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Abstract

Referring expression grounding aims at locating certain

objects or persons in an image with a referring expression,

where the key challenge is to comprehend and align var-

ious types of information from visual and textual domain,

such as visual attributes, location and interactions with sur-

rounding regions. Although the attention mechanism has

been successfully applied for cross-modal alignments, pre-

vious attention models focus on only the most dominant

features of both modalities, and neglect the fact that there

could be multiple comprehensive textual-visual correspon-

dences between images and referring expressions. To tackle

this issue, we design a novel cross-modal attention-guided

erasing approach, where we discard the most dominant in-

formation from either textual or visual domains to gener-

ate difficult training samples online, and to drive the model

to discover complementary textual-visual correspondences.

Extensive experiments demonstrate the effectiveness of our

proposed method, which achieves state-of-the-art perfor-

mance on three referring expression grounding datasets.

1. Introduction

The goal of referring expression grounding [13, 39, 22]

is to locate objects or persons in an image referred by nat-

ural language descriptions. Although much progress has

been made in bridging vision and language [5, 32, 25, 37,

6, 2, 18], grounding referring expressions remains challeng-

ing because it requires a comprehensive understanding of

complex language semantics and various types of visual in-

formation, such as objects, attributes, and relationships be-

tween regions.

Referring expression grounding is naturally formulated

as an object retrieval task, where we retrieve a region that

best matches the referring expression from a set of re-

gion proposals. Generally, it is difficult to trivially asso-

ciate phrases and image regions in the embedding space

where features are separately extracted from each modal-

ity (i.e., vision and language). Previous methods [38, 10]
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Figure 1. Query sentence erasing as an example of our cross-modal

attention-guided erasing. The first row shows the original query-

region pair, and the second row shows the pair with erased query.

proposed modular networks to handle expressions with dif-

ferent types of information. Another line of research ex-

plored attention mechanism, which mines crucial cues of

both modalities [38, 4, 43]. By concentrating on the most

important aspects in both modalities, the model with atten-

tion mechanism is able to learn better correspondences be-

tween words/phrases and visual regions, thus benefits the

alignment between vision and language.

However, a common problem of deep neural networks

is that it tends to capture only the most discriminative in-

formation to satisfy the training constraints, ignoring other

rich complementary information [42, 34]. This issue be-

comes more severe when considering attention models for

referring expression grounding. By attending to both the

referring expression and the image, the attention model is

inclined to capturing the most dominant alignment between

the two modalities, while neglecting other possible cross-

modal correspondences. A referring expression usually de-

scribe an object from more than one perspectives, such as

visual attributes, actions, and interactions with context ob-

jects, which cannot be fully explored by concentrating on

only the most significant phrase-region pair. For example,

people describe the image in Fig. 1 as “A boy wearing black

glasses with right foot on soccer ball”. We observe that the
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model gives most attention on word “glasses”, while ignor-

ing other information like “soccer ball”. As a result, the

model can achieve a high matching score as long as it is able

to recognize “glasses”, and would fail to learn the visual

features associated with the words “soccer ball”. We argue

that such limitations cause two problems: (1) it prevents the

model from making full use of latent correspondences be-

tween training pairs. (2) A model trained in this way could

overly rely on specific words or visual concepts and could

be biased towards frequently observed evidences. Although

some works on the recurrent or stacked attention [43, 4] per-

form multiple steps of attention to focus on multiple cues,

they have no direct supervision on attention weights at each

step and thus cannot guarantee that the models would learn

complementary alignments rather than always focusing on

similar information.

Inspired by previous works [29, 34] where they erase

discovered regions to find complementary object regions,

we design an innovative cross-modal erasing scheme to

fully discover comprehensive latent correspondences be-

tween textual and visual semantics. Our cross-modal eras-

ing approach erases the most dominant visual or textual in-

formation with high attention weights to generate difficult

training samples online, so as to drive the model to look

for complementary evidences besides the most dominant

ones. Our approach utilizes the erased images with original

queries, or erased queries with original images to form hard

training pairs, and does not increase inference complexity.

