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Abstract

Object detection generally requires sliding-window clas-

sifiers in tradition or anchor-based predictions in modern

deep learning approaches. However, either of these ap-

proaches requires tedious configurations in windows or an-

chors. In this paper, taking pedestrian detection as an ex-

ample, we provide a new perspective where detecting ob-

jects is motivated as a high-level semantic feature detec-

tion task. Like edges, corners, blobs and other feature de-

tectors, the proposed detector scans for feature points all

over the image, for which the convolution is naturally suit-

ed. However, unlike these traditional low-level features, the

proposed detector goes for a higher-level abstraction, that

is, we are looking for central points where there are pedes-

trians, and modern deep models are already capable of such

a high-level semantic abstraction. Besides, like blob de-

tection, we also predict the scales of the pedestrian points,

which is also a straightforward convolution. Therefore, in

this paper, pedestrian detection is simplified as a straight-

forward center and scale prediction task through convolu-

tions. This way, the proposed method enjoys an anchor-

free setting. Though structurally simple, it presents compet-

itive accuracy and good speed on challenging pedestrian

detection benchmarks, and hence leading to a new attrac-

tive pedestrian detector. Code and models will be available

at https://github.com/liuwei16/CSP.

1. Introduction

Feature detection is one of the most fundamental prob-

lems in computer vision. It is usually viewed as a low-level

technique, with typical tasks including edge detection (e.g.

∗Wei Liu finished his part of work during his visit in CASIA.
†Shengcai Liao is the corresponding author. He was previously in CA-

SIA.

Figure 1. The overall pipeline of the proposed CSP detector. The

final convolutions have two channels, one is a heatmap indicat-

ing the locations of the centers (red dots), and the other serves to

predict the scales (yellow dotted lines) for each detected center.

Canny [4], Sobel [41]), corner (or interest point) detection

(e.g. SUSAN [40], FAST [37]), and blob (or region of inter-

est point) detection (e.g. LoG [25], DoG [31], MSER [33]).

Feature detection is of vital importance to a variety of com-

puter vision tasks ranging from image representation, image

matching to 3D scene reconstruction, to name a few.

Generally speaking, a feature is defined as an ”interest-

ing” part of an image, and so feature detection aims to com-

pute abstractions of image information and make local deci-

sions at every image point whether there is an image feature

of a given type at that point or not [1]. Regarding abstrac-

tion of image information, with the rapid development for

computer vision tasks, deep convolutional neural networks

(CNN) are believed to be of very good capability to learn

high-level image abstractions. Therefore, it has also been

applied for feature detection, and demonstrates attractive

successes even in low-level feature detections. For example,

there is a recent trend of using CNN to perform edge detec-

tion [39, 47, 2, 29], which has substantially advanced this

field. It shows that clean and continuous edges can be ob-

tained by deep convolutions, which indicates that CNN has

a stronger capability to learn higher-level abstraction of nat-

ural images than traditional methods. This capability may
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not be limited to low-level feature detection; it may open up

many other possibilities of high-level feature detection.

Therefore, in this paper, taking pedestrian detection as an

example, we provide a new perspective where detecting ob-

jects is motivated as a high-level semantic feature detection

task. Like edges, corners, blobs and other feature detectors,

the proposed detector scans for feature points all over the

image, for which the convolution is naturally suited. How-

ever, unlike these traditional low-level feature detectors, the

proposed detector goes for a higher-level abstraction, that

is, we are looking for central points where there are pedes-

trians. Besides, similar to the blob detection, we also pre-

dict the scales of the pedestrian points. However, instead of

processing an image pyramid to determine the scale as in

traditional blob detection, we predict object scale with also

a straightforward convolution in one pass upon a fully con-

volution network (FCN) [30], considering its strong capa-

bility. As a result, pedestrian detection is simply formulat-

ed as a straightforward center and scale prediction task via

convolution. The overall pipeline of the proposed method,

denoted as Center and Scale Prediction (CSP) based detec-

tor, is illustrated in Fig. 1.

