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Abstract

Face anti-spoofing is designed to prevent face recog-

nition systems from recognizing fake faces as the genuine

users. While advanced face anti-spoofing methods are de-

veloped, new types of spoof attacks are also being created

and becoming a threat to all existing systems. We define

the detection of unknown spoof attacks as Zero-Shot Face

Anti-spoofing (ZSFA). Previous ZSFA works only study 1-

2 types of spoof attacks, such as print/replay, which limits

the insight of this problem. In this work, we investigate the

ZSFA problem in a wide range of 13 types of spoof attacks,

including print, replay, 3D mask, and so on. A novel Deep

Tree Network (DTN) is proposed to partition the spoof sam-

ples into semantic sub-groups in an unsupervised fashion.

When a data sample arrives, being know or unknown at-

tacks, DTN routes it to the most similar spoof cluster, and

makes the binary decision. In addition, to enable the study

of ZSFA, we introduce the first face anti-spoofing database

that contains diverse types of spoof attacks. Experiments

show that our proposed method achieves the state of the art

on multiple testing protocols of ZSFA.

1. Introduction

Face is one of the most popular biometric modalities due

to its convenience of usage, e.g., access control, phone un-

lock. Despite the high recognition accuracy, face recogni-

tion systems are not able to distinguish between real human

faces and fake ones, e.g., photograph, screen. Thus, they are

vulnerable to face spoof attacks, which deceives the systems

to recognize as another person. To safely use face recog-

nition, face anti-spoofing techniques are required to detect

spoof attacks before performing recognition.

Attackers can utilize a wide variety of mediums to

launch spoof attacks. The most common ones are replay-

ing videos/images on digital screens, i.e., replay attack, and

printed photograph, i.e., print attack. Different methods

are proposed to handle replay and print attacks, based on

either handcrafted features [7, 35, 38] or CNN-based fea-
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Figure 1: To detect unknown spoof attacks, we propose a Deep

Tree Network (DTN) to unsupervisely learn a hierarchic embed-

ding for known spoof attacks. Samples of unknown attacks will be

routed through DTN and classified at the destined leaf node.

tures [4,18,20,32]. Recently, high-quality 3D custom mask

is also used for attacking, i.e., 3D mask attack. In [29–31],

methods for detecting print/replay attacks are found to be

less effective for this new spoof, and hence the authors

leverage the remote photoplethysmography (r-PPG) to de-

tect the heart rate pulse as the spoofing cue. Further, fa-

cial makeup may also influence the outcome of recognition,

i.e., makeup attack [12]. Many works [11–13] study facial

makeup, despite not as an anti-spoofing problem.

All aforementioned methods present algorithmic solu-

tions to the known spoof attack(s), where models are trained

and tested on the same type(s) of spoof attacks. However,

in real-world applications, attackers can also initiate spoof

attacks that we, the algorithm designers, are not aware of,

termed unknown spoof attacks1. Researchers increasingly

pay attention to the generalization of anti-spoofing models,

i.e., how well they are able to detect spoof attacks that have

never been seen during the training? We define the prob-

1There is subtle distinction between 1) unseen attacks, attack types that

are known to algorithm designers so that algorithms could be tailored to

them, but their data are unseen during training; 2) unknown attacks, attack

types that are neither known to designers nor seen during training. We do

not differentiate these two cases and term both unknown attacks.
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lem of detecting unknown face spoof attacks as Zero-Shot

Face Anti-spoofing (ZSFA). Despite the success of face

anti-spoofing on known attacks, ZSFA, on the other hand,

is a new and unsolved challenge to the community.

The first attempts on ZSFA are [3, 45]. They address

ZSFA between print and replay attacks, and regard it as

an outlier detection problem for live faces (a.k.a. real hu-

man faces). With handcrafted features, the live faces are

modeled via standard generative models, e.g., GMM, auto-

encoder. During testing, an unknown attack is detected if

it lies outside the estimated live distribution. These ZSFA

works have three drawbacks:

Lacking spoof type variety: Prior models are developed

w.r.t. print and replay attacks only. The respective feature

design may not be applicable to different unknown attacks.

No spoof knowledge: Prior models only use live faces,

without leveraging the available known spoof data. While

the unknown attacks are different, the known spoof attacks

may still provide valuable information to learn the model.

Limitation of feature selection: They use handcrafted

features such as LBP to represent live faces, which were

shown to be less effective for known spoof detection [27,

32, 37, 48]. Recent deep learning models [20, 32] show the

advantage of CNN models for face anti-spoofing.