Furthermore, we take the interaction between image and re-

ferring expression into account, and use information from

both self modality and the other modality as cues for select-

ing the most dominant information to erase. In particular,

we leverage three types of erasing: (1) Image-aware query

sentence erasing, where we use visual information as cues

to obtain word-level attention weights, and replace the word

with high attention weights with an “unknown” token. (2)

Sentence-aware subject region erasing, where the spatial

attention over subject region is derived based on both visual

features and query information, and we erase the spatial

features with the highest attention weights. (3) Sentence-

aware context object erasing, where we erase a dominant

context region, based on the sentence-aware object-level at-

tention weights over context objects. Note that (2) and (3)

are two complementary approaches for sentence-aware vi-

sual erasing. With training samples generated online by the

erasing operation, the model cannot access the most domi-

nant information, and is forced to further discover comple-

mentary textual-visual correspondences previously ignored.

To summarize, we introduce a novel cross-modal

attention-guided erasing approach on both textual and vi-

sual domains, to encourage the model to discover com-

prehensive latent textual-visual alignments for referring ex-

pression grounding. To the best of our knowledge, this is

the first work to consider erasing in both textual and vi-

sual domains to learn better cross-modal correspondences.

To validate the effectiveness of our proposed approach, we

conduct experiments on three referring expression datasets,

and achieve state-of-the-art performance.

2. Related Work

Referring expression grounding. Referring expression

grounding, also known as referring expression comprehen-

sion, is often formulated as an object retrieval task [11,

26]. [39, 23, 41] explored context information in im-

ages, and [31] proposed multi-step reasoning by multi-hop

Feature-wise Linear Modulation. Hu et al. [10] proposed

compositional modular networks, composed of a localiza-

tion module and a relationship module, to identify subjects,

objects and their relationships. Subsequent work by Yu et

al. [38] built MattNet, which decomposes cross-modal rea-

soning into subject, location and relationship modules, and

utilizes language-based attention and visual attention to fo-

cus on relevant components. [28, 22, 21, 40, 17] considered

referring expression generation and grounding as inverse

tasks, by either using one task as a guidance to train an-

other, or jointly training both tasks. Our work is built upon

MattNet, and encourages the model to explore complemen-

tary cross-modal alignments by cross-modal erasing.

Cross-modal Attention. Attention mechanism, which en-

ables the model to select informative features, has been

proven effective by previous works [35, 20, 3, 1, 36, 25,

14, 24, 16, 19]. In referring expression grounding, Deng et

al. [4] proposed A-ATT to circularly accumulate attention

for images, queries, and objects. Zhuang et al. [43] pro-

posed parallel attention network with recurrent attention to

global visual content and object candidates. To prevent the

attention models from over-concentrating on the most dom-

inant correspondences, we propose attention-guided erasing

which generates difficult training samples on-the-fly, to dis-

cover complementary cross-modal alignments.

Adversarial erasing in visual Domain. Previous works

has explored erasing image regions for object detec-

tion [33], person re-identification [12], weakly supervised

detection [29, 9] and semantic segmentation [34]. Wang et

al. [33] proposed to train an adversarial network that gener-

ates training samples with occlusions and deformations for

training robust detector. Wei et al. [34] and Zhang et al. [42]

proposed adversarial erasing for weakly supervised detec-

tion and segmentation, which drives the network to discover

new and complementary regions by erasing the currently

mined regions.

Different from previous works which only erase in visual

domain, we take a step further towards cross-modal eras-

ing in both images and sentences. More importantly, our

approach only erases to create new training samples in the

training phase, and does not increase inference complexity.
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Figure 2. Illustration of our backbone model. The language at-

tention network takes images and sentences as inputs, and outputs

module-level attention weights and word-level attention weights

for each module. The three visual modules calculate matching

scores for subject, location and relationship, respectively. The fi-

nal score is the weighted average of the three matching scores.

3. Cross-modal Attention-guided Erasing

Our cross-modal attention-guided erasing approach

erases the most dominant information based on attention

weights as importance indicators, to generate hard train-

ing samples, which drives the model to discover comple-

mentary evidences besides the most dominant ones. This

approach is independent of the backbone architecture, and

can be applied to any attention-based structures without in-

troducing extra model parameters or inference complexity.

In our experiments, we adopt the modular design of Mat-

tNet [38] as our backbone, because of its capability to han-

dle different types of information in referring expressions.

3.1. Problem Formulation and Background

We formulate referring expression grounding as a re-

trieval problem: given an image I , a query sentence Q, and

a set of region proposals R = {Ri} extracted from the im-

age, we aim to compute a matching score between each re-

gion proposal Ri and the query Q, and the proposal with

the highest matching score is chosen as the target object.

