimension-driven, and the rationale is that it can
take into account the information from three dimensions
synthetically and avoid the situation that two dimensions
have good estimation while one dimension is not well
estimated.

Orientation Estimation: There are two orientations
in the 3D object detection problem, global orientation and
local orientation. The global orientation of an object is
defined under the world coordinates and will not change
with the camera pose, while the local orientation is defined
under the camera coordinates and hinges on how the
camera shots the object. Figure 3 gives an illustration of
these two kinds of orientation from the bird’s view. In this
paper, we focus on the estimation of the local orientation,
which is evaluated in the KITTI dataset and directly related
to the appearance.

For orientation regression, the range of the output is
[—7, 7], we use a similar idea to dimension regression and
perform k-means clustering on the training set to get K’
cluster centers. The output is a 2K’-dimensional vector

([c;, A0;],i = 1,...,K’). We define the loss function as
follows:
L, =—logo(ci) 4+ [1 —cos(O; + Abi» —0c)]  (4)

21t is worth mentioning that the value of ¢* for each object can be com-
puted and saved in the dataset before the training process.

=0 0C1R ICID

L g L |
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Figure 3. In (a), the global orientations of the car are all facing the
right, but the local orientation and appearance will change when
the car moves from the left to the right. In (b), the global orienta-
tions of the car differ, but both the local orientation in the camera
coordinates and the appearance remain unchanged. Hence, we can
see that the appearance only has a relationship with the local ori-
entation, and we can only regress the local orientation of the car
based on the appearance. If we want to compute the global orien-
tation using local orientation, we need to know the ray direction
between the camera and the object, which can be calculated us-
ing the location of the object in the 2D image, more details are
included in the supplementary materials.
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Figure 4. The architecture of our regression module. There are two
branches in the fully connected layers, for dimension regression
and orientation regression respectively.

where ©,« is the nearest anchor angle comparing to the
ground truth local orientation 6. The first term in the loss
function L, is the same as L, which encourages the mod-
ule to give high confidence to the nearest anchor angle, and
the second term uses the cosine function to ensure that the
offset #;+ can be well regressed.

The idea behind our anchor-based regression is that di-
rectly regress a continuous variable is very difficult because
the value range is vast. Using an anchor-based method, we
can first solve a classification problem to choose the best an-
chor, and then regress an offset based on the anchor value;
hence the value range that we need to regress can be signif-
icantly reduced. We show the concrete architecture of our
proposed regression module in Figure 4.
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Figure 5. The detailed architecture of FQNet. During pre-training process, the classification loss is used to train the convolutional layers
and fully connected layers. The core innovation of our proposed FQNet is the input part, where our input image has additional artificial

information.

3.2. Location Estimation

After estimating the dimension and orientation, we can
construct a 3D cuboid in 3D spatial space. We set the origi-
nal coordinate of 8 vertices of the cuboid as:

e=[4 & 5 ~4 4 4 -4 4]
y=[0 0 0 0 —h —h —h -—h] (5)
=[5 % % % % -% % 3

where [, h, w are the dimensions of the object. Assume that
the 3D location is T' = [T, T}y, T,.]* in the camera coordi-
nate, according to the law of camera projection, we have

;
U
R T i i

K |:OT 1:| :Z =51V (6)
i !

where u; and v; are the 2D projected coordinates of the i-
th vertices, K is the intrinsic matrix, and R is the rotation
matrix given by the global orientation 6:

cosf@ 0 siné
R = 0 1 0 @)
—sinf 0 cosf

We can use OpenCV toolkit to draw the projected 3D
bounding box on the 2D image based on the 2D projected
coordinates; thus, our FQNet can learn from these 2D
projection patterns and obtain the ability to reason 3D
spatial relations.

