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Abstract

The key challenge of knowledge distillation is to extract

general, moderate and sufficient knowledge from a teacher

network to guide a student network. In this paper, a novel

Instance Relationship Graph (IRG) is proposed for knowl-

edge distillation. It models three kinds of knowledge, in-

cluding instance features, instance relationships and fea-

ture space transformation, while the latter two kinds of

knowledge are neglected by previous methods. Firstly, the

IRG is constructed to model the distilled knowledge of

one network layer, by considering instance features and

instance relationships as vertexes and edges respectively.

Secondly, an IRG transformation is proposed to models the

feature space transformation across layers. It is more mod-

erate than directly mimicking the features at intermediate

layers. Finally, hint loss functions are designed to force a

student’s IRGs to mimic the structures of a teacher’s IRGs.

The proposed method effectively captures the knowledge

along the whole network via IRGs, and thus shows stable

convergence and strong robustness to different network ar-

chitectures. In addition, the proposed method shows supe-

rior performance over existing methods on datasets of var-

ious scales.

1. Introduction

In pursuit of high performance of Deep Neural Net-

works (DNNs), deeper and wider architectures have been

proposed at the expense of larger model size and longer in-

ference time. Examples include from AlexNet [13, 11, 2]

to ResNet [7, 27, 21] and DenseNet [10]. However, in vari-

ous practical applications, these networks can not satisfy the

requirements of real-time response and low memory cost.

Therefore, more and more efforts have been putting into
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(a) Conventional method (b) Our method

Figure 1: Comparison between the conventional and pro-

posed methods. (a) The conventional method uses instance

features to guide the student. Each instance is an indepen-

dent point in the feature space. (b) The proposed method

defines Instance Relationship Graph (containing instance

features, instance relationships and feature space transfor-

mation) as the distilled knowledge to guide the student.

model compression.

Knowledge distillation [9, 26, 16, 25] is one of the

most popular solutions for model compression. It utilizes

a teacher-student framework to distill knowledge, such as

predicted probabilities, from a teacher network to guide a

student network. For example, Hinton et al. [9] leveraged

the final predicted probabilities of the teacher network to

supervise the student network. Zagoruyko et al. [26] trans-

ferred attention maps distilled from some mid-level layers

to teach the student. We refer to the softened outputs or

the intermediate-layer features of the network as instance

features, since they are obtained from samples (also called

instances) independently.

Nevertheless, there exist two limitations in conventional

knowledge distillation methods. Firstly, the existing meth-

ods independently extract instance features from the teacher

network as the distilled knowledge (as shown in Figure

1(a)). The instance relationships are never considered, but

they help reduce the intra-class variations and enlarge the

inter-class differences in the feature space. Moreover, in-

stance features based methods usually suffer from signifi-
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cant performance drop when the teacher and student have

different network architectures. On the contrary, the in-

stance relationships are more robust to network changes.

For example, the instance features of the same sample from

two teacher networks can be totally different, while for both

teachers, samples from the same class are often closer than

those from the different classes in the feature space. Sec-

ondly, these methods only distill some specific layers’ out-

puts of the teacher, without considering the inference pro-

cedure. It is a hard constraint for the student to directly

fit all these layers’ outputs of the teacher. Thus extracting

moderate knowledge from the overall inference procedure

is necessary.

In order to resolve the above limitations, a novel graph-

based knowledge distillation method is proposed. It dis-

tills three kinds of knowledge along the whole network.