As for general object detection, starting from the pioneer

work of the Viola-Jones detector [45], it generally requires

sliding-window classifiers in tradition or anchor-based pre-

dictions in CNN-based methods. These detectors are es-

sentially local classifiers used to judge the pre-defined win-

dows or anchors as being objects or not. However, either

of these approaches requires tedious configurations in win-

dows or anchors. Generally speaking, object detection is to

tell where the object is, and how big it is. Traditional meth-

ods combines the ”where” and ”how” subproblems into a

single one through the overall judgement of various scales

of windows or anchors. In contrast, the proposed CSP de-

tector separates the ”where” and ”how” subproblems into

two different convolutions. This makes detection a more

natural way, and enjoys a window-free or anchor-free set-

ting, significantly reducing the difficulty in training.

There is another line of research which inspires us a lot.

Previously, FCN has already been applied to and made a

success in multi-person pose estimation [5, 34], where sev-

eral keypoints are firstly detected merely through responses

of full convolutions, and then they are further grouped in-

to complete poses of individual persons. In view of this,

recently two inspirational works, CornerNet [18] and TLL

[42], successfully go free from windows and anchors, which

perform object detection as convolutional keypoint detec-

tions and their associations. Though the keypoint associ-

ation require additional computations, sometimes complex

as in TLL, the keypoint prediction by FCN inspires us to go

a step further, achieving center and scale prediction based

pedestrian detection in full convolutions.

In summary, the main contributions of this work are as

follows: (i) We show a new possibility that pedestrian de-

tection can be simplified as a straightforward center and s-

cale prediction task through convolutions, which bypasses

the limitations of anchor-based detectors and gets rid of the

complex post-processing of recent keypoint pairing based

detectors. (ii) The proposed CSP detector achieves the new

state-of-the-art performance on two challenging pedestrian

detection benchmarks, CityPersons [51] and Caltech [9].

2. Related Works

2.1. Anchorbased object detection

One key component of anchor-based detectors is the an-

chor boxes of pre-defined scales and aspect ratios. In this

way, detection is performed by classifying and regressing

these anchor boxes. Faster R-CNN [36] is known as a

two-stage detector, which generates objectness proposal-

s and further classify and refine these proposals in a sin-

gle framework. In contrast, singe-stage detectors, popular-

ized by SSD [27], remove the proposal generation step and

achieve comparable accuracy while are more efficient than

two-stage detectors. In terms of pedestrian detection, Faster

R-CNN has become the predominant framework. For ex-

ample, RPN+BF [48] adapts the RPN and re-scores these

proposals via boosted forests. MS-CNN [3] also applies the

Faster R-CNN framework but generates proposals on multi-

scale feature maps. Zhang et al. [51] contribute five strate-

gies to adapt the plain Faster R-CNN for pedestrian detec-

tion. RepLoss [46] and OR-CNN [52] design two novel re-

gression losses to tackle the occluded pedestrian detection

in crowded scenes. Bi-Box [53] proposes an auxiliary sub-

network to predict the visible part of a pedestrian instance.

Most recently, single-stage detectors also present competi-

tive performance. For example, ALFNet [28] proposes the

asymptotic localization fitting strategy to evolve the default

anchor boxes step by step into precise detection results, and

[21] focuses on the discriminative feature learning based on

the original SSD architecture.

2.2. Anchorfree object detection

Anchor-free detectors bypass the requirement of anchor

boxes and detect objects directly from an image. DeNet [44]

proposes to generate proposals by predict the confidence of

each location belonging to four corners of objects. Follow-

ing the two-stage pipeline, DeNet also appends another sub-

network to re-score these proposals. Within the single-stage

framework, YOLO [35] appends fully-connected layers to

parse the final feature maps of a network into class confi-

dence scores and box coordinates. Densebox [14] devises a

unified FCN that directly regresses the classification scores

and distances to the boundary of a ground truth box on all

pixels, and demonstrates improved performance with land-

mark localization via multi-task learning. Most recently,
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CornerNet [18] also applies a FCN but to predict objects’

top-left and bottom-right corners and then group them vi-

a associative embedding [34]. Enhanced by the novel cor-

ner pooling layer, CornerNet achieves superior performance

on MS COCO object detection benchmark [22]. Similar-

ly, TLL [42] proposes to detect an object by predicting the

top and bottom vertexes. To group these paired keypoints

into individual instances, it also predicts the link edge be-

tween them and employs a post-processing scheme based

on Markov Random Field. Applying on pedestrian detec-

tion, TLL achieves significant improvement on Caltech [9],

especially for small-scale pedestrians.