For each region proposal Ri, its regional visual features to-

gether with context object features are denoted as Oi.

In MattNet [38], there is a language attention network

and three visual modules, namely subject module, location

module and relationship module. The language attention

network takes the query Q as input, and outputs attention

weights {wsubj , wloc, wrel} and query embeddings for each

module [qsubj ,qloc,qrel]. Each module calculates a match-

ing score by dot product between the corresponding query

embedding and visual or location features. The scores from

three modules are fused according to the module-level at-

tention weights {wsubj , wloc, wrel}. For positive candidate

object and query pair (Oi, Qi) and negative pairs (Oi, Qj),

(Oj , Qi), the ranking loss is minimized during training:

Lrank =
∑

i

([m− s(Oi, Qi) + s(Oi, Qj)]+

+ [m− s(Oi, Qi) + s(Oj , Qi)]+), (1)
where s(x, y) denotes the matching score between x and y,

[x]+ = max(x, 0), and m is the margin for ranking loss.

We adopt the modular structure of MattNet [38] and

make some changes to the design of each module, which

will be illustrated in Sec 3.3 to 3.5. The structure of our

backbone is shown in Fig 2.

3.2. Overview of Attention­guided Erasing

By cross-modal erasing in both textual and visual do-

mains to generate challenging training samples, we aim

to discover complementary textual-visual alignments. (1)

For query sentence erasing, we replace key words in the

queries with the “unknown” token, and denote the erased

referring expression as Q∗. (2) For visual erasing, we first

select which visual module to erase based on the modular

attention weights. Specifically, we sample a module ac-

cording to the distribution defined by the module-level at-

tention weights Ms ∼ Multinomial(3, [wsubj , wloc, wrel]),
and perform erasing on the inputs of the sampled module.

For subject module which processes visual information of

candidate objects, we perform subject region erasing on

feature maps. For location and relationship modules which

encode location or visual features of multiple context re-

gions, we apply context object erasing to discard features

of a context object. The erased features by either subject

region erasing or context object erasing is denoted as O∗.

Given the erased query sentences or visual features, we

replace the original samples with the erased ones in the

loss function. Specifically, we force the erased visual fea-

tures to match better with its corresponding queries than

non-corresponding queries, and force the erased queries

to match better with its corresponding visual features than

non-corresponding ones, with the following erasing loss,

Lerase =
∑

i

([m− s(O∗
i , Qi) + s(O∗

i , Qj)]+

+ [m− s(Oi, Q
∗
i ) + s(Oj , Q

∗
i )]+). (2)

where the first term forces matching between the erased

visual features and original queries, and the second term

forces matching between the erased queries and original vi-

sual features. We use a mixture of original and erased pairs

in each mini-batch, and the overall loss is defined as,

L = Lerase + Lrank. (3)

In the following, we discuss how to perform the three

types of cross-modal attention-guided erasing, respectively.

3.3. Image­aware Query Sentence Erasing

People tend to describe a target object from multiple per-

spectives, but the model only focuses on the most dominant
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Figure 3. Image-aware query sentence erasing.

words, and neglects other words which may also imply rich

alignments with visual information. Hence, we introduce

erased queries into training to forbid the model from look-

ing at only the most dominant word, so as to drive it to learn

complementary textual-visual correspondences.

Image-aware module-level and word-level attention.

Given the query sentence and the image, our first goal

is to generate (1) attention weights for the three modules

{wsubj , wloc, wrel}, and (2) three sets of word-level atten-

tion weights {αsubj
t }Tt=1, {αloc

t }Tt=1, {αrel
t }Tt=1 for three

modules, where T is the number of words in the sentence.

Generally, understanding a referring expression not only

requires the textual information, but also needs the im-

age content as a cue. Inspired by this intuition, we de-

sign an image-aware language attention network to estimate

module-level and word-level attention weights. Specifi-

cally, we encode the whole image I0 into a feature vector

e0 with a convolutional neural network, and then feed the

image feature vector and word embeddings {et}
T
t=1 into the

Long Short Term Memory Networks (LSTM).

e0 = CNN(I0), ht = LSTM(et,ht−1). (4)

We calculate the module-level and word-level attention

weights based on the hidden states of the LSTM, and de-

rive query embedding for each module accordingly,

wm =
exp(fTmhT )

∑

i∈Ω exp(fTi hT )
, m ∈ Ω, (5)

αm
t =

exp(gT
mht)

∑T

i=1 exp(g
T
mhi)

, qm =

T
∑

t=1

αm
t et, (6)

where fm and gm are model parameters, Ω =
{subj, loc, rel} represents the three modules, and wm de-

notes the model-level attention weights. αm
t denotes the

attention weight for word t and module m, and qm is the

query embedding for module m.

