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Abstract

In this paper, we study design of deep neural networks

for tasks of image restoration. We propose a novel style of

residual connections dubbed “dual residual connection”,

which exploits the potential of paired operations, e.g., up-

and down-sampling or convolution with large- and small-

size kernels. We design a modular block implementing this

connection style; it is equipped with two containers to which

arbitrary paired operations are inserted. Adopting the “un-

raveled” view of the residual networks proposed by Veit et

al., we point out that a stack of the proposed modular blocks

allows the first operation in a block interact with the second

operation in any subsequent blocks. Specifying the two op-

erations in each of the stacked blocks, we build a complete

network for each individual task of image restoration. We

experimentally evaluate the proposed approach on five im-

age restoration tasks using nine datasets. The results show

that the proposed networks with properly chosen paired op-

erations outperform previous methods on almost all of the

tasks and datasets.

1. Introduction

The task of restoring the original image from its de-

graded version, or image restoration, has been studied for

a long time in the fields of image processing and com-

puter vision. As in many other tasks of computer vision,

the employment of deep convolutional networks have made

significant progress. In this study, aiming at further im-

provements, we pursue better architectural design of net-

works, particularly the design that can be shared across dif-

ferent tasks of image restoration. In this study, we pay

attention to the effectiveness of paired operations on var-

ious image processing tasks. In [11], it is shown that

a CNN iteratively performing a pair of up-sampling and

down-sampling contributes to performance improvement

for image-superresolution. In [37], the authors employ evo-

lutionary computation to search for a better design of con-

(a)

(b)

(c)

(d)

Figure 1: Different construction of residual networks with a

single or double basic modules. The proposed “dual resid-

ual connection” is (d).

volutional autoencoders for several tasks of image restora-

tion, showing that network structures repeatedly perform-

ing a pair of convolutions with a large- and small-size ker-

nels (e.g., a sequence of conv. layers with kernel size 3,

1, 3, 1, 5, 3, and 1) perform well for image denoising. In

this paper, we will show further examples for other image

restoration tasks. Assuming the effectiveness of such repet-

itive paired operations, we wish to implement them in deep

networks to exploit their potential. We are specifically in-

terested in how to integrate them with the structure of resid-

ual networks. The basic structure of residual networks is

shown in Fig. 1(a), which have become an indispensable

component for the design of modern deep neural networks.

There have been several explanations for the effectiveness

of the residual networks. A widely accepted one is the

“unraveled” view proposed by Veit et al. [41]: a sequen-

tial connection of n residual blocks is regarded as an en-

semble of many sub-networks corresponding to its implicit

2n paths. A network of three residual blocks with mod-

ules f1, f2, and f3, shown in Fig. 1(a), has (23 =)8 im-

plicit paths from the input to output, i.e., f1 → f2 → f3,

f1 → f2, f1 → f3, f2 → f3, f1, f2, f3, and 1. Veit et

al. also showed that each block works as a computational

unit that can be attached/detached to/from the main net-

work with minimum performance loss. Considering such

a property of residual networks, how should we use resid-
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Figure 2: Upper-left: the structure of a unit block having the

proposed dual residual connections; T l
1

and T l
2

are the con-

tainers for two paired operations; c denotes a convolutional

layer. Other panels: five image restoration tasks considered

in this paper.

ual connections for paired operations? Denoting the paired

operations by f and g, the most basic construction will be

to treat (fi, gi) as a unit module, as shown in Fig. 1(b). In

this connection style, fi and gi are always paired for any

i in the possible paths. In this paper, we consider another

connection style shown in Fig. 1(d), dubbed “dual residual

connection”. This style enables to pair fi and gj for any

i and j such that i ≤ j. In the example of Fig.1(d), all

the combinations of the two operations, (f1, g1), (f2, g2),
(f3, g3), (f1, g2), (f1, g3), and (f2, g3), emerge in the pos-

sible paths. We conjecture that this increased number of po-

tential interactions between {fi} and {gj} will contribute to

improve performance for image restoration tasks. Note that

it is guaranteed that f
·

and g
·

are always paired in the possi-

ble paths. This is not the case with other connection styles

such as the one depicted in Fig. 1(c). We call the building

block for implementing the proposed dual residual connec-

tions Dual Residual Block (DuRB); see Fig. 2. We examine

its effectiveness on five image restoration tasks shown in

Fig. 2 using nine datasets. DuRB is a generic structure that

has two containers for the paired operations, and the users

choose two operations for them. For each task, we specify

the paired operations of DuRBs as well as the entire net-

work. Our experimental results show that our networks out-

perform the state-of-the-art methods in these tasks, which

supports the effectiveness of our approach.

2. Related Work

Gaussian noise removal Application of neural networks

to noise removal has a long history [1,18,43,53,54]. Mao et

al. [26] proposed REDNet, which consists of multiple con-

volutional and de-convolutional layers with symmetric skip

connections over them. Tai et al. [39] proposed MemNet

with local memory blocks and global dense connections,

showing that it performs better than REDNet. However,

Suganuma et al. [37] showed that standard convolutional

autoencoders with repetitive pairs of convolutional layers

with large- and small-size kernels outperform them by a

good margin, which are found by architectural search based

on evolutionary computation.