Our work also falls in the anchor-free object detection,

but with significant differences to all above methods. We

try to answer to what extent a single FCN can be simpli-

fied for pedestrian detection, and demonstrate that a single

center point is feasible for object localization. Along with

the scale prediction, CSP is able to generate bounding boxes

without any requirements of extra post-processing schemes

except the Non-Maximum Suppression (NMS).

2.3. Feature detection

Feature detection is a long-standing problem in com-

puter vision with extensive literatures. Generally speak-

ing, it mainly includes edge detection [4, 41], corner de-

tection [37, 38], blob detection [33, 7] and so on. Tradi-

tional leading methods [4, 41] mainly focus on the utiliza-

tion of local cues, such as brightness, colors, gradients and

textures. With the development of CNN, a series of CNN-

based method are proposed that significantly push forward

the state of the arts in the task of feature detection. For ex-

ample, there is a recent trend of using CNN to perform edge

detection [39, 47, 2, 29], which have substantially advanced

this field. However, different from these low-level feature

points like edge, corners and blobs, the proposed method

goes for a higher-level abstraction task, that is, we focus

on detecting central points where there are pedestrians, for

which modern deep models are already capable of.

3. Proposed Method

3.1. Preliminary

The CNN-based object detectors often rely on a back-

bone network (e.g. ResNet [12]). Taking an image I as

input, the network may generate several feature maps with

different resolutions, which can be defined as follows:

φi = fi(φi−1) = fi(fi−1(...f2(f1(I)))), (1)

where φi represents feature maps output by the ith lay-

er. These feature maps decrease in size progressively and

are generated by fi(.), which may be a combination of

convolution or pooling, etc. Given a network with N
layers, all the generated feature maps can be denoted as

Φ = {φ1, φ2, ..., φN}, which is further utilized by detec-

tion heads.

Generally speaking, the CNN-based object detectors d-

iffer in how to utilize Φ. We denote these feature maps that

are responsible for detection as Φdet. In RPN [36], only

the final feature map φN is used to perform detection, thus

the final set of feature maps for detection is Φdet = {φN}.

While in SSD [27], the detection feature maps can be repre-

sented as Φdet = {φL, φL+1, ..., φN}, where 1 < L < N .

Further, in order to enrich the semantic information of shal-

lower layers for detecting small-scale objects, FPN [23]

and DSSD [10] utilize the lateral connection to combine

feature maps of different resolutions, resulting in Φdet =
{φ

′

L, φ
′

L+1, ..., φ
′

N}, where φ
′

i(i = L,L+1, ...N) is a com-

bination of φi(i = L,L+ 1, ...N).

Besides Φdet, in anchor-based detectors, another key

component is called anchor boxes (denoted as B). Given

Φdet and B in hand, detection can be formulated as:

Dets = H(Φdet,B)

= {cls(Φdet,B), regr(Φdet,B)},
(2)

where B is pre-defined according to the corresponding set of

feature maps Φdet, and H(.) represents the detection head.

Generally, H(.) contains two elements, namely cls(.) which

predicts the classification scores, and regr(.) which predict-

s the scaling and offsets of the anchor boxes.

While in anchor-free detectors, detection is performed

merely on the set of feature maps Φdet, that is,

Dets = H(Φdet) (3)

3.2. Overall architecture

The overall architecture of the proposed CSP detector is

illustrated in Fig. 2. The backbone network are truncated

from a standard network pretrained on ImageNet [8] (e.g.

ResNet-50 [12] and MobileNet [13]).

Feature Extraction. Taking ResNet-50 as an example,

its Conv layers can be divided into five stages, in which the

output feature maps are downsampled by 2, 4, 8, 16, 32

w.r.t. the input image. As a common practice [46, 42], the

dilated convolutions are adopted in stage 5 to keep its out-

put as 1/16 of the input image size. We denote the output

of stage 2, 3, 4 and 5 as φ2, φ3, φ4 and φ5, in which the

shallower feature maps can provide more precise localiza-

tion information, while the coarser ones contain more se-

mantic information with increasing the sizes of receptive

fields. Therefore, we fuse these multi-scale feature maps

from each stage into a single one in a simple way, that is,

a deconvolution layer is adopted to make multi-scale fea-

ture maps with the same resolution before concatenation.