Our approach exploits visual cues to derive module-level

and word-level attention weights, which is the key differ-

ence from previous works [38, 10] with only self-attention.

Attention-guided Query Erasing. Aiming to generate

training samples by erasing the most important words in or-

der to encourage the model to look for other evidences, we

first calculate the overall significance of each word based on

the module-level and word-level attention weights,

αt =
∑

m∈Ω

wmαm
t , (7)

Subject 
region 

attention

Brown horse 
rode by girl in 

middle.

Spatial attention 
over subject Erased subject

Figure 4. Sentence-aware subject region erasing.

where {αt}
T
t=1 denotes the image-aware overall attention

weight for each word, which acts as an indicator of word

importance. We sample a word to erase based on the dis-

tribution defined by overall word-level significance, W s ∼
Multinomial(T, [α1, ..., αT ]).

Next, we consider in what way shall we eliminate the

influence of this word. The most straightforward way is

to directly remove it from the query sentence, but the sen-

tence grammar would be broken in this way. For example,

if we directly remove the word “chair” from the sentence

“The gray office chair sitting behind a computer screen”,

the overall semantic meaning would be distorted and the

model might have difficulty understanding it. In order to

eliminate the influence of the erased word while preserving

the sentence structure, we replace the target word with an

“unknown” token, as shown in Fig. 3. In this way we obtain

the erased query Q∗, which discards the semantic meaning

of the erased word, but causes no difficulty for the model to

understand the remaining words. The erased query Q∗
i and

its original positive and negative image features Oi and Oj

form new training sample pairs (Oi, Q
∗
i ) and (Oj , Q

∗
i ), and

the we force textual-visual alignment between erased query

sentences and original visual features by the ranking loss

for erased query sentences (the second term in Eq.(2)).

3.4. Sentence­aware Subject Region Erasing

The subject module takes the feature map of a candidate

region as input and outputs a feature vector. We create new

training samples by erasing the most salient spatial features,

to drive the model to discover complementary alignments.

Sentence-aware spatial attention. We follow previous

works on cross-modal visual attention [38, 36, 4]. For a can-

didate region with its spatial features {vj}
J
j=1, where J is

the number of spatial locations in the feature map, we con-

catenate the visual features at each location with the query

embedding qsubj to calculate the spatial attention,

sj = ws
2tanh(Ws

1[vj ,q
subj ] + bs

1) + bs2, (8)

αs
j =

exp(sj)
∑J

i=1 exp(si)
, ṽsubj =

J
∑

j=1

αs
jvj , (9)

where Ws
1, ws

2, bs
1, bs2 are model parameters, sj is the un-

normalized attention, αj is the normalized spatial attention

weights, and ṽsubj is the aggregated subject features.

Attention-guided subject region erasing. With conven-

tional spatial attention, the model is inclined to focusing
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Figure 5. Sentence-aware object erasing for location module.

on only the most discriminative regions while neglecting

other less salient regions. Such cases prevent the model

from fully exploiting comprehensive textual-visual corre-

spondences during training. So we erase salient features

which are assigned greater attention weights to generate

new training data, so as to drive the model to explore other

spatial information and to learn complementary alignments.

In the feature map, spatially nearby features are corre-

lated. Therefore, if we only erase features from separate

locations, information of the erased features cannot be to-

tally removed, since nearby pixels may also contain similar

information. We therefore propose to erase a contiguous

region of size k × k (k = 3 in our experiments) from the

input feature map. In this way, the model is forced to look

elsewhere for other evidences. Particularly, we calculate the

accumulated attention weights of all possible regions in the

feature map by a k×k sliding window, and mask the region

with the highest accumulated attention weights (See Fig. 4

for illustration). The erased subject features together with

original context object features are denoted as O∗
i . Similar

to query sentence erasing, O∗
i is paired with original query

sentences to form positive training samples (O∗
i , Qi) and

negative training samples (O∗
i , Qj), and the ranking loss for

visual erasing (the first term in Eq.(2)) is applied on the gen-

erated training sample pairs.