Aside from the widely used instance features, two kinds

of new knowledge including instance relationships and fea-

ture space transformation are defined. An Instance Relation

Graph (IRG) is proposed to model the knowledge. Specif-

ically, for a DNN layer, an IRG is constructed, in which

the vertex of the IRG represents the instance features, and

the edge denotes the instance relationships (as shown in

Figure 1(b)). The instance relationships provide sufficient

and general information of the feature distribution and make

the distilled knowledge be able to guide a student network

with different architectures from its teacher. In order to

avoid forcing too tight constraints, the feature space trans-

formation across layers is introduced as the third type of the

knowledge and an IRG transformation is proposed to model

this knowledge. The feature space transformation is a more

relaxed description than the densely fitting on teacher’s in-

stance features at intermediate layers. By combining IRG

and IRG transformation, the proposed method models more

general, moderate and sufficient knowledge than the exist-

ing methods. Finally, two loss functions are designed for

IRG and IRG transformation respectively. The hint losses

are optimized together to help boost the performance of the

student model.

Experiments on 4 different datasets are conducted, under

different teacher-student architectures. The experimental

results demonstrate that the proposed method shows stable

improvement on different teacher-network pairs, and out-

performs the state-of-the-art by more than 1x. In summary,

the main contributions of our work are three-fold:

• To the best of our knowledge, we at the first time ex-

ploit three kinds of knowledge for knowledge distilla-

tion including instance features, instance relationships,

and feature space transformation across layers.

• An IRG and its transformation are proposed to model

all the types of the knowledge. The instance features

and instance relationships are considered as the ver-

texes and edges of the IRG respectively. The feature

space transformation is naturally expressed as the IRG

transformation from one layer to another. Therefore,

all three kinds of the knowledge of a network can be

well represented via IRGs.

• Different hint losses are introduced to supervise the

training of the student network. They help the student

learn different kinds of knowledge preserved in IRGs.

The experimental results have shown the superior of

the proposed method.

2. Related Work

There are mainly two types of methods on model com-

pression. The first type is to remove redundant informa-

tion from complex trained models, such as network prun-

ing and model quantization. Specifically, network pruning

[14, 15, 8, 17, 22] aims to delete unimportant connections

of the trained network, while model quantization methods

[5, 18, 3, 23] represent the float weights with fewer bits.

Though pruning and quantization methods have achieved

high compression ratio with low performance loss, they can

not change the network architectures.

Different from the first type, a new concept called knowl-

edge distillation is introduced by Hinton et al. [9] based

on a teacher-student framework. Knowledge distillation

method transfers knowledge from the trained teacher to the

student network. Recently, it has been applied in many

areas, such as image classification [13], scene recogni-

tion [29] and face verification [20].

Existing knowledge distillation methods focus on trans-

ferring instance features from the teacher to the student. For

example, Ba et al. [1] trained the student network to mimic

the teacher via regressing logits before the Softmax layer.

Zhou et al. [30] made the student share some lower lay-

ers with the teacher and train them simultaneously, but they

also used logits as the distilled knowledge. For transferring

the instance features of intermediate layers, Romero et al.

[19] proposed FitNet, which extracted the feature maps of

the intermediate layer as well as the final output to teach

the student network. After that, Zagoruyko et al. [26] de-

fined Attention Transfer (AT) based on attention maps to

improve the performance of the student network. However,

these methods independently extract the instance features

from the teacher while the instance relationships in the fea-

ture space is barely considered. Moreover, the instance fea-

tures of the intermediate layers are closely related to the

network design, which is not general for different teacher-

student pairs.

Further, most methods directly teach the student to fit the

instance features of the teacher, ignoring the feature space

transformation process. To address this issue, Yim et al.

[24] presented Flow of Solution Procedure (FSP) to transfer

the inference procedure of the teacher rather than the inter-

mediate layer results. The FSP matrix is actually the inner
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Figure 2: Overall framework of the proposed method.

production of the feature channels from two layers, which

is regarded as the flow for solving a problem. However, the

FSP matrix can only be computed between two layers with

the same output resolution. Besides, the computational cost

of FSP is rather high.

3. Proposed Method

In this section, the overall framework of the proposed

method is firstly introduced. Then a knowledge graph called

IRG and its transformation are constructed for represent-

ing general, moderate and sufficient knowledge. Subse-

quently, the hint losses about IRG and its transformation

are formulated to utilize the mined knowledge. Finally, the

overall loss is formulated based on the previous loss func-

tions to supervise the training of the student network.