This work aims to address all three drawbacks. Since one

ZSFA model may perform differently when the unknown

spoof attack is different, it should be evaluated on a wide

range of unknown attacks types. In this work, we substan-

tially expand the study of ZSFA from 2 types of spoof at-

tacks to 13 types. Besides print and replay attacks, we in-

clude 5 types of 3D mask attacks, 3 types of makeup at-

tacks, and 3 partial attacks. These attacks cover both imper-

sonation spoofing, i.e., attempt to be authenticated as some-

one else, and obfuscation spoofing, i.e., attempt to cover at-

tacker’s own identity. We collect the first face anti-spoofing

database that includes these diverse spoof attacks, termed

Spoof in the Wild database with Multiple Attack Types

(SiW-M).

To tackle the broader ZSFA, we propose a Deep Tree

Network (DTN). Assuming there are both homogeneous

features among different spoof types and distinct features

within each spoof type, a tree-like model is well-suited to

handle this case: learning the homogeneous features in the

early tree nodes and distinct features in later tree nodes.

Without any auxiliary labels of spoof types, DTN learns to

partition data in an unsupervised manner. At each tree node,

the partition is performed along the direction of the largest

data variation. In the end, it clusters the data into several

sub-groups at the leaf level, and learns to detect spoof at-

tacks for each sub-group independently, shown in Fig. 1.

During the testing, a data sample is routed to the most sim-

ilar leaf node to produce a binary decision of live vs. spoof.

In summary, our contributions in this work include :

• Conduct an extensive study of zero-shot face anti-

spoofing on 13 different types of spoof attacks;

• Propose a Deep Tree Network (DTN) to learn features

hierarchically and detect unknown spoof attacks;

• Collect a new database for ZSFA and achieve the state-

of-the-art performance on multiple testing protocols.

2. Prior Work

Face Anti-spoofing Image-based face anti-spoofing refers

to face anti-spoofing techniques that only take RGB im-

ages as input without extra information such as depth or

heat. In early years, researchers utilize liveness cues,

such as eye blinking and head motion, to detect print at-

tacks [24, 36, 37, 39]. However, when encountering un-

known attacks, such as photograh with eye portion cut,

and video replay, those methods suffer from a total failure.

Later, research move to a more general texture analysis and

address print and replay attacks. Researchers mainly utilize

handcrafted features, e.g., LBP [7,16,17,35], HoG [25,47],

SIFT [38] and SURF [8], with traditional classifiers, e.g.,

SVM and LDA, to make a binary decision. Those methods

perform well on the testing data from the same database.

However, while changing the testing conditions such as

lighting and background, they often have a large perfor-

mance drop, which can be viewed as an overfitting issue.

Moreover, they also show limitations in handling 3D mask

attacks, mentioned in [30].

To overcome the overfitting issue, researchers make var-

ious attempts. Boulkenafet et al. extract the spoofing fea-

tures in HSV+YCbCR space [7]. Works in [2, 5, 6, 18, 46]

consider features in the temporal domain. Recent works [2,

4] augment the data by using image patches, and fuse the

scores from patches to a single decision. For 3D mask at-

tacks, the heart pulse rate is estimated to differentiate 3D

mask from real faces [28, 30]. In the deep learning era, re-

searchers propose several CNN works [4, 18, 20, 27, 32, 37,

48] that outperform the traditional methods.

Zero-shot learning and unknown spoof attacks Zero-

shot object recognition, or more generally, zero-shot learn-

ing, aims to recognize objects from unknown classes [40],

i.e., object classes unseen in training. The overall idea is

to associate the known and unknown classes via a semantic

embedding, whose embedding spaces can be attributes [26],

word vector [19], text description [49] and human gaze [22].

Zero-shot learning for unknown spoof attack, i.e., ZSFA,

is a relatively new topic with unique properties. Firstly,

unlike zero-shot object recognition, ZSFA emphasizes the

detection of spoof attacks, instead of recognizing specific

spoof types. Secondly, unlike generic objects with rich se-

mantic embedding, there is no explicit well-defined seman-

tic embedding for spoof patterns [20]. As elaborated in

Sec. 1, prior ZSFA works [3,45] only model the live data via

handcrafted features and standard generative models, with
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Table 1: Comparing our SiW-M with existing face anti-spoofing datasets.