Motion blur removal This task has a long history of

research. Early works [2, 7, 45, 46] attempt to simultane-

ously estimate both blur kernels and sharp images. Re-

cently, CNN-based methods [9, 20, 28, 38, 42] achieve good

performance for this task. Nah et al. [28] proposed a coarse-

to-fine approach along with a modified residual block [14].

Kupyn et al. [20] proposed an approach based on Genera-

tive Adversarial Network (GAN) [10]. New datasets were

created in [28] and [20].

Haze removal Many studies assume the following model

of haze: I(x) = J(x)t(x) + A(x)(1 − t(x)), where I de-

notes a hazy scene image, J is the true scene radiance (the

clear image), t is a transmission map, A is global atmo-

spheric light. The task is then to estimate A, t, and thus

J(x) from the input I(x) [4,12,27,48,51]. Recently, Zhang

et al. [51] proposed a method that uses CNNs to jointly es-

timate t and A, which outperforms previous approaches by

a large margin. Ren et al. [32] and Li et al. [24] proposed

method to directly estimate J(x) without explicitly estimat-

ing t and A. Yang et al. [48] proposed a method that inte-

grates CNNs to classical prior-based method.

Raindrop detection and removal Various approaches

[19, 21, 34, 47, 50] have been proposed to tackle this prob-

lem in the literature. Kurihata et al. [21] proposed to de-

tect raindrops with raindrop-templates learned using PCA.

Ramensh [19] proposed a method based on K-Means clus-

tering and median filtering to estimate clear images. Re-

cently, Qian et al. [30] proposed a hybrid network consist-

ing of a convolutional-LSTM for localizing raindrops and

a CNN for generating clear images, which is trained in a

GAN framework.

Rain-streak removal Fu et al. [8] use “guided image

filtering” [13] to extract high-frequency components of an

image, and use it to train a CNN for rain-streak removal.

Zhang et al. [52] proposed to jointly estimate rain density

and de-raining result to alleviate the non-uniform rain den-

sity problem. Li et al. [25] regards a heavy rainy image as

a clear image added by an accumulation of multiple rain-

streak layers and proposed a RNN-based method to restore

the clear image. Li et al. [23] proposed an non-locally en-

hanced version of DenseBlock [16] for this task, their net-

work outperforms previous approaches by a good margin.
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Table 1: Performance of the three connection types of Fig. 1(b)-(c). ‘-’s indicate infeasible applications.

Gaussian noise Real noise Motion blur Haze Raindrop Rain-streak

(b) 24.92 / 0.6632 36.76 / 0.9620 29.46 / 0.9035 31.20 / 0.9803 24.70 / 0.8104 32.85 / 0.9214

(c) 24.85 / 0.6568 36.81 / 0.9627 -/- -/- 25.12 / 0.8151 33.13 / 0.9222

(d) 25.05 / 0.6755 36.84 / 0.9635 29.90 / 0.9100 32.60 / 0.9827 25.32 / 0.8173 33.21 / 0.9251

DuRB-P DuRB-U

DuRB-USDuRB-S

Figure 3: Four different implementations of the DuRB; c is

a convolutional layer with 3×3 kernels; ctl
1

and ctl
2

are con-

volutional layers, each with kernels of a specified size and

dilation rate; up is up-sampling (we implemented it using

PixelShuffle [36]); se is SE-ResNet Module [15] that is in

fact a channel-wise attention mechanism.

3. Dual Residual Blocks

The basic structure of the proposed Dual Residual Block

(DuRB) is shown in the upper-left corner of Fig. 2, in which

we use c to denote a convolutional layer (with 3 × 3 ker-

nels) and T l
1

and T l
2

to denote the containers for the paired

first and second operations, respectively, in the lth DuRB

in a network. Normalization layers (such as batch normal-

ization [17] or instance normalization [40]) and ReLU [29]

layers can be incorporated when it is necessary. We de-

sign DuRBs for each individual task, or equivalently choose

the two operations to be inserted into the containers T l
1

and

T l
2
. We will use four different designs of DuRBs, DuRB-

P, DuRB-U, DuRB-S, and DuRB-US, which are shown in

Fig. 3. The specified operations for [T l
1
, T l

2
] are [conv.,

conv.] for DuRB-P, [up-sampling+conv., down-sampling

(by conv. with stride=2)] for DuRB-U, [conv., channel-wise

attention1+conv.] for DuRB-S, and [up-sampling+conv.,

channel-wise attention+down-sampling] for DuRB-US, re-

spectively. We will use DuRB-P for noise removal and rain-

drop removal, DuRB-U for motion blur removal, DuRB-

S for rain-streak and raindrop removal, and DuRB-US for

haze removal.

Before proceeding to further discussions, we present

here experimental results that show the superiority of

the proposed dual residual connection to other connec-

1It is implemented using the SE-ResNet Module [15].

tion styles shown in Fig. 1(b) and (c). In the experi-

ments, three networks build on the three base structures

(b), (c), and (d) of Fig. 1 were evaluated on the five tasks.