Since the feature maps from each stage have different s-

cales, we use L2-normalization to rescale their norms to 10,
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Figure 2. Overall architecture of CSP, which mainly comprises two components, i.e. the feature extraction module and the detection head.

The feature extraction module concatenates feature maps of different resolutions into a single one. The detection head merely contains a

3x3 convolutional layer, followed by two prediction layers, one for the center location and the other for the corresponding scale.

which is similar to [21]. To investigate the optimal com-

bination from these multi-scale feature maps, we conduc-

t an ablative experiment in Sec. 4.2 and demonstrate that

Φdet = {φ3, φ4, φ5} is the best choice. Given an input im-

age of size H × W , the size of final concatenated feature

maps is H/r × W/r, where r is the downsampling fac-

tor. Similarly to [42], r = 4 gives the best performance as

demonstrated in our experiments, because a larger r means

coarser feature maps which struggle on accurate localiza-

tion, while a smaller r brings more computational burden-

s. Note that more complicated feature fusion strategies like

[23, 15, 17] can be explored to further improve the detection

performance, but it is not in the scope of this work.

Detection Head. Upon the concatenated feature maps

Φdet, a detection head is appended to parse it into detection

results. As stated in [26], the detection head plays a signif-

icant role in top performance, which has been extensively

explored in the literature [10, 26, 20, 19]. In this work, we

firstly attach a single 3x3 Conv layer on Φdet to reduce its

channel dimensions to 256, and then two sibling 1x1 Conv

layers are appended to produce the center heatmap and s-

cale map, respectively. Also, we do this for simplicity and

any improvement of the detection head [10, 26, 20, 19] can

be flexibly incorporate into this work to be a better detector.

A drawback from the downsampled feature maps is the

problem of poor localization. Optionally, to slightly adjust

the center location, an extra offset prediction branch can be

appended in parallel with the above two branches.

3.3. Training

Ground Truth. The predicted heatmaps are with the

same size as the concatenated feature maps (i.e. H/r ×
W/r). Given the bounding box annotations, we can gen-

erate the center and scale ground truth automatically. An

illustration example is depicted in Fig. 3 (b). For the cen-

Figure 3. (a) is the bounding box annotations commonly adopt-

ed by anchor-based detectors. (b) is the center and scale ground

truth generated automatically from (a). Locations of all objects’

center points are assigned as positives, and negatives otherwise.

Each pixel is assigned a scale value of the corresponding object

if it is a positive point, or 0 otherwise. We only show the height

information of the two positives for clarity. (c) is the overall Gaus-

sian mask map M defined in Eq.4 to reduce the ambiguity of these

negatives surrounding the positives.

ter ground truth, the location where an object’s center point

falls is assigned as positive while all others are negatives.

Scale can be defined as the height and/or width of object-

s. Towards high-quality ground truth for pedestrian detec-

tion, line annotation is first proposed in [50, 51], where tight

bounding boxes are automatically generated with a uniform

aspect ratio of 0.41. In accordance to this annotation, we

can merely predict the height of each object and generate

the bounding box with the predetermined aspect ratio. For

the scale ground truth, the kth positive location is assigned

with the value of log(hk) corresponding to the kth objec-

t. To reduce the ambiguity, log(hk) is also assigned to the

negatives within a radius 2 of the positives, while all other

locations are assigned as zeros. Alternatively, we can al-

so predict the width or height+width but with slightly poor

performance for pedestrian detection as demonstrated in our
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experiments (Sec. 4.2).

When the offset prediction branch is appended, the

ground truth for the offsets of those centers can be defined

as (xk

r − ⌊xk

r ⌋, yk

r − ⌊yk

r ⌋).
Loss Function. For the center prediction branch, we for-

mulate it as a classification task via the cross-entropy loss.