Dataset Year
Num. of Face variations Spoof attack types Total num. of

subj./vid. pose expression lighting replay print 3D mask makeup partial spoof types

CASIA-FASD [50] 2012 50/600 Frontal No No 1 2 0 0 0 3

Replay-Attack [15] 2012 50/1, 200 Frontal No Yes 1 1 0 0 0 2

HKBU-MARs [30] 2016 35/1, 008 Frontal No Yes 0 0 2 0 0 2

Oulu-NPU [9] 2017 55/5, 940 Frontal No No 1 1 0 0 0 2

SiW [32] 2018 165/4, 620 [−90◦, 90◦] Yes Yes 1 1 0 0 0 2

SiW-M 2019 493/1, 630 [−90◦, 90◦] Yes Yes 1 1 5 3 3 13

several drawbacks. In this work, we propose a deep tree

network to unsupervisely learn the semantic embedding for

known spoof attacks. The partition of the data naturally

associates certain semantic attributes with the sub-groups.

During the testing, the unknown attacks are projected to the

embedding to find the closest attributes for spoof detection.

Deep tree networks Tree structure is often found help-

ful in tackling language-related tasks such as parsing and

translation [14], due to the intrinsic relation of words and

sentences. E.g., tree models are applied to joint vision and

language problems such as visual question reasoning [10].

Tree structure also has the property for learning features

hierarchically. Face alignment works [23, 41] utilize the

regression trees to estimate facial landmarks from coarse

to fine. Xiong et al. propose a tree CNN to handle the

large-pose face recognition [44]. In [21], Kaneko et al. pro-

pose a GAN with decision trees to learn hierarchically in-

terpretable representations. In our work, we utilize tree net-

works to learn the latent semantic embedding for ZSFA.

Face anti-spoofing databases Given the significance

of a good-quality database, researchers have released

several face anti-spoofing databases, such as CASIA-

FASD [50], Replay-Attack [15], OULU-NPU [9], and

SiW [32] for print/replay attacks, and HKBU-MARs [30]

for 3D mask attacks. Early databases such as CASIA-

FASD and Replay-Attack [50] have limited subject variety,

pose/expression/lighting variations, and video resolutions.

Recent databases [9,30,32] improve those aspects, and also

set up diverse evaluation protocols. However, up to now, all

databases focus on either print/replay attacks, or 3D mask

attacks. To provide a comprehensive study of face anti-

spoofing, especially the challenging ZSFA, we for the first

time collect the database with diverse types of spoof attacks,

as in Tab. 1. The details of our database are in Sec. 4.

3. Deep Tree Network for ZSFA

The main purposes of DTN are twofold: 1) discover the

semantic sub-groups for known spoofs; 2) learn the features

in a hierarchical way. The architecture of DTN is shown in

Fig. 2. Each tree node consists of a Convolutional Residual

Unit (CRU) and a Tree Routing Unit (TRU), while the leaf

node consists of a CRU and a Supervised Feature Learning

(SFL) module. CRU is a block with convolutional layers

and the short-cut connection. TRU defines a node routing

function to route a data sample to one of the child nodes.

The routing function partitions all visiting data along the

direction with the largest data variation. SFL module con-

catenates the classification supervision and the pixel-wise

supervision to learn the spoofing features.

3.1. Unsupervised Tree Learning

3.1.1 Node Routing Function

For a TRU node, let’s assume the input x = f(I | θ) ∈ R
m

is the vectorized feature response, I is data input, θ is the pa-

rameters of the previous CRUs, and S is the set of data sam-

ples Ik, k = 1, 2, ...,K that visit this TRU node. In [44],

Xiong et al. define a routing function as:

ϕ(x) = x
T · v + τ, (1)

where v denotes the projection vector and τ is the bias. Data

S can then be split into Sleft : {Ik|ϕ(xk) < 0, Ik ∈ S} and

Sright : {Ik|ϕ(xk) ≥ 0, Ik ∈ S}, and directed to the left

and right child node, respectively. To learn this function,

they propose to maximize the distance between the mean of

Sleft and Sright, while keeping the mean of S centered at

0. This unsupervised loss is formulated as:

L =

( 1

N

∑

Ik∈S

ϕ(xk))
2

( 1

Nl

∑

Ik∈Sleft

ϕ(xk)−
1

Nr

∑

Ik∈Sright

ϕ(xk))2
, (2)

where N , Nl, Nr denote the number of samples in each set.

However, in practice, minizing Equ. 2 might not lead to

a satisfactory solution. Firstly, the loss can be minimized by

increasing the norm of either v or x, which is a trivial solu-

tion. Secondly, even when the norms of v, x are constrained,

Equ. 2 is affected by the density of data S and can be sensi-

tive to the outliers. In other words, the zero expectation of

ϕ(x) does not necessarily result in a balanced partition of

data S . Local minima could be achieved when all data are

split to one side. In some cases, the tree may suffer from

collapsing to a few (even one) leaf nodes.