For Gaussian&real-world noise removal, motion blur re-

moval, haze removal, raindrop and rain-streak removal, we

use DuRB-P, DuRB-U, DuRB-US, DuRB-S&DuRB-P and

DuRB-S to construct the base structures. Number of blocks

and all the operations in the three structures as well as other

experimental configurations are fixed in each comparison.

The datasets for the six comparisons are BSD-grayscale,

Real-World Noisy Image Dataset, GoPro Dataset, Dehaze

Dataset, RainDrop Dataset and DID-MDN Data. Table 1

shows their performance. Note that ‘-’ in the table indi-

cate that the connection cannot be applied to DuRB-U and

DuRB-US due to the difference in size between the output

of f and the input to g. It can be seen that the proposed

structure (d) performs the best for all the tests.

4. Five Image Restoration Tasks

In this section, we describe how the proposed DuRBs

can be applied to multiple image restoration tasks, noise

removal, motion blur removal, haze removal, raindrop re-

moval and rain-streak removal.

residual connection

DuRB-P
+++

Figure 4: DuRN-P: dual residual network with DuRB-P’s

[conv. w/ a large kernel and conv. w/ a small kernel] for

Gaussian noise removal. b+r is a batch normalization layer

followed by a ReLU layer; and Tanh denotes hyperbolic

tangent function.

4.1. Noise Removal

Network Design We design the entire network as shown in

Fig. 4. It consists of an input block, the stack of six DuRBs,

and an output block, additionally with an outermost residual

connection from the input to output. The layers c, b+ r and

Tanh in the input and output blocks are convolutional layer

(with 3×3 kernels, stride = 1), batch normalization layer
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noise level = 50 DuRN-P Ground truth

Figure 5: Some examples of the results by the proposed

DuRN-P for additive Gaussian noise removal. Sharp images

can be restored from heavy noises (σ = 50).

Noisy DuRN-P Mean

Figure 6: Examples of noise removal by the proposed

DuRN-P for images from Real-World Noisy Image Dataset.

The results are sometimes even better than the mean image

(used as the ground truth); see the artifact around the letters

in the bottom.

followed by a ReLU layer, and hyperbolic tangent function

layer, respectively.

We employ DuRB-P (i.e., the design in which each of the

two operations is single convolution; see Fig. 3) for DuRBs

in the network. Inspired by the networks discovered by neu-

ral architectural search for noise removal in [37], we choose

for T1 and T2 convolution with large- and small-size recep-

tive fields. We also choose the kernel size and dilation rate

for each DuRB so that the receptive field of convolution in

each DuRB grows its size with l. More details are given in

the supplementary material. We set the number of channels

to 32 for all the layers. We call the entire network DuRN-P.

For this task, we employed l2 loss for training the DuRN-P.

Results: Additive Gaussian Noise Removal We tested

the proposed network on the task of removing additive

Gaussian noise of three levels (30, 50, 70) from a gray-

scale noisy image. Following the same experimental pro-

tocols used by previous studies, we trained and tested the

proposed DuRN-P using the training and test subsets (300

and 200 grayscale images) of the BSD-grayscale dataset.

Table 2: Results for additive Gaussian noise removal on

BSD200-grayscale and noise levels (30, 50, 70). The num-

bers are PSNR/SSIM.

30 50 70

REDNet [26] 27.95 / 0.8019 25.75 / 0.7167 24.37 / 0.6551

MemNet [39] 28.04 / 0.8053 25.86 / 0.7202 24.53 / 0.6608

E-CAE [37] 28.23 / 0.8047 26.17 / 0.7255 24.83 / 0.6636

DuRN-P (ours) 28.50 / 0.8156 26.36 / 0.7350 25.05 / 0.6755

Table 3: Results on the Real-World Noisy Image Dataset

[44]. The results were measured by PSNR/SSIM. The last

row shows the number of parameters for each CNN.
REDNet [26] MemNet [39] E-CAE [37] DuRN (ours)

PSNR/SSIM 35.56 / 0.9475 - / - 35.45 / 0.9492 36.83 / 0.9635

# of param. 4.1× 106 2.9× 106 1.1× 106 8.2× 105

More details of the experiments are provided in the supple-

mentary material. We show the quantitative results in Table

2 and qualitative results in Fig. 5. It is observed from Ta-

ble 2 that the proposed network outperforms the previous

methods for all three noise levels.

Results: Real-World Noise Removal We also tested

the DuRN-P on the Real-World Noisy Image Dataset [44],

which consists of 40 pairs of an instance image (a photo-

graph taken by a CMOS camera) and the mean image (mean

of multiple shots of the same scene taken by the CMOS

camera). We removed all the batch normalization layers

from the DuRN-P for this experiment, as the real-world

noise captured in this dataset do not vary greatly. The details

of the experiments are given in the supplementary material.

The quantitative results of three previous methods and our

method are shown in Table 3. We used the authors’ code to

evaluate the three previous methods. (As the MemNet failed

to produce a competitive result, we left the cell empty for it

in the table.) It is seen that our method achieves the best

result despite the smaller number of parameters. Examples

of output images are shown in Fig. 6. We can observe that

the proposed DuRN-P has cleaned noises well. It is note-

worthy that the DuRN-P sometimes provides better images

than the “ground truth” mean image; see the bottom exam-

ple in Fig. 6.