The overall framework of the proposed method is illus-

trated in Figure 2. The upper blue network is the teacher

network, while the lower orange network is the student net-

work. Except the SoftmaxLoss LGT from the ground truth,

three supervision signals are added to transfer the distilled

knowledge, including LIRG, Llogits and LIRG-t. All of

the three signals are derived from IRG, which represents

the feature space of a certain layer. Specifically, LIRG is

used to transfer the instance features and the instance rela-

tionships. Llogits represents the instance features and is a

special case of LIRG. It can be absorbed into LIRG. And

LIRG-t distills the feature space transformation knowledge.

Eventually, the three loss functions make up Multi-Type

Knowledge (MTK) loss (LMTK), which transfers all the

three types of knowledge from the teacher to the student.

3.1. Instance Relationship Graph

Given I training instances x = {xi}
I

i=1
, let fl(xi) be the

instance features of xi at l-th layer, which can be the final

softened outputs [9] or the feature maps [26]. The instance

relationships are formulated as an adjacent matrix of the in-

stance features, referring to as Al. An exmaple of IRG is

shown in Figure 3(a). Then an IRG denoted as IRGl is

constructed to represent the feature space of the l-th layer,

expressed as

(a)

Layer l1 Layer l2
Trans(Vl2, Vl1)

Trans(El1, El2)

...

(b)

Figure 3: Structure of IRG. (a) An example of IRG. (b) An

example of IRG transformation.

IRGl = (Vl, El) = ({fl(xi)}
I
i=1

,Al),

Al(i, j) = ||fl(xi)− fl(xj)||
2

2
, i, j = 1, ..., I,

(1)

where Vl is the vertex set of IRG representing the instance

features at the l-th layer, El is the edge set of IRG represent-

ing the instance relationship. Each element of the feature

relationship matrix, Al, represents an edge. And each edge

is defined as the Euclidean distance between the instance

features of two linked instances as shown in Equation 1.

Based on the formulation of IRG, its transformation is

defined. Let IRG-tl1l2 be the IRG transformation from the

l1-th layer to the l2-th layer. As shown in Figure 3(b), it

is natural to decompose IRG-tl1l2 into the vertex trans-

formation (or called the instance feature transformation)

Trans(Vl1 ,Vl2) and the edge transformation (or called

the instance relationship transformation) Trans(El1 , El2),
namely

IRG-tl1l2 = Trans(IRGl1 , IRGl2)

= (Trans(Vl1 ,Vl2), T rans(El1 , El2))

= (Λl1,l2 ,Θl1,l2),

Λl1,l2(i, i) = ||fl1(xi)− fl2(xi)||
2

2
, i = 1, ..., I,

Θl1,l2 = ||Al1 −Al2 ||
2

2
,

(2)

where Trans(·) is the transformation function, Λl1,l2 and

Θl1,l2 are the vertex transformation matrix and edge trans-

formation matrix, respectively. As shown in Equation 2,

each element of Λl1,l2 represents the instance feature trans-

formation of the same instance xi from one layer to an-

other. Similarly, Θl1,l2 is defined as the Euclidean dis-

tance between the two relationship matrixes Al1 and Al2 .
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Figure 4: Two possible deploy modes for LIRG.

Then IRG-tl1l2 contains the knowledge of the feature space

transformation from the l1-th layer to the l2-th layer.

3.2. Loss for IRG

The loss LIRG is defined as the difference between the

teacher’s IRG and the student’s. Let IRGT
L be the IRG of

the teacher network at the L-th layer. Similarly, IRGS
lM

is the lM -th layer’s IRG in the student network. The for-

mulations of the two IRGs follow Equation 1. Then, the

difference of the two IRGs is divided into the difference of

the vertexes Dist(VT
L ,V

S
lM

) and the difference of the edges

Dist(ET
L , ES

lM
). Both parts are evaluated by Euclidean dis-

tance as follows:

LIRG(x) = Dist(IRGT
L, IRGS

lM
)

= λ1 ·Dist(VT
L ,V

S
lM

) + λ2 ·Dist(ET
L , ES

lM
)

= λ1 ·

IX

i=1

||fT
L (xi)− fS

lM
(xi)||

2

2

+ λ2 · ||A
T
L −A

S
lM

||2
2
.