To better partition the data, we propose a novel routing

function and an unsupervised loss. Regardless of τ , the dot

product between x
T and v can be regarded as projecting x to

the direction of v. We design v such that we can observe the

largest variation after projection. Inspired by the concept

of PCA, the optimal solution naturally becomes the largest

PCA basis of data S . To achieve this, we first constrain v to
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Figure 2: The proposed Deep Tree Network (DTN) architecture. (a) the overall structure of DTN. A tree node consists of a Convolutional

Residual Unit (CRU) and a Tree Routing Unit (TRU), and a leaf node consists of a CRU and a Supervised Feature Learning (SFL) module.

(b) the concept of Tree Routing Unit (TRU): finding the base with largest variations; (c) the structure of each Convolutional Residual Unit

(CRU); (d) the structure of the Supervised Feature Learning (SFL) in the leaf nodes.

be norm 1 and reformulate Equ. 1 as:

ϕ(x) = (x − µ)T · v, ‖v‖ = 1, (3)

where µ is the mean of data S . Then, finding v is identical

to finding the largest eigenvector of the covariance matrix

X̄
T

S X̄S , where X̄S = XS − µ, and XS ∈ R
N×K is the data

matrix. Based on the definition of eigen-analysis X̄
T

S X̄Sv =
λv, our optimization aims to maximize:

argmax
v,θ

λ = argmax
v,θ

v
T

X̄
T

S X̄Sv. (4)

The loss for learning the routing function is formulated as:

Lroute = exp(−αv
T

X̄
T

S X̄Sv) + βTr(X̄
T

S X̄S), (5)

where α, β are scalars, and set as 1e-3, 1e-2 in our experi-

ments. We apply the exponential function on the first term

to make the maximization problem bounded. The second

term is introduced as a regularizer to prevent trivial solu-

tions by constraining the trace of covariance matrix of X̄S .

3.1.2 Tree of Known Spoofs

With the routing function, we can build the entire binary

tree. Fig. 2 shows a binary tree of depth of 4, with 8 leaf

nodes. As mentioned early in Sec. 3, the tree is designed

to find the semantic sub-groups from all known spoofs,

and is termed as spoof tree. Similarly, we may also train

live tree with live faces only, as well as general data tree

with both live and spoof data. Compared to spoof tree,

live and general data tree have some drawbacks. Live tree

does not convey semantic meaning for the spoof, and the

attributes learned at each node cannot help to route and bet-

ter detect spoof; General data tree may result in imbalanced

sub-groups, where samples of one class outnumber another.

Such imbalance would cause bias for supervised learning in

the next stage.

Hence, when we compute Equ. 5 to learn the routing

functions, we only consider the spoof samples to construct

XS . To have a balanced sub-group for each leaf, we sup-

press the responses of live data to zero, so that all live data

can be evenly partitioned to the child nodes. Meanwhile,

we also suppress the responses of the spoof data that do not

visit this node, so that every node models the distribution of

a unique spoof subset.

Formally, for each node, we maximize the routing func-

tion responses of spoof data that visit this node (denoted as

S), while minimizing the responses of other data (denoted

as S−), including all live data and spoof data that don’t visit

this node, i.e., that visit neighboring nodes. To achieve this

objective, we define the following loss:

Luniq = −
1

N

∑

Ik∈S

∥

∥x̄
T
k v

∥

∥

2

+
1

N−

∑

Ik∈S−

∥

∥x̄
T
k v

∥

∥

2

. (6)

3.2. Supervised Feature Learning

Given the routing functions, a data sample Ik will be as-

signed to one of the leaf nodes. Let’s first define the feature

output of leaf node as F(Ik | θ), shortened as Fk for sim-

plicity. At each leaf node, we define two node-wise super-

vised tasks to learn discriminative features: 1) binary clas-

sification drives the learning of a high-level understanding

of live vs. spoof faces, 2) pixel-wise mask regression draws

CNN’s attention to low-level local feature learning.

Classification supervision To learn a binary classifier, as

shown in Fig. 2(d), we apply two additional convolution

layers and two fully connected layers on Fk to generate a

feature vector ck ∈ R
500. We supervise the learning via the
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Figure 3: The structure of the Tree Routing Unit (TRU).

softmax cross entropy loss:

Lclass =
1

N

∑

Ik∈S

{

(1− yk)log(1− pk)− yklogpk

}

(7)

pk =
exp(w1

T
ck)

exp(w0
T ck) + exp(w1

T ck)
, (8)

where S represents all the data samples that arrive this leaf

node, N denotes the number of samples in S , {w0,w1} are

the parameters in the last fully connected layer, and yk is

the label of data sample k (1 denotes spoof, and 0 live).