Note that it is difficult to decide an ’exact’ center point, thus

the hard-designation of positives and negatives brings more

difficulties for training. In order to reduce the ambiguity

of these negatives surrounding the positives, we also apply

a 2D Gaussian mask G(.) centered at the location of each

positive. An illustration example of the overall mask map

M is depicted in Fig. 3 (c). Formally, it is formulated as:

Mij = max
k=1,2,...,K

G(i, j;xk, yk, σwk
, σhk

),

G(i, j;x, y, σw, σh) = e
−(

(i−x)2

2σ2
w

+
(j−y)2

2σ2
h

)
,

(4)

where K is the number of objects in an image,

(xk, yk, wk, hk) is the center coordinates, width and height

of the kth object, and the variances (σk
w, σ

k
h) of the Gaus-

sian mask are proportional to the height and width of indi-

vidual objects. If these masks have overlaps, we choose the

maximum values for the overlapped locations. To combat

the extreme positive-negative imbalance problem, the focal

weights [24] on hard examples are also adopted. Thus, the

classification loss can be formulated as:

Lcenter = −
1

K

W/r
∑

i=1

H/r
∑

j=1

αij(1− p̂ij)
γ log(p̂ij), (5)

where

p̂ij =

{

pij if yij = 1

1− pij otherwise,

αij =

{

1 if yij = 1

(1−Mij)
β otherwise.

(6)

In the above, pij ∈ [0, 1] is the network’s estimated prob-

ability indicating whether there is an object’s center or not

in the location (i, j), and yij ∈ {0, 1} specifies the ground

truth label, where yij = 1 represents the positive location.

αij and γ are the focusing hyper-parameters, we experimen-

tally set γ = 2 as suggested in [24]. To reduce the ambigu-

ity from those negatives surrounding the positives, the αij

according to the Gaussian mask M is applied to reduce their

contributions to the total loss, in which the hyper-parameter

β controls the penalty. Experimentally, β = 4 gives the

best performance, which is similar to the one in [18]. For

positives, αij is set as 1.

For scale prediction, we formulate it as a regression task

via the smooth L1 loss [11]:

Lscale =
1

K

K
∑

k=1

SmoothL1(sk, tk), (7)

where sk and tk represents the network’s prediction and the

ground truth of each positive, respectively.

If the offset prediction branch is appended, the similar

smooth L1 loss in Eq. 7 is adopted (denoted as Loffset).

To sum up, the full optimization objective is:

L = λcLcenter + λsLscale + λoLoffset, (8)

where λc, λs and λo are the weights for center classifica-

tion, scale regression and offset regression losses, which are

experimentally set as 0.01, 1 and 0.1, respectively.

Data Augmentation. To increase the diversity of the

training data, standard data augmentation techniques are

adopted. Firstly, random color distortion and horizontal flip

are applied, followed by randomly scaled in the range of

[0.4, 1.5]. Secondly, a patch is cropped or expanded by

zero-padding such that the shorter side has a fixed number

of pixels (640 for CityPersons [51], and 336 for Caltech

[9]). Note that the aspect ratio of the image is kept during

this process.

3.4. Inference

During testing, CSP simply involves a single forward of

FCN with several predictions. Specifically, locations with

confidence score above 0.01 in the center heatmap are kept,

along with their corresponding scale in the scale map. Then

bounding boxes are generated automatically and remapped

to the original image size, followed by NMS with a thresh-

old of 0.5. If the offset prediction branch is appended, the

centers are adjusted accordingly before remapping.

4. Experiments

4.1. Experiment settings

Datasets. To demonstrate the effectiveness of the pro-

posed method, we evaluate on two of the largest pedestri-

an detection benchmarks, i.e. Caltech [9] and CityPerson-

s [51]. Caltech comprises approximately 2.5 hours of au-

todriving video with extensively labelled bounding boxes.

Following [51, 32, 46, 28, 52], we use the training data aug-

mented by 10 folds (42782 frames) and test on the 4024

frames in the standard test set, all experiments are conduct-

ed on the new annotations provided by [49]. CityPersons is

a more challenging large-scale pedestrian detection dataset

with various occlusion levels. We train the models on the

official training set with 2975 images and test on the valida-

tion set with 500 images.