(3)

Note that λ1 and λ2 are the penalty coefficients balanced

the two terms. Most previous works only considering the

instance features, and they can be regarded as a special

case of the IRG-based method by setting λ2 to be zero.

To fully utilize the effectiveness of LIRG when applying

it to a specific task, there are two factors that may influence

the performance.

First, there are two possible deploy modes for LIRG as

shown in Figure 4. In particular, under one-to-one mode,

the selected layers of the student is supervised by the cor-

responding layers of the teacher network. It is obvious that

one-to-one mode performs the best when the teacher and

student shares the network structure. On the other hand,

one-to-many mode utilizes the last layer of the teacher (L)

to guide the selected layers (LM ) of the student. Since

the last layer usually learns the general distribution of the

dataset, IRG of the last layer is less correlated with the net-

work design. Since one-to-many mode extracts more gen-

eral knowledge, the formulation of LIRG in Equation 4 fol-

lows this mode.

Second, the vertex difference Dist(VT
L ,V

S
lM

) in Equa-

tion 3 can be computed only if fT
L (xi) and fS

lM
(xi) have the

same feature resolution and feature channel number. How-

ever, this can not be satisfied under most (L, lM ) combina-

tions, which indicates the edge difference is not a general

type of knowledge. Further, adopting the knowledge dis-

tillation densely for intermediate layers is not a moderate

constraint for the student. Therefore, the vertex difference

is only deployed for the logits layers. Consequently, LIRG

in this work is obtained as follows:

LIRG(x) = λ1 · Llogits(x) + λ2 ·
X

lM∈LM

||AT
L −A

S
lM

||2
2
. (4)

3.3. Loss for IRG Transformation.

IRG transformation is the representation of the instance

feature space transformation, consisting of vertex transfor-

mation and edge transformation. Therefore, the loss LIRG-t

also contains two parts as shown as follows:

LIRG-t(x)

= Dist(IRG-tTl1l2 , IRG-tSl3l4)

= Dist(Trans(VT
l1
,VT

l2
), T rans(VS

l3
,VS

l4
))

+Dist(Trans(ET
l1
, ET

l2
), T rans(ES

l3
, ES

l4
))

= ||ΛT
l1,l2

−Λ
S
l3,l4

||2
2
+ ||ΘT

l1,l2
−Θ

S
l3,l4

||2
2
,

(5)

where Λ
T
l1,l2

and Θ
T
l1,l2

are the vertex and edge transfor-

mation of the teacher from the l1-th layer to the l2-th layer,

while Λ
S
l3,l4

and Θ
S
l3,l4

together represent the feature space

transformation of the student. Then ||ΛT
l1,l2

−Λ
S
l3,l4

||2
2

and

||ΘT
l1,l2

−Θ
S
l3,l4

||2
2

are adopted to evaluate the vertex trans-

formation difference and the edge transformation difference

between the teacher and the student. Similar to LIRG, there

is also an important factor influencing the performance of

LIRG-t.