Dense Sampling: We use a sampling and evaluation
framework. Sampling in the whole 3D space is time-
consuming, so we choose to get an approximate location

(seed candidate) first. Many methods can achieve this
goal, such as performing uniform sampling and searching
the proposal whose 2D projection has the largest overlap
with the 2D detection result. Here, we choose to use tight
constraint similar in [32, 25] to locate the seed candidate,
because it is fast and relatively more accurate. After
computing the location of seed-candidate, we can perform
dense sampling within a small range around it. We model
the distribution of the transition value in three axes as three
independent Gaussian distribution as follows:

Az ~ Ny, 04)
Ay ~ N(py, oy) 3
Az~ N(py,,0,)

where the mean and variance are all estimated us-
ing the 3D localization error in the training set.
Thus, the ¢-th generated sample can be represented as
Si(z+ Az, y + Ay, z + Az, L hyw, ).

FQNet: The goal of FQNet is to evaluate the fitting
quality between each sample S; and object. Even though
it is challenging for CNN to infer the spatial relation
between S; and ground-truth 3D location of the object,
after projecting the sample S; on the 2D image, CNN can
obtain this ability through learning the pattern that how
well the edges and corners of projections are aligned with
the specific part of the object. For quantitative analysis, we
force the network to regress the 3D IoU between samples
and the object. Denote the object image patch as I, the
objective of FQNet can be formulated as follows:

6" = argmin | F(1,5:10) — IoU(I, Sl ©)

where O denotes the parameters of FQNet.
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Figure 6. 3D detection performance comparison between our with
the tight-constriant-based baseline.

Since we have the ground-truth 3D location of each ob-
ject in our training set, we can generate an almost unlimited
number of samples by adding a known jitter to the original
3D location. One problem is that how can we guarantee that
FQNet can capture the pattern of the projection, which we
painted on the 2D image manually. To answer this question,
we first pre-train our FQNet to execute a classification task,
in which it has to decide whether the input image patch con-
tains an artificially painted 3D bounding box projection or
not. The architecture of our proposed FQNet and its pre-
training version are shown in Figure 5. For the pre-training
process, we use the cross-entropy loss for the classification
task. For the 3D IoU regression, we use the smooth L1 loss,
since it is less sensitive to outliers compared to the L2 loss.

4. Experiments

We evaluated our method on the real-world KITTI
dataset [19]. The KITTI object detection benchmark in-
cludes 2D Object Detection Evaluation, 3D Object Detec-
tion Evaluation and Bird’s Eye View Evaluation. There are
7481 training images and 7518 testing images in the dataset,
and in each image, the object is annotated with observation
angle (local orientation), 2D location, dimension, 3D lo-
cation, and global orientation. However, only the labels in
the KITTI training set are released, so we mainly conducted
controlled experiments in the training set. Results are evalu-
ated based on three levels of difficulty: Easy, Moderate, and
Hard, which is defined according to the minimum bound-
ing box height, occlusion and truncation grade. There are
two commonly used train/val experimental settings: Chen et
al. [9, 8] (train/val 1) and Xiang ef al. [42, 43] (train/val 2).
Both splits guarantee that images from the training set and
validation set are from different videos. We focused our ex-
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Figure 7. Histogram of average regression error for proposals from
ten levels of 3D IoU.

periment on the Car object category since, for Pedestrian
and Cyclist, there is not enough data to train our model.

4.1. Implementation Details

For regression module, we used the ImageNet [13] pre-
trained VGG-16 [38] model with 224 x 224 input size to
initialize the weights of convolutional layers. We used four
anchor cuboids during dimension estimation and two an-
chor angles during orientation estimation. The module is
trained with SGD using a fixed learning rate of 10~* with a
batch size of 8. We performed data augmentation by adding
color distortions, flipping images at random, and jittering
2D boxes with a translation of 0 ~ 0.03x height and width.

For dense sampling process, we first sampled 1024 sam-
ples around the seed candidate. After discarding the sam-
ples more than half of which are outside the image plane,
we kept 640 samples for evaluation.