3.5. Sentence­aware Context Object Erasing

In referring expression grounding, supporting informa-

tion from context objects (i.e. objects in the surrounding re-

gions of the target object) is important to look for. For ex-

ample, the expression “The umbrella held by woman wear-

ing a blue shirt” requires an understanding of context region

“woman wearing a blue shirt” and its relative location.

Sentence-aware attention over context objects. Some-

times multiple context regions are referred to in the sen-

tence, e.g. “White sofa near two red sofas”. So we formulate

the location and relationship modules into a unified struc-

ture with sentence-aware attention, which considers multi-

ple context objects, and attends to the most important ones.

For a set of context region features {cmk }Kk=1, where

m ∈ {loc, rel}, and each cmk denotes the location or re-

lationship feature of a context region proposal.1 We derive

object-level attention weights based on the concatenation of

cmk and query embedding qm, and calculate the aggregated

1Details of context region selection and location and relationship fea-

ture extraction will be described in Sec 4.1.
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Figure 6. Sentence-aware object erasing for relationship module.

feature as the weighted sum of all object features,

sk = wm
2 tanh(Wm

1 [cmk ,qm] + bm
1 ) + bm2 , (10)

amk =
exp(sk)

∑K

i=1 exp(si)
, c̃m =

K
∑

k=1

amk cmk , (11)

where Wm
1 , wm

2 , bm
1 , bm2 are model parameters, sk is the

unnormalized scores, αm
k is the normalized object-level at-

tention weights, and c̃m is the aggregated module features.

Our unified attention structure for location and relation-

ship modules is different from MattNet [38]. In MattNet,

the location module does not recognize different contribu-

tions of context regions, and the relationship module as-

sumes only one context object contributes to recognizing

the subject. In comparison, our model is able to deal with

multiple context objects and attend to important ones, which

is shown to be superior than MattNet in our experiments.

Attention-guided context object erasing. Sometimes the

model may find the target region with the evidence from a

certain context object, and hence do not need to care about

other information. So we leverage attention-guided context

object erasing to discard a salient context object, and use

the erased contexts to form training samples, to encourage

the model to look for subject or other supporting regions.

For both location and relationship modules, we obtain

object-level attention weights over all considered objects

{αm
k }Kk=1 by sentence-aware context object attention. We

sample a context object according to the attention weights

Cs ∼ Multinomial(K, [α1, ..., αK ]), and discard Cs by re-

placing its features with zeros (see Fig. 5 and Fig. 6 for

illustration). The erased context objects together with origi-

nal subject features are denoted as O∗
i , which is paired with

original query sentences to form positive training samples

(O∗
i , Qi) and negative training samples (O∗

i , Qj), and the

the ranking loss for visual erasing (the first term in Eq.(2)) is

applied on the generated training sample pairs. The erased

samples will drive the model to look for other context re-

gions or subject visual features, and to discover comple-

mentary textual-visual alignments.

3.6. Theoretical Analysis

Back-propagation Perspective. We derive the gradients of

attention models, and reveal that it emphasizes the gradients

of the most salient features while suppresses the gradients

of unimportant features. Such a conclusion validates the

necessity of our proposed attention-guided erasing.
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Consider the visual modality with features {fi}
m
i=1 and

attention weights {αi}
m
i=1, and the textual modality with

features {gj}
n
j=1 and attention weights {βj}

n
j=1. The ag-

gregated features are f̃ =
∑m

i=1 αifi and g̃ =
∑n

j=1 βjgj ,

respectively. We calculate the cross-modal similarity as,

s = f̃⊤g̃ =
(

m
∑

i=1

αifi
)⊤(

n
∑

j=1

βjgj

)

=

m
∑

i=1

n
∑

j=1

αiβjf
⊤
i gj

(12)
The gradient of s with respect to αi, fi, βj and gj are

∂s

∂αi

=
n
∑

j=1

βjf
⊤
i gj ,

∂s

∂fi
=

n
∑

j=1

αiβjgj , (13)

∂s

∂βj

=

m
∑

i=1

αif
⊤
i gj ,

∂s

∂gj

=

m
∑

i=1

αiβjfi. (14)

Suppose s is the matching score between the correspond-

ing candidate region and the query sentence, and receives

a positive gradient during back-propagation. If fi and gj

are close to each other and f⊤i gj > 0, the attention weights

αi and βj will receive positive gradients and be increased.