4.2. Motion Blur Removal

The task is to restore a sharp image from its motion

blurred version without knowing the latent blur kernels (i.e.,

the “blind-deblurring” problem).

Network Design Previous works such as [42] reported that

the employment of up- and down-sampling operations is ef-

fective for this task. Following this finding, we employ up-

sampling and down-sampling for the paired operation. We

call this as DuRB-U; see Fig. 3. We use PixelShuffle [36]

for implementing up-sampling. For the entire network de-

sign, following many previous works [20, 42, 51, 55], we
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Blurry DuRN-U SharpDeBlurGAN

Figure 7: Examples of motion blur removal on GoPro-test dataset.

Blurry

DuRN-U

Sharp

Blurry

DuRN-U

Sharp

DeBlurGAN

Figure 8: Examples of object detection from original

blurred images and their deblurred versions.

choose a symmetric encoder-decoder network; see Fig. 9.

The network consists of the initial block, which down-

scales the input image by 4:1 down-sampling with two con-

volution operations (c) with stride = 2, and instance nor-

malization + ReLU (n + r), and six repetitions of DuRB-

U’s, and the final block which up-scales the output of the

last DuRB-U by applications of 1:2 up-sampling (up) to the

original size. We call this network DuRN-U. For this task,

we employed a weighted sum of SSIM and l1 loss for train-

ing the DuRN-U. The details are given in the supp. material.

+
DuRB-U 6

+ +

residual connection

+ +

Figure 9: DuRN-U: Dual Residual Network with DuRB-

U’s (up- and down-sampling) for motion blur removal.

n + r denotes an instance normalization layer followed by

a ReLU layer.

Table 4: Results of motion blur removal for the GoPro-test

dataset.

GoPro-test

Sun et al. [38] 24.6 / 0.84

Nah et al. [28] 28.3 / 0.92

Xu et al. [46] 25.1 / 0.89

DeBlurGAN [20] 27.2 / 0.95

DuRN-U (ours) 29.9 / 0.91

Table 5: Accuracy of object detection from deblurred

images obtained by DeBlurGAN [20] and the proposed

DuRN-U on Car Dataset.

Blurred DeBlurGAN [20] DuRN-U (ours)

mAP (%) 16.54 26.17 31.15

Results: GoPro Dataset We tested the proposed DuRN-

U on the GoPro-test dataset [28] and compared its results

with the state-of-the-art DeblurGAN2 [20]. The GoPro

dataset consists of 2,013 and 1,111 non-overlapped train-

ing (GoPro-train) and test (GoPro-test) pairs of blurred and

sharp images. We show quantitative results in the Table 4.

DeblurGAN yields outstanding SSIM number, whereas the

2The DeblurGAN refers the “DeblurGAN-wild” introduced in the orig-

inal paper [20].
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Hazy image DCPDN DuRN-US Ground truth Hazy image DCPDN DuRN-US Ground truth

Hazy image DCPDN DuRN-US DuRN-USDCPDNGFN GFNHazy image

(A)

(B)

(C)

Figure 10: Examples of de-hazing results obtained by DuRN-US and others on (A) synthesized images, (B) real images and

(C) light hazy images.

proposed DuRN-U is the best in terms of PSNR. Examples

of deblurred images are shown in Fig. 7. It is observed that

the details such as cracks on a stone-fence or numbers writ-

ten on the car plate are restored well enough to be recog-

nized.

Results: Object Detection from Deblurred Images In

[20], the authors evaluated their deblurring method (De-

BlurGAN) by applying an object detector to the deblurred

images obtained by their method. Following the same pro-

cedure and data (Car Dataset), we evaluate our DuRN-U

that is trained on the GoPro-train dataset. The Car Dataset

contains 1,151 pairs of blurred and sharp images of cars. We

employ YOLO v3 [31] trained using the Pascal VOC [6] for

the object detector. The detection results obtained for the

sharp image by the same YOLO v3 detector are utilized as

the ground truths used for evaluation. Table 5 shows quan-

titative results (measured by mAP), from which it is seen

that the proposed DuRN-U outperforms the state-of-the-art

DeBlurGAN. Figure 8 shows examples of detection results

on the GoPro-test dataset and Car Dataset. It is observed

that DuRN-U can recover details to a certain extent that im-

proves accuracy of detection.

4.3. Haze Removal

Network Design In contrast with previous studies where

a CNN is used to explicitly estimate a transmission map

that models the effects of haze, we pursue a different strat-

egy, which is to implicitly estimate a transmission map us-

ing an attention mechanism. Our model estimates the de-

hazed image from an input image in an end-to-end fashion.

We design DuRB’s for this task by employing up-sampling

(up) implemented using PixelShuffle [36] with a convolu-

tional layer (ctl
1
) in T l

1
and channel-wise attention (se) im-

plemented using SE-ResNet module [15] with a conv. layer

(ctl
2
) in T l

2
. More details are given in the supplementary

…

DuRB-US

residual connection

Figure 11: DuRN-US: dual residual network with DuRB-

US’s (up- and down-sampling and channel-wise attention

(SE-ResNet Module)) for haze removal.