The edge transformation part consumes much more com-

putation resources compared with the vertex part. To be

specific, for an IRG with I vertices, time complexity of the

vertex part is O(I), while that of the edge part is O(I2). In

addition, the distilled knowledge of the vertex transforma-

tion and the edge transformation is redundant. Therefore,

the edge part of IRG transformation loss is omitted for the

sake of effectiveness. Finally, the resulting IRG transforma-

tion loss function is formulated as follows:

LIRG-t(x) = ||ΛT
l1,l2

−Λ
S
l3,l4

||2
2
. (6)

3.4. Multi-Type Knowledge Loss

We define a MTK loss (LMTK) to train the student net-

work.It is formulated based on the SoftmaxLoss for Ground

Truth (GT) (LGT ), loss for IRG (LIRG) and loss for IRG

transformation (LIRG-t) as follows:

LMTK(x)

= LGT (x) + LIRG(x) + λ3 · LIRG-t(x)

= LGT (x) + λ1 · Llogits(x)

+ λ2 ·
X

lM∈LM

||AT
L −A

S
lM

||2
2

+ λ3 ·
X

l1l2l3l4∈LTran

||ΛT
l1,l2

−Λ
S
l3,l4

||2
2
,

(7)
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Figure 5: (a) Performance of LIRG. (b) Performance of

LMTK .

in which λ1, λ2 and λ3 are the three penalty coefficients,

while LM and LTran represent the layer set for IRG and

its transformation, respectively. Using the MTK loss, the

student network can be optimized to acquire all the three

types of knowledge from the teacher network.

4. Experiments

4.1. Ablation Analysis

In this section, experiments are conducted to verify the

effectiveness of LIRG and LIRG-t. The detailed experimen-

tal settings are as below.

4.1.1 Experiment Settings

CIFAR10 [12] is adopted as our training and test dataset

for ablation analysis. Images are first padded to 36 × 36
and then cropped to 32 × 32 for training. ResNet20 [6]

or ShuffleNet-x0.5 [28] is adopted as the teacher network,

while we reduce the channels of ResNet20 by half to obtain

the student network named ResNet20-x0.5. Note that the

“Baseline” is the ResNet20-x0.5 directly trained by LGT .

4.1.2 The Effectiveness of LIRG

The hyper-parameters of LIRG are first decided according

to the experiments. After this, two deploy modes including

one-to-one mode and one-to-many mode are compared and

analyzed.

(1) Hyper-parameter Tuning. Besides the coefficient

λ2, batch size is also a crucial hyper-parameter, since the

instance relationship matrix, namely Al, is computed by a

batch of instances (see Section 3.1). Al with a larger batch

size contains more instance relationships as well as more

comprehensive knowledge. In the meantime, it may be a

harder regularization for the student. In order to achieve a

trade-off between extracting moderate knowledge and ex-

tracting sufficient knowledge, experiments are conducted

under different settings as shown in Figure 5(a). It can be

seen that LIRG outperforms the baseline and Rocket for

most of the cases. According to the results, we choose batch

size as 64 and λ2 as 0.005 for LIRG for the rest of the paper.

(2) Performance Analysis of One-to-one Mode and

One-to-many Mode. Under one-to-one mode, one layer’s

IRG from the teacher is used to guide a corresponding

Table 1: Student performance under different modes of

LIRG. O2O refers to one-to-one mode, while O2M refers

to one-to-many mode.

Student/Teacher: ResNet20-x0.5(88.36) / ResNet20(91.45)

O2O 1layer 89.87 O2O 3layers 90.03 O2O 5layers 89.65

O2M 1layer 89.87 O2M 3layers 90.28 O2M 5layers 90.02

Student/Teacher: ResNet20-x0.5(88.36) / ShuffleNet-x0.5(91.47)

O2O 1layer 89.83 O2O 3layers 89.89 O2O 5layers 89.50

O2M 1layer 89.83 O2M 3layers 90.21 O2M 5layers 89.93

(a) Eltwise1 (b) Eltwise5 (c) Eltwise8 (d) Eltwise9

Figure 6: Feature visualizations at different layers of the

teacher network.

layer’s IRG of the student (as shown in Figure 4(a)). For

one-to-many mode, last layer’s IRG is selected as the su-

pervision for the student’s last several layers (as shown in

Figure 4(b)).

Experiments are conducted under different configura-

tions for both modes. The results are shown in Table 1.