On the contrary, if f⊤i gj < 0, both αi and βj will be

tuned down. As a result, attention mechanism automatically

learns importance of features without direct supervision.

On the other hand, if a word-region pair receives high

attention αi and βj , the gradients with respect to fi and gj

will be amplified, pushing fi and gj closer to each other to a

large extent. While if αi and βj are small, the gradients will

be suppressed, only pushing fi and gj slightly closer to each

other. As a result, the model would learn large attention

and good alignments only for the best aligned features, and

updates inefficiently for other cross-modal alignments with

low attention weights. Inspired by this analysis, our ap-

proach erases the best aligned features, forcing the model to

give high attention weights to complementary cross-modal

alignments, and to update those features efficiently.

Regularization Perspective. Our erasing mechanism can

also be regarded as a regularization. The main differ-

ence from dropout [30] and dropblock [7] is that instead

of randomly dropping features, we drop selectively. We

erase salient information, as well as introducing random-

ness via sampling from the distributions defined by at-

tention weights. The attention-guided erasing strategy is

proven to be more effective than random erase in Sec. 4.5.

4. Experiments

4.1. Implementation Details

Visual feature representation. We follow MattNet [38] for

feature representation of subject, location and relationship

modules. We use faster R-CNN [27] with ResNet-101 [8]

as backbone to extract image features, subject features and

context object features. Specifically, we feed the whole im-

age into faster R-CNN and obtain the feature map before

ROI pooling as the whole image feature (used in Sec. 3.3).

For each candidate object proposal, the 7 × 7 feature maps

are extracted and fed into subject module (Sec. 3.4). For

the location module, we encode the location features as the

relative location offsets and relative areas to the candidate

object δlij =
[ [∆xtl]ij

wi
,
[∆ytl]ij

hi
,
[∆xbr]ij

wi
,
[∆ybr]ij

hi
,
wjhj

wihi

]

,

as well as the position and relative area of the candidate

object itself, i.e., li =
[

xtl

W
, ytl

H
, xbr

W
, ybr

H
, w·h
W ·H

]

. Atten-

tion and erasing for location module in Sec. 3.5 is per-

formed over the location features of up-to-five surround-

ing same-category objects plus the candidate object it-

self. For relationship module, we use the concatenation

of the average-pooled visual feature from the region pro-

posal and relative position offsets and relative areas δlij =
[ [∆xtl]ij

wi
,
[∆ytl]ij

hi
,
[∆xbr]ij

wi
,
[∆ybr]ij

hi
,
wjhj

wihi

]

to represent re-

lationship features of context objects. The attention and

erasing on relationship module in Sec. 3.3 is performed over

up-to-five surrounding objects.

Training Strategy. The faster R-CNN is trained on

COCO training set, excluding samples from RefCOCO, Re-

fCOCO+, and RefCOCOg’s validation and test sets, and

is fixed for extracting image and proposal features during

training the grounding model. The model is trained with

Adam optimizer [15] in two stages. We first pretrain the

model by only original training samples with ranking loss

L = Lrank to obtain reasonable attention models for eras-

ing. Then, we perform online erasing, and train the model

with both original samples and erased samples generated

online, with the loss function L = Lrank + Lerase.

4.2. Datasets and Evaluation Metrics

We conduct experiments on three referring expression

datasets: RefCOCO (UNC RefExp) [39], RefCOCO+ [39],

and RefCOCOg (Google RefExp) [22]. For RefCOCOg, we

follow the data split in [23] to avoid the overlap of context

information between different splits.

We adopt two settings for evaluation. In the first set-

ting (denoted as ground-truth setting), the candidate regions

are ground-truth bounding boxes, and a grounding is cor-

rect if the best-matching region is the same as the ground-

truth. In the second setting (denoted as detection proposal

setting), the model chooses the best-matching region from

region proposals extracted by the object detection model,

and a predicted region is correct if its intersection over

union (IOU) with the ground-truth bounding box is greater

than 0.5. Since our work focuses on textual-visual corre-

spondence and comprehension of cross-modal information,

rather than detection performance, we report results under

both settings, and conduct analysis and ablation study with

the first setting.