Table 6: Results for haze removal on Dehaze-TestA dataset

and RESIDE-SOTS dataset.

Dehaze-TestA

He et al. [12] 0.8642

Zhu et al. [56] 0.8567

Berman et al. [3] 0.7959

Li et al. [22] 0.8842

Zhang et al. [51] 0.9560

DuRN-US (ours) 0.9827

RESIDE-SOTS

Berman et al. [3] 17.27 / 0.75

Ren et al. [32] 17.57 / 0.81

Cai et al. [5] 21.14 / 0.85

Li et al. [22] 19.06 / 0.85

Ren et al. [33] 22.30 / 0.88

DuRN-US (ours) 32.12 / 0.98

material. The entire network (named DuRN-US) has an

encoder-decoder structure similar to the DuRN-U designed

for motion blur removal, as shown in Fig. 11. We stack 12

DuRB-US’s in the middle of the network; the number of

channels is 64 for all the layers. In the supplementary mate-

rial, we demonstrate how our network estimates a transmis-

sion map inside its attention mechanisms. For this task, we

employed a weighted sum of SSIM and l1 loss for training

the DuRN-US.

Results In order to evaluate the proposed DuRN-US, we

trained and tested it on two datasets, the Dehaze Dataset

and the RESIDE dataset. The training and test (Dehaze-

TestA) subsets in the Dehaze Dataset consist of 4,000 and

400 non-overlapped samples of indoor scenes, respectively.

RESIDE contains a training subset of 13,990 samples of in-

door scenes and a few test subsets. Following [33], we used
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Rainy image Qian DuRN-S-P Ground truthAttention map Residual map -

Figure 12: Examples of raindrop removal along with internal activation maps of DuRN-S-P. The “Attention map” and “Resid-

ual map” are the outputs of the Attentive-Net and the last Tanh layer shown in Fig. 13; they are normalized for better

visibility.

a subset SOTS (Synthetic Objective Testing Set) that con-

tains 500 indoor scene samples for evaluation. It should

be noted that the state-of-the-art method on the Dehaze

Dataset, DCPDN [51], is trained using i) hazy images, ii)

ground truth images, iii) ground truth global atmosphere

light , iv) ground truth transmission maps; additionally,

its weights are initialized by those of DenseNet [16] pre-

trained on the ImageNet [35]. The proposed DuRN-US

is trained only using i) and ii). Table 6 show results on

Dehaze-TestA and RESIDE-SOTS datasets, respectively.

Figure 10 shows examples of the results obtained by the

proposed network and others for the same input images. In

sub-figure (A), we show results for two synthesized images

produced by the DCPDN (the second best approach in terms

of SSIM and PSNR) and our DuRN-US. It is observed that

DuRN-US yields better results for these two images. In sub-

figure (B), we show results for two real-world hazy images3

produced by two state-of-the-art methods, GFN [33] and

DCPDN [51], and by ours. It can be observed that our net-

work yields the most realistic dehazed images. It is note-

worthy that our DuRN-US can properly deal with strong

ambient light (sunshine coming behind the girl). See the

example in the left-bottom of Fig. 10.

4.4. Raindrop removal

Network Design The task can naturally be divided into

two stages, that of identifying the regions of raindrops and

that of recovering the pixels of the identified regions. The

second stage is similar to image inpainting and may not

be difficult, as there are a lot of successful methods for

image inpainting. Then, the major issue is with the first

stage. Following this two-stage approach, the state-of-the-

art method [30] uses an attentive-recurrent network to pro-

duce an attention map that conveys information about rain-

drops; then, the attention map along with the input image

3The images are available from https://github.com/rwenqi/GFN-

dehazing

+
DuRB-S

+ +

residual connection

+

…

DuRB-P

Attentive-Net

Figure 13: DuRN-S-P: Hybrid dual residual network with

DuRB-S’s and DuRB-P’s for raindrop removal.

Table 7: Quantitative result comparison on RainDrop

Dataset [30].

Qian et al. [30] DuRN-S-P (ours)

TestSetA 31.51 / 0.9213 31.24 / 0.9259

TestSetB 24.92 / 0.8090 25.32 / 0.8173

are fed to a convolutional encoder-decoder network to es-

timate the ground truth image. It also employs adversarial

training with a discriminator to make the generated images

realistic.

We show our DuRBs are powerful enough to perform

these two-stage computations in a standard feedforward net-

work, if we use properly designed DuRBs in proper po-

sitions in the entire network. To be specific, we choose

the encoder-decoder structure for the entire network, and in

its bottleneck part, we set three DuRB-S’s followed by six

DuRB-P’s. For ctl
1

in the three DuRB-S’s, we use convolu-

tion with a 3 × 3 kernel with decreasing dilation rates, 12,

8, and 6, in the forward direction, aiming to localize rain-

drops in a coarse-to-fine manner in the three DuRB-S’s in a

row. For the six DuRB-P’s, we employ the same strategy as

in noise removal etc., which is to apply a series of convo-

lution with an increasing receptive field size in the forward

direction. We call the entire network DuRN-S-P. For this

task, we employed a weighted sum of SSIM and l1 loss for

training the DuRN-S-P.
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DID-MDNDDN RESCAN DuRN-S Ground truthRainy

Figure 14: Examples of rain-streak removal obtained by four methods including ours (DuRN-S).