One reason we choose these two datasets lies in that they

provide bounding boxes via central body line annotation

and normalized aspect ratio, this annotation procedure is

helpful to ensure the boxes align well with the centers of

pedestrians. Evaluation follows the standard Caltech eval-

uation metric [9], that is log-average Miss Rate over False

Positive Per Image (FPPI) ranging in [10−2, 100] (denoted
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Point

Prediction

MR−2(%)

IoU=0.5 IoU=0.75

Center point 4.62 36.47

Top vertex 7.75 44.70

Bottom vertex 6.52 40.25

Table 1. Comparisons of different high-level feature points. Bold

number indicates the best result.

Scale

Prediction

MR−2(%)

IoU=0.5 IoU=0.75

Height 4.62 36.47

Width 5.31 53.06

Height+Width 4.73 41.09

Table 2. Comparisons of different definitions for scale prediction.

Bold number indicates the best result.

Disturbance (pixels) MR−2(%) ∆MR−2(%)

0 4.62 -

[0, 4] 5.68 ↓ 1.06
[0, 8] 8.59 ↓ 3.97

Table 6. Performance drop with disturbances of the centers.

as MR−2). Tests are only applied on the original image

size without enlarging for speed consideration.

Training details. We implement the proposed method

in Keras [6]. The backbone is ResNet-50 [12] pretrained

on ImageNet [8] unless otherwise stated. Adam [16] is ap-

plied to optimize the network. We also apply the strate-

gy of moving average weights proposed in [43] to achieve

more stable training. For Caltech [9], a mini-batch con-

tains 16 images with one GPU (GTX 1080Ti), the learn-

ing rate is set as 10−4 and training is stopped after 15K

iterations. Following[51, 46, 28, 52], we also include ex-

periments with the model initialized from CityPersons [51],

which is trained with the learning rate of 2 × 10−5. For C-

ityPersons [51], we optimize the network on 4 GPUs with 2

images per GPU for a mini-batch, the learning rate is set as

2× 10−4 and training is stopped after 37.5K iterations.

4.2. Ablation Study

In this section, an ablative analysis of the proposed

method is conducted on the Caltech dataset, evaluations are

based on the new annotations provided by [49].

Why is the Center Point? As a kind of high-level fea-

ture point, the center point is capable of locating an indi-

vidual object. A question comes in that how about other

high-level feature points. To answer this, we choose two

other high-level feature points as adopted in [42], i.e. the

top and bottom vertexes. Comparisons are reported in Ta-

ble. 1. It is shown that both the two vertexes can succeed

in detection but underperform the center point by approxi-

mately 2%-3% under IoU=0.5, and the performance gap is

even larger under the stricter IoU=0.75. This is probably

because the center point is advantageous to perceive the full

body information and thus is easier for training.

How important is the Scale Prediction? Scale predic-

tion is another indespensible component for bounding box

generation. In practice, we merely predict the height for

each detected center in accordance to the line annotation in

[50, 51]. To demonstrate the generality of CSP, we have al-

so tried to predict Width or Height+Width for comparison.

For Height+Width, the only difference in network architec-

ture lies in that the scale prediction branch has two channel-

s responsible for the height and width respectively. It can

be observed in Table 2 that Width and Height+Width pre-

diction can also achieve comparable but suboptimal results

to Height prediction. This result may be attributed to the

line annotation adopted in [50, 51] which provides accurate

height information with less noise during training. Besides,

the ground truth for width is automatically generated by the

annotated height information, thus is not able to provide

additional information for training. With the comparable

performance from Height +Width prediction, it makes CSP

potentially feasible for other object detection tasks requir-

ing both height and width.

How important is the Feature Resolution? In the

proposed method, the final set of feature maps (denoted

as Φr
det) is downsampled by r w.r.t the input image. To

explore the influence from r, we train the models with

r = 2, 4, 8, 16 respectively. For r = 2, Φ2
det are up-

sampled from Φ4
det by deconvolution. To remedy the is-

sue of poor localization from downsampling, the offset pre-

diction branch is alternatively appended for r = 4, 8, 16
to adjust the center location. Evaluations under IoU=0.75

are included to verify the effectiveness of additional offset

prediction when stricter localization quality is required. As

can be seen from Table. 3, without offset prediction, Φ4
det

presents the best result under IoU=0.5, but performs poor-

ly under IoU=0.75 when compared with Φ2
det, which indi-

cates that finer feature maps are beneficial for precise lo-

calization. Though Φ2
det performs the best under IoU=0.75,

it does not bring performance gain under IoU=0.5 though

with more computational burdens. Not surprisingly, a larger

r witnesses a significant performance drop, which is mainly

due to that coarser feature maps lead to poor localization.