4.3. Results

Quantitative results. We show results of referring expres-

sion grounding compared with previous works under the
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RefCOCO RefCOCO+ RefCOCOg

test setting val testA testB val testA testB val∗ val test

MMI [22] ground-truth - 71.72 71.09 - 58.42 51.23 62.14 - -

NegBag [23] ground-truth 76.90 75.60 78.00 - - - - - 68.40

visdif+MMI [39] ground-truth - 73.98 76.59 - 59.17 55.62 64.02 - -

Luo et al. [21] ground-truth - 74.04 73.43 - 60.26 55.03 65.36 - -

CMN [10] ground-truth - - - - - 69.30 - -

Speaker/visdif [39] ground-truth 76.18 74.39 77.30 58.94 61.29 56.24 59.40 - -

S-L-R [40] ground-truth 79.56 78.95 80.22 62.26 64.60 59.62 72.63 71.65 71.92

VC [41] ground-truth - 78.98 82.39 - 62.56 62.90 73.98 - -

Attr [17] ground-truth - 78.05 78.07 - 61.47 57.22 69.83 - -

Accu-Att [4] ground-truth 81.27 81.17 80.01 65.56 68.76 60.63 73.18 - -

PLAN [43] ground-truth 81.67 80.81 81.32 64.18 66.31 61.46 69.47 - -

Multi-hop Film [31] ground-truth 84.9 87.4 83.1 73.8 78.7 65.8 71.5 - -

MattNet [38] ground-truth 85.65 85.26 84.57 71.01 75.13 66.17 - 78.10 78.12

CM-Att ground-truth 86.23 86.57 85.36 72.36 74.64 67.07 - 78.68 78.58

CM-Att-Erase ground-truth 87.47 88.12 86.32 73.74 77.58 68.85 - 80.23 80.37

S-L-R [40] det proposal 69.48 73.71 64.96 55.71 60.74 48.80 - 60.21 59.63

Luo [21] det proposal - 67.94 55.18 - 57.05 43.33 49.07 - -

PLAN [43] det proposal - 75.31 65.52 - 61.34 50.86 58.03 - -

MattNet [38] det proposal 76.40 80.43 69.28 64.93 70.26 56.00 - 66.67 67.01

CM-Att det proposal 76.76 82.16 70.32 66.42 72.58 57.23 - 67.32 67.55

CM-Att-Erase det proposal 78.35 83.14 71.32 68.09 73.65 58.03 - 67.99 68.67

Table 1. Comparison with state-of-the-art referring expression grounding approaches on ground-truth regions and region proposals from

detection model. For RefCOCO and RefCOCO+, testA is for grounding persons, and testB is for grounding objects.

ground-truth setting and detection proposal setting in Ta-

ble 1. CM-Att denotes our model with cross-modal atten-

tion trained with only original training samples. CM-Att-

Erase denotes our model with cross-modal attention trained

with both original samples and erased samples generated by

cross-modal attention-guided erasing. It is shown that the

cross-modal attention model is already a strong baseline,

and training with erased samples can further boost the per-

formance. Our CM-Att-Erase model outperforms previous

methods, without increasing inference complexity. It val-

idates that with cross-modal erasing, the model is able to

learn better textual-visual correspondences and is better at

dealing with comprehensive grounding information.

Qualitative results. Fig. 7 shows qualitative results of our

CM-Att-Erase model, compared with the CM-Att model. It

is shown that our CM-Att-Erase model is better at handling

complex information from both domains, especially for sit-

uations where multiple cues should be considered in order

to ground the referring expressions. Take the second image

in the first row as an example, our erasing model compre-

hends not only visual features associated with “dark blue

flower pot” but also relationship with context object “pink

flowers in it”, while the model without erasing does not per-

form well for those cases.

4.4. Visualization of Attention and Erasing

We visualize the attention weights and erasing process in

Fig. 8. It is shown that in the first image, the subject module

gives high attention weights to the region corresponding to

A baby with eyes 
open  looking into 

the camera.

A baseball player 
who just hit a 

baseball with his bat.

A black car behind a 
motorcycle.

A dark blue flower 
pot with pink color 

flowers in it.

A girl with a kitty in 
a pink crown on her 

shirt.

A light brown teddy 
bear with white 

stomach.

Figure 7. Qualitative results. Red bounding box denotes the

grounding results of the CM-Att model, and green bounding box

denotes grounding results of the CM-Att-Erase model.