Results We trained and evaluated the DuRN-S-P on the

RainDrop Dataset. It contains 861 training samples and

58/249 test samples called TestSetA/TestSetB. TestSetA is

a subset of TestSetB, and is considered to have better align-

ment4 than TestSetB. Table 7 shows the results. It is seen

that our method outperforms the state-of-the-art method for

three out of four combinations of two test sets and two eval-

uation metrics. It is noteworthy that our method does not

use a recurrent network or adversarial training. Figure 12

shows some examples of the results obtained by our method

and the method of [30]. It is seen that the results of our

method are visually comparable to the method of [30]. The

“Attention map” and “Residual map” of Fig. 12 are the over-

channel summation of the output of Attentive-Net and the

output of the last Tanh layer, respectively; see Fig. 13.

4.5. Rain-streak Removal

Network Design It is shown in [23] that the mechanism

that selectively weighs feature maps using global informa-

tion works effectively for this task. Borrowing this idea,

we employ a channel-wise attention mechanism to perform

similar feature weighting. The overall design of the network

for this task is similar to the DuRN-P designed for Gaussian

noise removal. A difference is that we use DuRB-S instead

of DuRB-P to use the attention mechanism. The details are

given in the supplementary material. For this task, we em-

ployed a weighted sum of SSIM and l1 loss for training the

network.

Results We tested the proposed network (DuRN-S) on

two benchmark datasets, the DDN-Data, which consists of

9,100 training pairs and 4,900 test pairs of rainy and clear

images, and the DID-MDN Data, which consists of 12,000

training pairs and 1,200 test pairs. Table 8 shows the results.

Those for the previous methods except RESCAN [25] are

imported from [23]. It is seen that the proposed network

achieves the best performance. Examples of the output im-

ages are provided in Fig. 14.

4https://github.com/rui1996/DeRaindrop

Table 8: Results on two de-raining datasets.

DDN Data DID-MDN Data

DDN [8] 28.24 / 0.8654 23.53 / 0.7057

JORDER [49] 28.72 / 0.8740 30.35 / 0.8763

DID-MDN [52] 26.17 / 0.8409 28.30 / 0.8707

RESCAN [25] -/- 32.48 / 0.9096

NLEDN [23] 29.79 / 0.8976 33.16 / 0.9192

DuRN-S (ours) 31.30 / 0.9194 33.21 / 0.9251

5. Summary and Discussions

We have proposed a style of residual connection, dubbed

“dual residual connection”, aiming to exploit the potential

of paired operations for image restoration tasks. We have

shown the design of a modular block (DuRB) that imple-

ments this connection style, which has two containers for

the paired operations such that the user can insert any arbi-

trary operations to them. We have also shown choices of the

two operations in the block as well as the entire networks

(DuRN) containing a stack of the blocks for five different

image restoration tasks. The experimental results obtained

using nine datasets show that the proposed approach con-

sistently works better than previous methods.

Acknowledgement

This work was partly supported by JSPS KAKENHI

Grant Number JP15H05919, JST CREST Grant Num-

ber JPMJCR14D1, Council for Science, Technology and

Innovation (CSTI), Cross-ministerial Strategic Innovation

Promotion Program (Infrastructure Maintenance, Renova-

tion and Management ), and the ImPACT Program Tough

Robotics Challenge of the Council for Science, Technology,

and Innovation (Cabinet Office, Government of Japan).

References

[1] Forest Agostinelli, Michael R Anderson, and Honglak Lee.

Adaptive multi-column deep neural networks with applica-

tion to robust image denoising. In Proc. International Con-

ference on Neural Information Processing Systems, 2013.

7014



[2] S. Derin Babacan, Rafael Molina, Minh N. Do, and Agge-

los K. Katsaggelos. Bayesian blind deconvolution with gen-

eral sparse image priors. In Proc. European Conference on

Computer Vision, 2012.

[3] Dana Berman, Tail Treibitz, and Shai Avidan. Non-local im-

age dehazing. In Proc. Conference on Computer Vision and

Pattern Recognition, 2016.

[4] Dana Berman, Tali Treibitz, and Shai Avidan. Air-light esti-

mation using haze-lines. In Proc. International Conference

on Computational Photography, 2017.

[5] Bolun Cai, Xiangmin Xu, Kui Jia, Chunmei Qing, and

Dacheng Tao. Dehazenet: An end-to-end system for single

image haze removal. IEEE Transactions on Image Process-

ing, 2016.

[6] M. Everingham, S. M. A. Eslami, L. Van Gool, C. K. I.

Williams, J. Winn, and A. Zisserman. The pascal visual ob-

ject classes challenge: A retrospective. International Journal

of Computer Vision, 2015.