For FQNet, we used the ImageNet pre-trained VGG-M
model with 107 x 107 input size to initialize the weights of
convolutional layers. The projection was drawn using green
color and linewidth of 1. For the classification pre-training
process, we sampled 256 positive samples and 256 negative
samples to train the network for each iteration with learning
rates 10~ for convolutional layers and 102 for fully con-
nected layers. For the 3D IoU regression, we mapped the
labels from [0, 1] to [—1, 1] for data balance.We also added
a random contour context information to the training image
patch to increase the robustness of the model.

4.2. Effectiveness

To demonstrate that our proposed pipeline is not sensi-
tive to the 2D detection results, we performed jitter to the
MS-CNN 2D detection results and got a set of 2D bound-
ing boxes with different Average Precision (AP). We com-
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Table 1. Comparisons of the Average Orientation Similarity (AOS) with the state-of-the-art methods on the KITTI dataset.

Method Easy Moderate Hard
train/val 1 | train/val 2 | test | train/val 1 | train/val2 | test | train/val 1 | train/val2 | test
3DOP [9] 91.58 - 91.44 85.80 - 86.10 76.80 - 76.52
Mono3D [§] 91.90 - 91.01 86.28 - 86.62 77.09 - 76.84
3DVP [42] - 78.99 86.92 65.73 74.59 - 54.67 64.11
SubCNN [43] - 94.55 90.67 85.03 88.62 - 72.21 78.68
Deep3DBox [32] - 97.50 92.90 96.30 88.75 - 80.40 76.76
3D-RCNN [25] 90.70 97.70 89.98 89.10 96.50 89.25 79.50 80.70 80.07
Our Method 97.28 97.57 92.58 93.70 96.70 88.72 79.25 80.45 76.85
Table 2. Comparisons of the 2D AP with the state-of-the-art methods on the KITTI Birds Eyed View validation dataset.
IoU=0.5 IoU=0.7
Method Easy Moderate Hard Easy Moderate Hard
VI [ tv2 [ tvT [ w2 [ vl [ w2 | v [ V2 [tvI[tv2 [ tv]l [thv2
3DOP [9] 55.04 - 41.25 - 34.55 - 12.63 - 9.49 - 7.59 -
Mono3D [§] 30.50 - 22.39 - 19.16 - 5.22 - 5.19 - 4.13 -
Deep3DBox [32] - 30.02 - 23.77 18.83 - 9.99 - 7.71 - 5.30
Our Method 32.57 | 33.37 | 24.60 | 26.29 | 21.25 | 21.57 | 9.50 | 1045 | 8.02 | 859 | 7.71 | 7.43

Table 3. Comparisons of the Average Error of dimension estima-
tion with state-of-the-art methods on the KITTI validation dataset.

’ Method \ train/val 1 \ train/val 2 ‘
3DOP [9] 0.3527 -
Mono3D [8] 0.4251 -
Deep3DBox [32] - 0.1934
Our Method 0.1698 0.1465

pared the 3D detection performance (3D AP) of our method
with the tight-constraint-based baseline, and the results are
shown in Figure 6. We can see that the tight-constraint-
based method is much more sensitive to the 2D detection
AP, while our approach is much more robust.

We also studied our FQNet module by evaluating the 3D
IoU regression performance. After dividing all proposals
into ten levels based on the 3D IoU, we computed the aver-
age regression error for each level and drew the histogram
in Figure 7. We can see that for the samples whose 3D IoU
is around 0.4 to 0.5, the average estimation error is the low-
est, which is about 0.05. Therefore, we can be sure that our
FQNet have the ability to evaluate candidates.

4.3. Comparison with State-of-the-Arts

We compared our proposed method with 6 recently
proposed state-of-the-art 3D object detection methods on
the KITTI benchmark, including 3DOP [9], Mono3D [&],
3DVP [42], SubCNN [43], Deep3DBox [32] and 3D-
RCNN [25]. For fair comparisons, we used the detection
results reported by the authors. All experiments were

conducted on both two validation splits (different models
are trained with the corresponding training sets).