For example,“O2M 3layer” (one-to-many mode with 3 lay-

ers) refers to the situation that teahcer’s last Eltwise layer

(Eltwise9) is selected to supervise the last 3 Eltwise layers

(Eltwise7-9) of the student, while“O2O 3layer” (one-to-one

mode with 3 layers) refers to the situation that teacher’s last

3 Eltwise layers supervise the corresponding 3 layers of the

student, respectively.

According to the results, both one-to-one model and one-

to-many mode outperform baseline by a significant margin

while one-to-many mode continuously outperforms one-to-

one mode. Figure 6 visualizes the feature maps of the

teacher at different layers. It can be observed that deeper

layers learn more discriminative and general features, and

the last Eltwise layer with the best discrimination is the

most suitable supervision for the student network. There-

fore, one-to-many mode, which always extracts knowledge

from teacher’s Eltwise9 layer, forces all the supervised lay-

ers of the student to benefit from the discriminative feature

space and thus outperforms one-to-one mode.

Furthermore, one-to-many mode is more robust to the

teacher-student pair changes. As shown in Table 1, when

the teacher network changes from ResNet20 to ShuffleNet-

x0.5, one-to-one mode suffers from performance drop while

the performance of one-to-many mode is rather stable. It

is because Eltwise9 learns the general distribution of the

dataset, which is less related to the network architecture. On

the contrary, the feature space of the shallower layers such

as Eltwise7 are closely related to the network architecture.

Thus when the teacher has a totally different design from

that of the student, one-to-one mode performs much worse

7100



Table 2: Model performance of different methods. Perfor-

mance gain over the best competing method is marked in

the brackets.

CIFAR10
CIFAR100

coarse

CIFAR100

fine

Baseline 88.36 72.51 59.88

KD 89.09 73.03 60.21

FSP 89.21 73.18 60.46

AT 89.15 73.15 60.58

Rocket† 89.35 73.39 60.88

LIRG 90.28 (0.93) 74.32 (0.93) 61.93 (1.05)

LMTK 90.69 (1.34) 74.64 (1.25) 62.25 (1.37)

Teacher 91.45 78.40 68.42

than one-to-many mode. For the rest of the paper, “O2M

3layer” mode is always adopted for LIRG, which exceeds

the baseline by 1.92%.

4.1.3 The Effectiveness of LIRG-t

Besides the instance features and instance relationships

stored in IRG, the transformation of IRGs is also an im-

portant type of knowledge. Therefore, LIRG-t and LIRG

are combined to obtain LMTK . By comparing the perfor-

mance of LIRG and LMTK , the effectiveness of LIRG-t can

be verified.

(1) Hyper-parameter Tuning. Just as LIRG, the regu-

larization strength of LIRG-t is controlled by batch size and

λ3. The relationship between the two factors and accuracy

is shown in Figure 5(b). LIRG-t is less sensitive to batch

size as well as the penalty factor, compared with LIRG.

Therefore, it takes limited time to find an appropriate

λ3 for LMTK . Consequently, based on the results in Figure

5(b), we choose batch size as 64 and λ3 as 0.005 for LIRG-t

for the rest of the paper.

(2) Performance Analysis of LIRG-t. LIRG-t considers

the transformations of multiple pairs of layers. In particular,

for ResNet20, three pairs of layers are utilized as supervi-

sions, each of which represents the feature space transfor-

mation under a certain feature map resolution. In this way,

the overall LIRG-t boosts the feature learning process from

the beginning of the network to its end, so as to reinforce

the model performance.

As shown in Figure 5, LMTK continuously outperforms

LIRG, which indicates the effectiveness of LIRG-t. In par-

ticular, LMTK achieves an accuracy of 90.69% on CI-

FAR10, obtaining a performance gain of 0.41% (2.33%)

over LIRG (baseline). Furthermore, as shown in Figure 8,

with the help of LIRG-t, LMTK shows more stable conver-

gence on the test loss and accuracy. It is because LIRG-t

considers the global information flow of the network and is

a more moderate constraint.