In this case, the offset prediction plays a significant role.

Notably, additional offset prediction can substantially im-

prove the detector upon Φ16
det by 12.86% and 41.30% under

the IoU threshold of 0.5 and 0.75, respectively. It can al-

so achieve an improvement of 7.67% under IoU=0.75 for

the detector upon Φ4
det, even though the performance gain

is saturating under IoU=0.5. It is worth noting that the ex-

tra computation cost from the offset prediction is negligible,
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Feature for

Detection
+Offset

Test Time

(ms/img)

MR−2(%) ∆MR−2(%)

IoU=0.5 IoU=0.75 IoU=0.5 IoU=0.75

Φ2
det 69.8 5.32 30.08 - -

Φ4
det

58.2 4.62 36.47
+0.08 +7.67

X 59.6 4.54 28.80

Φ8
det

49.2 7.00 54.25
+0.92 +21.32

X 50.4 6.08 32.93

Φ16
det

42.0 20.27 75.17
+12.86 +41.30

X 42.7 7.41 33.87

Table 3. Comparisons of different downsampling factors of the feature maps, which are denoted as Φr

det downsampled by r w.r.t the input

image. Test time is evaluated on the image with size of 480x640 pixels. ∆MR−2 means the improvement from the utilization of the offset

prediction. Bold numbers indicate the best result.

Feature Maps ResNet-50[12] MobileNetV1[13]

φ2 φ3 φ4 φ5 # Parameters Test Time MR−2(%) # Parameters Test Time MR−2(%)

X X 4.7MB 36.2ms/img 9.96 2.1MB 27.3ms/img 34.96

X X 16.1MB 44.5ms/img 5.68 6.0MB 32.3ms/img 8.33

X X 37.4MB 54.4ms/img 5.84 10.7MB 34.5ms/img 10.03

X X X 16.7MB 46.0ms/img 6.34 6.3MB 33.3ms/img 8.43

X X X 40.0MB 58.2ms/img 4.62 12.3MB 38.2ms/img 9.59

X X X X 40.6MB 61.1ms/img 4.99 12.6MB 40.5ms/img 9.05

Table 4. Comparisons of different combinations of multi-scale feature representations defined in Sec. 3.2. φ2, φ3, φ4 and φ5 represent the

output of stage 2, 3, 4 and 5 of a backbone network, respectively. Bold numbers indicate the best results.

with approximately 1ms per image of 480x640 pixels.

How important is the Feature Combination? It has

been revealed in [42] that multi-scale representation is vi-

tal for pedestrian detection of various scales. In this part,

we conduct an ablative experiment to study which combi-

nation of the multi-scale feature maps from the backbone is

the optimal one. As the much lower layer has limited dis-

criminant information, in practice we choose the output of

stage 2 (φ2) as a start point and the downsampling factor r
is fixed as 4. In spite of the ResNet-50[12] with stronger

feature representation, we also choose a light-weight net-

work like MobileNetV1[13] as the backbone. The results in

Table 4 shows that the much shallower feature maps like φ2

result in poorer accuracy, while deeper feature maps like φ4

and φ5 are of great importance for superior performance,

and the middle-level feature maps φ3 are indispensable to

achieve the best results. For ResNet-50, the best perfor-

mance comes from the combination of {φ3, φ4, φ5}, while

{φ3, φ4} is the optimal one for MobileNetV1.

4.3. Comparison with the State of the Arts

Caltech. The proposed method are extensively com-

pared with the state of the arts on three settings: Reason-

able, All and Heavy Occlusion. As shown in Fig. 4, CSP

achieves MR−2 of 4.5% on the Reasonable setting, which

outperforms the best competitor (5.0 of RepLoss [46]) by

0.4%. When the model is initialized from CityPersons[51],

CSP also achieves a new state of the art of 3.8%, compared

to 4.0% of RepLoss [46], 4.1% of OR-CNN [52], and 4.5%

of ALFNet [28]. It presents the superiority on detecting

pedestrians of various scales and occlusion levels as demon-

strated in Fig . 4 (b). Moreover, Fig. 4 (c) shows that CSP

also performs very well for heavily occluded pedestrians,

outperforming RepLoss [46] and OR-CNN [52] which are

explicitly designed for occlusion cases.