Pixel-wise supervision We also concatenate another con-

volution layer to Fk to generate a map response Mk ∈
R

32×32. Inspired by the prior work [32], we leverage the

semantic prior knowledge of face shapes and spoof attack

position to provide a pixel-wise supervision. Using the

dense face alignment model [33], we provide a binary mask

Dk ∈ R
32×32, shown in Fig. 4, to indicate the pixels of

spoof mediums. Thus, for a leaf node, the loss function for

the pixel-wise supervision is:

Lmask =
1

N

∑

Ik∈S

‖Mk − Dk‖1 . (9)

Overall loss Finally, we apply the supervised losses on p

leaf nodes, the unsupervised losses on q TRU nodes, and

formulate our training loss as:

L =

p
∑

i=1

(α1L
i
class+α2L

i
mask)+

q
∑

j=1

(α3L
j
route+α4L

j
uniq),

(10)

where α1,α2,α3,α4 are the regularization coefficients for

each term, and are set as 0.001, 1.0, 2.0, 0.001 respectively.

For a 4-layer DTN, p = 8 and q = 7.

3.3. Network Architecture

Deep Tree Network (DTN) DTN is the main framework

of the proposed model. It takes I ∈ R
256×256×6 as in-

put, where the 6 channels are RGB+HSV color spaces. We

concatenate three 3 × 3 convolution layers with 40 chan-

nels and 1 max-pooling layer, and group them as one Con-

volutional Residual Unit (CRU). Each convolution layer is

equipped with ReLU and group normalization layer [43],

due to the dynamic batch size in the network. We also ap-

ply a shortcut connection for each convolution layer. For

each tree node, we deploy one CRU before the TRU. At the

leaf node, DTN produces the feature representation of input

I as F(I | θ) ∈ R
32×32×40, then uses one 1× 1 convolution

layer to generate the binary mask map M.

Tree Routing Unit (TRU) TRU is the module routing the

data sample to one of the child CRUs. As shown in Fig. 3,

it first compresses the feature by using an 1 × 1 convolu-

tion layer, and resizing the response spatially. For the root

node, we compress the CRU feature to x ∈ R
32×32×10,

and for later tree node, we compress the CRU feature to

x ∈ R
16×16×20. Compressing the input feature to a smaller

size helps to reduce the burden of computating and saving

the covariance matrix in Equ. 5. E.g., the vectorized fea-

ture for the first CRU is x ∈ R
655,360, and the covariance

matrix of x can take ∼ 400GB in memory. However, after

compression the vectorized feature is x ∈ R
10,240, and the

covariance matrix of x only needs ∼ 0.1GB of memory.

After that, we vectorize the output and apply the routing

function ϕ(x). To compute µ in Equ. 3, instead of opti-

mizing it as a variable of the network, we simply apply a

batch normalization layer without scaling to save the mov-

ing average of each mini-batch. In the end, we project the

compressed CRU response to the largest basis v and obtain

the projection coefficient. Then we assign the samples with

negative coefficient to the left child CRU and the samples

with positive coefficient to the right child CRU.

Implementation details With the overall loss in Equ. 10,

our proposed network is trained in an end-to-end fashion.

All losses are computed based on each mini-batch. DTN

modules and TRU modules are optimized alternately. While

optimizing DTN, we keep the parameters of TRUs fixed and

vice versa.

4. Spoof in the Wild Database with Multiple

Attack Types

To benchmark face anti-spoofing methods specifically

for unknown attacks, we collect the Spoof in the Wild

database with Multiple Attack Types (SiW-M). Compared

with the previous databases in Tab. 1, SiW-M shows a great

diversity in spoof attacks, subject identities, environments

and other factors.

For spoof data collection, we consider two spoofing sce-

narios: impersonation, which entails the use of spoof to be

recognized as someone else, and obfuscation, which entails

the use to remove the attacker’s own identity. In total, we

collect 968 videos of 13 types of spoof attacks listed hierat-

ically in Fig 4. For all 5 mask attacks, 3 partial attacks, ob-
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supervision Dk. For (m,n) in the third row, m/n denotes the number of subjects/videos for each type of data.

fuscation makeup and cosmetic makeup, we record 1080P

HD videos. For impersonation makeup, we collect 720P

videos from Youtube due to the lack of special makeup

artists. For print and replay attacks, we intend to collect

videos from harder cases where the existing system fails.

Hence, we deploy an off-the-shelf face anti-spoofing algo-

rithm [32] and record spoof videos when the algorithm pre-

dicts live.