[7] Rob Fergus, Barun Singh, Aaron Hertzmann, Sam T.

Roweis, and William T. Freeman. Removing camera shake

from a single photograph. In Proc. ACM SIGGRAPH, 2006.

[8] Xueyang Fu, Jiabin Huang, Delu Zeng, Yue Huang, Xinghao

Ding, and John Paisley. Removing rain from single images

via a deep detail network. In Proc. Conference on Computer

Vision and Pattern Recognition, 2017.

[9] Dong Gong, Jie Yang, Lingqiao Liu, Yanning Zhang, Ian

D. Reid, Chunhua Shen, Anton van den Hengel, and Qin-

feng Shi. From motion blur to motion flow: A deep learning

solution for removing heterogeneous motion blur. In Proc.

European Conference on Computer Vision, 2017.

[10] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Proc. Inter-

national Conference on Neural Information Processing Sys-

tems, 2014.

[11] Muhammad Haris, Greg Shakhnarovich, and Norimichi

Ukita. Deep back-projection networks for super-resolution.

In Proc. Conference on Computer Vision and Pattern Recog-

nition, 2018.

[12] Kaiming He, Jian Sun, and Xiaoou Tang. Single image haze

removal using dark channel prior. IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, 2011.

[13] Kaiming He, Jian Sun, and Xiaoou Tang. Guided image fil-

tering. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2013.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proc. Con-

ference on Computer Vision and Pattern Recognition, 2016.

[15] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. In Proc. Conference on Computer Vision and Pattern

Recognition, 2018.

[16] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In Proc. Conference on Computer Vision and Pattern

Recognition, 2017.

[17] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In Proc. International Conference on Machine

Learning, 2015.

[18] Viren Jain and Sebastian Seung. Natural image denoising

with convolutional networks. In Proc. International Confer-

ence on Neural Information Processing Systems, 2009.

[19] M. Ramesh Kanthan and S. Naganandini Sujatha. Rain drop

detection and removal using k-means clustering. In Proc.

International Conference on Computational Intelligence and

Computing Research, 2015.

[20] Orest Kupyn, Volodymyr Budzan, Mykola Mykhailych,

Dmytro Mishkin, and Jiri Matas. Deblurgan: Blind mo-

tion deblurring using conditional adversarial networks. In

Proc. Conference on Computer Vision and Pattern Recogni-

tion, 2018.

[21] Hiroyuki Kurihata, Tatsuro S Takahashi, Ichiro Ide, Y.

Mekada, Hiroshi Murase, Yukimasa Tamatsu, and Takayuki

Miyahara. Rainy weather recognition from in-vehicle cam-

era images for driver assistance. In Proc. Intelligent Vehicles

Symposium, 2005.

[22] Boyi Li, Xiulian Peng, Zhangyang Wang, Ji-Zheng Xu, and

Dan Feng. Aod-net: All-in-one dehazing network. In Proc.

International Conference on Computer Vision, 2017.

[23] Guanbin Li, Xiang He, Wei Zhang, Huiyou Chang, Le Dong,

and Liang Lin. Non-locally enhanced encoder-decoder net-

work for single image de-raining. In Proc. ACM Interna-

tional Conference on Multimedia, 2018.

[24] Runde Li, Jinshan Pan, Zechao Li, and Jinhui Tang. Single

image dehazing via conditional generative adversarial net-

work. In Proc. Conference on Computer Vision and Pattern

Recognition, 2018.

[25] Xia Li, Jianlong Wu, Zhouchen Lin, Hong W. Liu, and

Hongbin Zha. Recurrent squeeze-and-excitation context ag-

gregation net for single image deraining. In Proc. European

Conference on Computer Vision, 2018.

[26] Xiao-Jiao Mao, Chunhua Shen, and Yu-Bin Yang. Image

restoration using very deep convolutional encoder-decoder

networks with symmetric skip connections. In Proc. Inter-

national Conference on Neural Information Processing Sys-

tems, 2016.

[27] Gaofeng Meng, Ying Wang, Jiangyong Duan, Shiming Xi-

ang, and Chunhong Pan. Efficient image dehazing with

boundary constraint and contextual regularization. In Proc.

International Conference on Computer Vision, 2013.

[28] Seungjun Nah, Tae Hyun Kim, and Kyoung Mu Lee. Deep

multi-scale convolutional neural network for dynamic scene

deblurring. In Proc. Conference on Computer Vision and

Pattern Recognition, 2017.

[29] Vinod Nair and Geoffrey E. Hinton. Rectified linear units im-

prove restricted boltzmann machines. In Proc. International

Conference on Machine Learning, 2015.

[30] Rui Qian, Robby T. Tan, Wenhan Yang, Jiajun Su, and Jiay-

ing Liu. Attentive generative adversarial network for rain-

drop removal from a single image. In Proc. Conference on

Computer Vision and Pattern Recognition, 2018.

[31] Joseph Redmon and Ali Farhadi. Yolov3: An incremental

improvement. arXiv:1804.02767, 2018.