CityPersons. Table 5 shows the comparisons with previ-

ous state of the arts on CityPersons. Besides the reasonable

subset, following [46], we also evaluate on three subsets

with different occlusion levels, and following [51], results

on three subsets with various scale ranges are also includ-

ed. It can be observed that CSP beats the competitors and

performs fairly well on occlusion cases even without any

specific occlusion-handling strategies [46, 52]. On the Rea-

sonable subset, CSP with offset prediction achieves the best

performance, with a gain of 1.0% MR−2 upon the closest

competitor (ALFNet [28]), while the speed is comparable

on the same running environment with 0.33 second per im-

age of 1024x2048 pixels.

4.4. Discussions

Note that CSP only requires object centers and scales for

training, though generating them from bounding box or cen-

tral line annotations is more feasible since centers are not al-

ways easy to annotate. Besides, the model may be puzzled
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Figure 4. Comparisons with the state of the arts on Caltech using new annotations.

Method Backbone Reasonable Heavy Partial Bare Small Medium Large Test Time

FRCNN[51] VGG-16 15.4 - - - 25.6 7.2 7.9 -

FRCNN+Seg[51] VGG-16 14.8 - - - 22.6 6.7 8.0 -

OR-CNN[52] VGG-16 12.8 55.7 15.3 6.7 - - - -

RepLoss[46] ResNet-50 13.2 56.9 16.8 7.6 - - - -

TLL[42] ResNet-50 15.5 53.6 17.2 10.0 - - - -

TLL+MRF[42] ResNet-50 14.4 52.0 15.9 9.2 - - - -

ALFNet[28] ResNet-50 12.0 51.9 11.4 8.4 19.0 5.7 6.6 0.27s/img

CSP(w/o offset) ResNet-50 11.4 49.9 10.8 8.1 18.2 3.9 6.0 0.33s/img

CSP(with offset) ResNet-50 11.0 49.3 10.4 7.3 16.0 3.7 6.5 0.33s/img

Table 5. Comparison with the state of the arts on CityPersons[51]. Results test on the original image size (1024x2048 pixels) are reported.

Red and green indicate the best and second best performance.

on ambiguous centers during training. To demonstrate this,

we randomly disturbed object centers in the range of [0,4]

and [0,8] pixels during training. From the results shown

in Table 6, it can be seen that performance drops with in-

creasing annotation noise. For Caltech, we also apply the

original annotations but with inferior performance to TLL

[42], which is also anchor-free. A possible reason is that

TLL includes a series of post-processing strategies in key-

point pairing. For evaluation with tight annotations based

on central lines, as results of TLL on Caltech are not report-

ed in [42], comparison to TLL is given in Table 5 on the C-

ityPersons, which shows the superiority of CSP. Therefore,

the proposed method may be limited for annotations with

ambiguous centers, e.g. the traditional pedestrian bounding

box annotations affected by limbs. In view of this, it may

also be not straightforward to apply CSP to generic object

detection without further improvement or new annotations.

When compared with anchor-based methods, the advan-

tage of CSP lies in two aspects. Firstly, CSP does not re-

quire tedious configurations on anchors specifically for each

dataset. Secondly, anchor-based methods detect objects by

overall classifications of each anchor where background in-

formation and occlusions are also included and will confuse

the detector’s training. However, CSP overcomes this draw-

back by scanning for pedestrian centers instead of boxes in

an image, thus is more robust to occluded objects.

5. Conclusion

Inspired from the traditional feature detection task, we

provide a new perspective where pedestrian detection is

motivated as a high-level semantic feature detection task

through straightforward convolutions for center and scale

predictions. This way, the proposed method enjoys anchor-

free settings and is also free from complex post-processing

strategies as in recent keypoint-pairing based detectors. As

a result, the proposed CSP detector achieves the new state-

of-the-art performance on two challenging pedestrian de-

tection benchmarks, namely CityPersons and Caltech. Due

to the general structure of the CSP detector, it is interest-

ing to further explore its capability in other tasks like face

detection, vehicle detection, and general object detection.
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