For live data, we include 660 videos from 493 subjects.

In comparison, the number of subjects in SiW-M is 9 times

larger than Oulu-NPU [9] and CASIA-FASD [50], and 3
times larger than SiW [32]. In addition, subjects are di-

verse in ethnicity and age. The live videos are collected in

3 sessions: 1) a room environment where the subjects are

recorded with few variations such as pose, lighting and ex-

pression (PIE). 2) a different and much larger room where

the subjects are also recorded with PIE variations. 3) a

mobile phone mode, where the subjects are moving while

the phone camera is recording. Extreme pose angles and

lighting conditions are introduced. Similar to print and re-

play videos, we deploy the face anti-spoofing algorithm [32]

to find out the videos where the algorithm predicts spoof.

Hence, this third session is a harder scenario.

In total, we collect 1, 630 videos and each lasts 5-7 sec-

onds. The 1080P videos are recorded by Logitech C920 we-

bcam and Canon EOS T6. To use SiW-M for the study of

ZSFA, we define the leave-one-out testing protocols. Each

time we train a model with 12 types of spoof attacks plus

the 80% of the live videos, and test on the left 1 attack type

plus the 20% of live videos. There is no overlapping sub-

jects between the training and testing sets of live videos.

5. Experimental Results

5.1. Experimental Setup

Databases We evaluate our proposed method on multiple

databases. We deploy the leave-one-out testing protocols

on SiW-M and report the results of 13 experiments. Also,

we test on previous face anti-spoofing databases, including

CASIA [50], Replay-Attack [15], and MSU-MFSD [42]),

compare with the state of the art.

Evaluation metrics We evaluate with the following

metrics: Attack Presentation Classification Error Rate

(APCER) [1], Bona Fide Presentation Classification Error

Rate (BPCER) [1], the average of APCER and BPCER,

Average Classification Error Rate (ACER) [1], Equal Er-

ror Rate (EER), and Area Under Curve (AUC). Note that,

in the evaluation of unknown attacks, we assume there is no

validation set to tune the model and thresholds while calcu-

lating the metrics. Hence, we determine the threshold based

on the training set and fix it for all testing protocols. A sin-

gle test sample is one video frame, instead of one video.

Parameter setting The proposed method is implemented

in Tensorflow, and trained with a constant learning rate of

0.001 with a batch size of 32. It takes 15 epochs to con-

verge. We randomly initialize all the weights using a normal

distribution of 0 mean and 0.02 standard deviation.

5.2. Experimental Comparison

5.2.1 Ablation Study

All ablation studies use the Funny Eye protocol.

Different fusion methods In the proposed model, both the

norm of the mask maps and binary spoof scores could be

utilized for the final classification. To find the best fusion

method, we compute ACER from using map norm, softmax

score, the maximum of map norm and softmax score, and

the average of two values, and obtain 31.7%, 20.5%, 21.0%,

and 19.3% respectively. Since the average score of the mask

norm and binary spoof score performs the best, we use it

for the remaining experiments. Moreover, we set 0.2 as the

final threshold to compute APCER, BPCER and ACER for

all the experiments.

Different routing methods Routing is a crucial step to find

the best subgroup to detect spoofness of a testing sample.

To show the effect of proper routing, we evaluate 2 alter-

native routing strategies: random routing and pick-one-leaf.

Random routing denotes randomly selecting one leaf node

for a testing sample to produce prediction; Pick-one-leaf de-

notes constantly selecting one particular leaf node to pro-

duce results, for which we report the mean score and stan-

dard deviation of 8 selections. Shown in Tab. 3, both strate-

gies perform worse than the proposed routing function. In

addition, the large standard deviation of pick-one-leaf strat-

egy shows the large performance difference of 8 subgroups

on the same type of unknown attacks, and demonstrates the

necessity of a proper routing.
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Table 2: AUC (%) of the model testing on CASIA, Replay, and MSU-MFSD.

Methods
CASIA [50] Replay-Attack [15] MSU [42]

Overall
Video Cut Photo Warped Photo Video Digital Photo Printed Photo Printed Photo HR Video Mobile Video

OC-SVMRBF +BSIF [3] 70.7 60.7 95.9 84.3 88.1 73.7 64.8 87.4 74.7 78.7± 11.7
SVMRBF +LBP [9] 91.5 91.7 84.5 99.1 98.2 87.3 47.7 99.5 97.6 88.6± 16.3
NN+LBP [45] 94.2 88.4 79.9 99.8 95.2 78.9 50.6 99.9 93.5 86.7± 15.6

Ours 90.0 97.3 97.5 99.9 99.9 99.6 81.6 99.9 97.5 95.9± 6.2

Table 3: Compare models with different routing strategies.