7015



[32] Wenqi Ren, Si Liu, Hua Zhang, Jinshan Pan, Xiaochun Cao,

and Ming-Hsuan Yang. Single image dehazing via multi-

scale convolutional neural networks. In Proc. European Con-

ference on Computer Vision, 2016.

[33] Wenqi Ren, Lin Ma, Jiawei Zhang, Jinshan Pan, Xiaochun

Cao, Wei Liu, and Ming-Hsuan Yang. Gated fusion network

for single image dehazing. In Proc. Conference on Computer

Vision and Pattern Recognition, 2018.

[34] M. Roser and A. Geiger. Video-based raindrop detection for

improved image registration. In Proc. International Confer-

ence on Computer Vision Workshops, 2009.

[35] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Fei-Fei Li. ImageNet Large Scale Visual Recognition Chal-

lenge. International Journal of Computer Vision, 2015.

[36] Wenzhe Shi, Jose Caballero, Ferenc Huszar, Johannes Totz,

Andrew P. Aitken, Rob Bishop, Daniel Rueckert, and Zehan

Wang. Real-time single image and video super-resolution

using an efficient sub-pixel convolutional neural network. In

Proc. Conference on Computer Vision and Pattern Recogni-

tion, 2016.

[37] Masanori Suganuma, Mete Ozay, and Takayuki Okatani. Ex-

ploiting the potential of standard convolutional autoencoders

for image restoration by evolutionary search. In Proc. Inter-

national Conference on Machine Learning, 2018.

[38] Jian Sun, Wenfei Cao, Zongben Xu, and Jean Ponce. Learn-

ing a convolutional neural network for non-uniform motion

blur removal. In Proc. Conference on Computer Vision and

Pattern Recognition, 2015.

[39] Ying Tai, Jian Yang, Xiaoming Liu, and Chunyan Xu. Mem-

net: A persistent memory network for image restoration. In

Proc. International Conference on Computer Vision, 2017.

[40] Dmitry Ulyanov, Andrea Vedaldi, and Victor S. Lempitsky.

Instance normalization: The missing ingredient for fast styl-

ization. arXiv:1607.08022, 2016.

[41] Andreas Veit, Michael J. Wilber, and Serge Belongie. Resid-

ual networks behave like ensembles of relatively shallow net-

works. In Proc. International Conference on Neural Infor-

mation Processing Systems, 2016.

[42] Patrick Wieschollek, Michael Hirsch, Bernhard Schölkopf,

and Hendrik P. A. Lensch. Learning blind motion deblur-

ring. In Proc. International Conference on Computer Vision,

2017.

[43] Junyuan Xie, Linli Xu, and Enhong Chen. Image denoising

and inpainting with deep neural networks. In Proc. Inter-

national Conference on Neural Information Processing Sys-

tems, 2012.

[44] Jun Xu, Hui Li, Zhetong Liang, David Zhang, and Lei

Zhang. Real-world noisy image denoising: A new bench-

mark. arXiv:1804.02603, 2018.

[45] Li Xu and Jiaya Jia. Two-phase kernel estimation for robust

motion deblurring. In Proc. European Conference on Com-

puter Vision, 2010.

[46] Li Xu, Shicheng Zheng, and Jiaya Jia. Unnatural l0 sparse

representation for natural image deblurring. In Proc. Confer-

ence on Computer Vision and Pattern Recognition, 2013.

[47] Atsushi Yamashita, Yuu Tanaka, and Toru Kaneko. Removal

of adherent waterdrops from images acquired with stereo

camera. In Proc. International Conference on Intelligent

Robots and Systems, 2005.

[48] Dong Yang and Jian Sun. Proximal dehaze-net: A prior

learning-based deep network for single image dehazing. In

Proc. European Conference on Computer Vision, 2018.

[49] Wenhan Yang, Robby T. Tan, Jiashi Feng, Jiaying Liu, Zong-

ming Guo, and Shuicheng Yan. Joint rain detection and re-

moval from a single image. In Proc. Conference on Com-

puter Vision and Pattern Recognition, 2017.

[50] Shaodi You, Robby T.Tan, Rei Kawakami, Yasuhiro

Mukaigawa, and Katsushi Ikeuchi. Adherent raindrop mod-

eling, detection and removal in video. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 2016.

[51] He Zhang and Vishal M Patel. Densely connected pyramid

dehazing network. In Proc. Conference on Computer Vision

and Pattern Recognition, 2018.

[52] He Zhang and Vishal M Patel. Density-aware single image

de-raining using a multi-stream dense network. In Proc.

Conference on Computer Vision and Pattern Recognition,

2018.

[53] Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and

Lei Zhang. Beyond a gaussian denoiser: Residual learning of

deep cnn for image denoising. IEEE Transactions on Image

Processing, 2017.

[54] Kai Zhang, Wangmeng Zuo, and Lei Zhang. Ffdnet: Toward

a fast and flexible solution for CNN based image denoising.

IEEE Transactions on Image Processing, 2018.

[55] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networkss. In Proc. International Con-

ference on Computer Vision, 2017.

[56] Qingsong Zhu, Jiaming Mai, and Ling Shao. A fast single

image haze removal algorithm using color attenuation prior.

IEEE Transactions on Image Processing, 2015.

7016