Orientation and Dimension Evaluation: For orien-
tation evaluation, we used the official metric of the KITTI
dataset, which is the Average Orientation Similarity (AOS).
Our results are summarized in Table 1. From the results,
we see that our method achieves state-of-the-art method
on both train/val 1 and train/val 2 experimental settings.
And we can see that especially for the train/val 1 on
Easy and Moderate setting, our method has a significant
improvement comparing with existing methods.

For dimension evaluation, we use the average error de-
fined as:

N
— 1 2 2 2
E, = N;\/(Awi FARZHAZ)  (10)

Since the detection results and the ground truth are not
one-to-one equivalents, we have to find the corresponding
object in the ground truth which is closest to the detection
result for computing F,. Not all methods provided their
experimental results, so we only compare our method with
3DOP [9], Mono3D [8], and Deep3DBox [32]. Our results
are summarized in Table 3. We can see that our methods
have the lowest estimation error with an average dimension
estimation error of about 0.15 meters, which demonstrate
the effectiveness of our anchor based regression module.

Location Evaluation: For location evaluation, we
first reported our results on the official evaluation metrics
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Table 4. Comparisons of the 3D AP with the state-of-the-art methods on the KITTI 3D Object validation dataset.
IoU=0.5 IoU=0.7
Method Easy Moderate Hard Easy Moderate Hard

VI [ tv2 [ vD [ w2 [ vl [ w2 [ovl [tv2 [tv] [v2 | tv] [tv2

3DOP [9] 46.04 - 34.63 - 30.09 - 6.55 - 5.07 - 4.10 -

Mono3D [§] 25.19 - 18.20 - 15.52 - 2.53 - 2.31 - 2.31 -
Deep3DBox [32] - 27.04 - 20.55 - 15.88 - 5.85 - 4.10 - 3.84
Our Method 28.16 | 28.98 | 21.02 | 20.71 | 1991 | 18.59 | 598 | 545 | 550 | 5.11 | 475 | 445

Figure 8. The visualization result of our monocular 3D object detection method. We draw detection results in both 2D image and 3D space.

from KITTI Birds Eye View Evaluation, where AP for the
birds eye view boxes is evaluated, which are obtained by
projecting the 3D boxes to the ground plane and neglect
the location precision on the Y-axis. From Table 2, we
can see that our method outperformed Mono3D [&] and
Deep3DBox [32] by a significant margin of about 3% im-
provement. Since 3DOP [9] is a stereo-based method that
can obtain depth information directly, so its performance is
much better than pure monocular based methods.

We also conducted experiments on 3D Object Detection
Evaluation, where the 3D AP metric is used to evaluate the
full 3D bounding boxes. From Table 4, we can see that
our method ranks first among pure monocular based meth-
ods, and we even outperformed stereo-based 3DOP when
3D IoU threshold is set to 0.7.

4.4. Qualitative Results

Apart from drawing the 3D detection boxes on 2D im-
ages, we also projected the 3D detection boxes in the 3D
space for better visualization. As shown in Figure 8, our
approach can fit the object well and achieve high-precision
3D perception in various scenes with only one monocular
image as input.

5. Conclusions

In this paper, we have proposed a unified pipeline for
monocular 3D object detection. By using an anchor-based
regression method, we achieved a high-precision dimension
and orientation estimation. Then we perform dense sam-
pling in the 3D space and project these samples on a 2D
image. Through measuring the relation between the pro-
jections and object, our FQNet successfully estimates the
3D IoU and filters the suitable candidate. Both quantitative
and qualitative results have demonstrated that our proposed
method outperforms the state-of-the-art monocular 3D ob-
ject detection methods. How to extend our monocular 3D
object detection method for monocular 3D object tracking
seems to be interesting future work.
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