Strategies APCER BPCER ACER EER

Random routing 37.1 16.1 26.6 24.7

Pick-one-leaf 51.2± 20.0 18.1± 4.9 34.7± 8.8 24.1± 3.1

Proposed routing function 17.0 21.5 19.3 19.8

Table 4: Compare models with different tree losses and

strategies. The first two terms of row 2-5 refer to using live

or spoof data in tree learning. The last row is our method.
Methods APCER BPCER ACER EER

MPT [44] 31.4 24.2 27.8 27.3
Live data

√
, Spoof data

√
, Unique Loss × 1.4 73.3 37.3 31.2

Live data ×, Spoof data
√

, Unique Loss × 70.0 12.7 41.3 44.8
Live data

√
, Spoof data

√
, Unique Loss

√
54.2 12.5 33.4 36.2

Live data ×, Spoof data
√

, Unique Loss
√

17.0 21.5 19.3 19.8

Advantage of each loss function We have three important

designs in our unsupervised tree learning: route loss Lroute,

data used to compute the route loss, and the unique loss

Luniq . To show the effect of each loss and the training strat-

egy, we train and compare networks with each loss excluded

and alternative strategies. First, we train a network with the

routing function proposed in [44], and then 4 models with

different modules on and off, shown in Tab. 4. The model

with MPT [44] routes data only to 2 leaf nodes out of 8 (i.e.

tree collapse issue), which limits the performance. Models

without the unique loss exhibit the imbalance routing issue

where sub-groups cannot be trained properly . Models using

all data to learn the tree show worse performances than us-

ing spoof data only. Finally, the proposed method performs

the best among all options.

5.2.2 Testing on existing databases

Following the protocol proposed in [3], we use CASIA [50],

Replay-Attack [15] and MSU-MFSD [42] to perform ZSFA

testing between replay and print attacks. Tab. 2 compares

the proposed method with top three methods selected from

over 20 methods in [3, 9, 45]. Our proposed method outper-

forms the prior state of the art by a convincing margin of

7.3%, and our smaller standard deviation further indicates a

consistently good performance among unknown attacks.

5.2.3 Testing on SiW-M

We execute 13 leave-one-out testing protocols on SiW-

M. We compare with two of the most recent face anti-

spoofing methods [9,32], and set [32] as the baseline, which

has demonstrated its SOTA performance on various bench-

marks. For a fair comparison with the baseline, we provide

the same pixel-wise labeling (as in Fig. 4), and set the same

s

N1

N2

N3

N4

N5

N6

N7

− +0

Figure 5: Visulization of the Tree Routing.

threshold of 0.2 to compute APCER, BPCER, and ACER.

As shown in Tab. 5, our method achieves an overall bet-

ter APCER, ACER and EER, with the improvement of base-

line by 55%, 29%, and 5%. Specifically, we reduce the

ACERs of transparent mask, funny eye, and paper glasses

by 31%, 61%, and 51%, where the baseline models can be

considered as total failures since they recognize most of the

attacks as live. Note that, ACER is more valuable in the

context of ZSFA: no evaluation data for setting threshold

and considerably varied thresholds for obtaining the EER

performance. For instance, EERs of paper glasses model

are similar between the baseline and our method, but with a

preset threshold, our method offers a much better ACER.

Moreover, the proposed method is a more compact

model than [32]. Given the input size of 256 × 256 × 6,

the baseline requires 87 GFlops to compute the result while

our method only needs 6 GFlops (×15 smaller). More anal-

ysis are shown with visualization in Sec. 5.2.4.

5.2.4 Visualization and Analysis

To provide a better understanding of the tree learning and

ZSFA, we visualize the results in several ways. First, we

illustrate the tree routing results. In Fig. 5, we rank the

spoof data based on the routing function values ϕ(x), and

provide 8 examples with responses from the smallest to the

largest. This offers us an intuitive understanding of what

are learned at each tree node. We observe an obvious spoof

style transfer: for the first two-layer nodes N1, N2 and N3,
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Table 5: The evaluation and comparison of the testing on SiW-M.