“black and white dress”. However after erasing this region,

the subject module attends on the action of this girl, encour-

aging the model to learn the correspondence between “play-

ing tennis” and its corresponding visual features. The sec-

ond line shows an example of query sentence erasing. By

erasing the word “glasses” to obtain a new erased query as

training sample, the model is driven to look for other infor-

mation in the image, and it successfully identifies the align-

ment between “black phone” and the corresponding context

object in the image.
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A girl in 
black and 

white 
dress 
playing 
tennis.

Girl with 
while shirt 

black 
sunglasses 
black phone.

Girl with 
while shirt 

black 
<UNK> 
black 

phone.

gg
black and 

white 
dress
pllllayiiiing 
tennis.
ll ii

black 
sunglasses 
bbbbbllllackkkk phhhhone

black 
<UNK>
black 

pphone.
bbll kk
UNK

Image and candidate region
Original 
subject 

attention

Query 
sentence 
attention

Subject 
attention 

after erasing

Image and candidate region
Original 

sentence 
attention

Subject and 
context object 

attention

Sentence 
attention 

after erasing

Figure 8. Visualization of attention weights before and after eras-

ing. The first line shows an example of subject region erasing, and

the second line shows an example of query sentence erasing.

val test

CM-Att-Erase (Our proposed approach) 80.23 80.37

Erasing

methods

Random 79.08 79.05

Adversarial network to erase 79.31 79.23

Effect of

Cross-modal

Erasing

Self-erasing 79.27 79.22

Only textual erasing 79.21 79.55

Only visual erasing 79.05 79.37

Iterative erasing 80.13 79.97

Erase during inference 79.25 79.56

Multiple steps of attention 79.31 78.49

Table 2. Ablation study results on RefCOCOg dataset.

4.5. Ablation Study

Erasing methods. Different choices of erasing methods

were exploited by previous works. Other than our proposed

attention-guided erasing, the most straightforward way is to

randomly erase words or image regions without considering

their importances [29]. Another choice is to train an adver-

sarial network to select the most informative word or region

to erase, which is used in [33]. We compare our attention-

guided erasing approach with those methods, and results in

Table 2 show that the attention-guided erasing performs bet-

ter. Since attention weights are already good indicators of

feature importance, leveraging attention as a guidance for

erasing is more efficient, and the attention-guided erasing

approach leads to little cost in model complexity, compared

with applying a separate adversarial erasing network.

Effect of cross-modal erasing. We compare our cross-

modal erasing approach with erasing based on self-attention

weights, where we only utilize information within the same

modality for generating attention weights and performing

attention-guided erasing. We also experiment on only visual

erasing or sentence erasing. Experimental results in Table 2

demonstrate the necessity of both visual erasing and query

sentence erasing which are complementary to each other,

and validate that our cross-modal attention-guided erasing

is superior to self-attention-guided erasing without consid-

ering information from the other modality.

Iterative erasing. A possible extension is to iteratively per-

form multiple times of erasing similar to [34] to generate

more challenging training samples progressively. However,

results in Table 2 indicate that it is not suitable for this task.

We observe that most referring expressions are quite short.

Erasing more than one key words would significantly elim-

inate the semantic meaning of the sentence. Likewise, eras-

ing the visual features for more than once would also make

it impossible for the model to recognize the referred object.

Erasing during inference. Our model only leverages

cross-modal erasing in the training phase and does not erase

during inference. We try to erase key words or key re-

gions during inference as well, and ensemble the matching

scores of original samples and erased samples as the final

score. But experiments suggest that it does not help the fi-

nal performance. This is possibly because during training,

the model have already learned to balance the weights of

various features, and do not need to mask the dominant fea-

tures to discover other alignments during inference.

Comparison with stacked attention. Leveraging multiple

steps of attention also enables the model to attend to dif-

ferent features. However, those models do not pose direct

constraints on learning complementary attention for differ-

ent attention steps. We conduct experiments on stacked at-

tention [36] to compare with our erasing approach. Experi-

ments indicate that erasing performs better than stacked at-

tention on this task, because by erasing we enforce stricter

constraints of learning complementary alignments.

5. Conclusion and Future Work

We address the problem of comprehending and align-

ing various types of information for referring expression

grounding. To prevent the model from over-concentrating

on the most significant cues and drive the model to dis-

cover complementary textual-visual alignments, we design

a cross-modal attention-guided erasing approach to gener-

ate hard training samples by discarding the most impor-

tant information. The models achieve state-of-the-art per-

formance on three referring expression grounding datasets,

demonstrating the effectiveness of our approach.
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