Methods Metrics (%) Replay Print
Mask Attacks Makeup Attacks Partial Attacks

Average
Half Silicone Trans. Paper Manne. Obfusc. Imperson. Cosmetic Funny Eye Paper Glasses Partial Paper

SVMRBF +LBP [9]

APCER 19.1 15.4 40.8 20.3 70.3 0.0 4.6 96.9 35.3 11.3 53.3 58.5 0.6 32.8± 29.8
BPCER 22.1 21.5 21.9 21.4 20.7 23.1 22.9 21.7 12.5 22.2 18.4 20.0 22.9 21.0± 2.9
ACER 20.6 18.4 31.3 21.4 45.5 11.6 13.8 59.3 23.9 16.7 35.9 39.2 11.7 26.9± 14.5
EER 20.8 18.6 36.3 21.4 37.2 7.5 14.1 51.2 19.8 16.1 34.4 33.0 7.9 24.5± 12.9

Auxiliary [32]

APCER 23.7 7.3 27.7 18.2 97.8 8.3 16.2 100.0 18.0 16.3 91.8 72.2 0.4 38.3± 37.4
BPCER 10.1 6.5 10.9 11.6 6.2 7.8 9.3 11.6 9.3 7.1 6.2 8.8 10.3 8.9± 2.0
ACER 16.8 6.9 19.3 14.9 52.1 8.0 12.8 55.8 13.7 11.7 49.0 40.5 5.3 23.6± 18.5
EER 14.0 4.3 11.6 12.4 24.6 7.8 10.0 72.3 10.1 9.4 21.4 18.6 4.0 17.0± 17.7

Ours

APCER 1.0 0.0 0.7 24.5 58.6 0.5 3.8 73.2 13.2 12.4 17.0 17.0 0.2 17.1± 23.3
BPCER 18.6 11.9 29.3 12.8 13.4 8.5 23.0 11.5 9.6 16.0 21.5 22.6 16.8 16.6± 6.2
ACER 9.8 6.0 15.0 18.7 36.0 4.5 7.7 48.1 11.4 14.2 19.3 19.8 8.5 16.8± 11.1
EER 10.0 2.1 14.4 18.6 26.5 5.7 9.6 50.2 10.1 13.2 19.8 20.5 8.8 16.1± 12.2
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Figure 6: Tree routing distribution of live/spoof data. X-axis de-

notes 8 leaf nodes, and y-axis denotes 15 types of data. The num-

ber in each cell represents the percentage (%) of data that fall in

that leaf node. Each row is sum to 1. (a) Print Protocol. (b) Trans-

parent Mask Protocol. Yellow box denotes the unknown attacks.

the transfer captures the change of general spoof attributes

such as image quality and color temperature; for the third-

layer tree nodes N4, N5, N6, and N7, the transfer involves

more spoof type specific changes. E.g., N7 transfers from

eye portion spoofs to full face 3D mask spoofs.

Further, Fig. 6 quantitatively analyzes the tree routing

distributions of all types of data. We utilize two models,

Print and Trans. Mask, to generate the distributions. It can

be observed that live samples are relatively more spread out

to 8 leaf nodes while the spoof attacks are routed to fewer

specific leaf nodes. Two distributions in Fig. 6 (a)&(b) share

similar semantic sub-groups, which demonstrates the suc-

cess of the proposed method on learning a tree. E.g., in

both models, about half of trans. mask samples share the

same leaf node as ob. makeup. By comparing two distri-

butions, most testing unknown spoofs in both models are

successfully routed to the most similar sub-groups.

In addition, we use t-SNE [34] to visualize the feature

space of Print model. The t-SNE is able to project the out-

put of the leaf node F(I | θ) ∈ R
32×32×40 to 2D by preserv-

ing the KL divergence distance. Fig. 7 shows the features

of different types of spoof attacks are well-clustered into 8
semantic sub-groups even though we don’t provide any aux-

iliary labels. Based on these sub-groups, the features of un-

known print attacks are well lied in the sub-group of replay

and silicone mask, and thus are recognized as spoof. More-

over, with the visualization, we can explain the performance
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Figure 7: t-SNE Visualization of the DTN leaf features.

variation among different spoof attacks, shown in Tab. 5.

Among all, the performance of trans. mask, funny eye, pa-

per glasses and ob. makeup are worse than other protocols.

The feature space shows that the live samples lies much

closer to those attacks than others (“→” places), and hence

it’s harder to distinguish them with the live samples. This

demonstrates the diverse property of different unknown at-

tacks and the necessity of such a wide range evaluation.

6. Conclusions

This paper tackles the zero-shot face antispoofing prob-

lem among 13 types of spoof attacks. The proposed method

leverages a deep tree network to route the unknown attacks

to the most proper leaf node for spoof detection. The tree is

trained in an unsupervised fashion to find the feature base

with the largest variation to split the spoof data. We collect

SiW-M that contains more subjects and spoof types than

any previous databases. Finally, we experimentally show

superior performance of the proposed method.
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