4.2. Performance Comparisons

In this section, we compare the proposed method with 4

state-of-the-arts, including KD [9], FSP [24], AT [26] and

Rocket [30] (using logits as the distilled knowledge). First,

the performance of different methods is evaluated on CI-

FAR10, CIFAR100-coarse and CIFAR100-fine. Secondly,

different teacher-student pairs are implemented to evalu-

ate the methods’ generalization ability on network archi-

tectures. Finally, we particularly conduct experiments on

ImageNet and a subset of CIFAR10, called CIFAR10-small

to show the superiority of the proposed method on datasets

with different scales. The detailed experiment settings are

as below.

4.2.1 Experiment Settings

CIFAR10, CIFAR100 [12], ImageNet [4] and CIFAR10-

small are used for performance evaluation. Note that 10%
of CIFAR10 are randomly sampled to obtain CIFAR10-

small. Two types of teacher networks and three types

of student networks are used for performance evalua-

tion. Specifically, ResNet20 and ShuffleNet-x0.5 [28]

are the two teachers. Besides ResNet20-x0.5, ResNet20-

x0.375 and ResNet14-x0.5 are the possible student net-

works. ResNet14-x0.5 is obtained by reducing 3 residual

blocks from ResNet20-x0.5, while ResNet20-x0.375 has

0.375 time of channels of ResNet20.

4.2.2 Evaluation on CIFAR10 and CIFAR100

CIFAR10 and CIFAR100 are two typical datasets for

knowledge distillation evaluation. In this section, ResNet20

and ResNet20-x0.5 are used as the teacher network and the

student network respectively. When training the networks,

images of CIFAR10 (CIFAR100) are first padded to 36×36
and then cropped to 32× 32. Furthermore, the training-test

division strictly follows the official protocol.

According to the results in Table 2, the proposed method

significantly outperforms all the competing methods. To

be specific, LIRG outperforms Rocket, the best compet-

ing method, by 0.93% to 1.05% on different datasets. By

taking both IRG and IRG transformations into considera-

tion, LMTK outperforms Rocket by a larger margin from

1.25% to 1.37%. Since the performance gain of Rocket

over the baseline is 0.77% to 1.0%, the proposed method

(1.60% to 2.43%) doubles this performance gain.

We attribute the significant performance improvement to

LMTK’s extraction of all the three types of knowledge. The

previous methods only consider a subset of knowledge. For

example, KD, AT and Rocket only extract instance features

from the teacher, while FSP only takes feature transforma-

tion into consideration. Thus, these competing methods are

all special cases of our method. Further, none of them uses

instance relationships as the distilled knowledge. Accord-

ing to the experiments, the instance relationships not only

extract sufficient knowledge from the teacher, but also make

the knowledge distillation process more robust to the net-

work designs. In addition, the loss functions making up
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(a) KD (b) AT (c) FSP (d) Rocket (e) LMTK

Figure 7: Feature visualizations of Eltwise9 layer for different methods. Each color represents a class, best viewed in color.

Table 3: Model performance of different teacher-student pairs. Note that Rocket† adopts logits as the distilled knowledge

and shares lower layers of the teacher and the student. Therefore, the model size of Rocket† is a little larger than the reported

one. The number in the brackets shows the performance increase over the best competing method.

Dataset Teacher Net. Student Net. Baseline KD FSP AT Rocket† LIRG LMTK Teacher

CIFAR10 ResNet20 (1.06M) ResNet20-x0.5 (0.28M) 88.36 89.09 89.17 89.29 89.45 90.28 (0.93) 90.69 (1.34) 91.45

ResNet20 (1.06M) ResNet14-x0.5 (0.18M) 86.65 87.01 87.23 87.12 87.53 88.55 (1.02) 89.08 (1.55) 91.45

ResNet20 (1.06M) ResNet20-x0.375 (0.16M) 86.54 87.23 87.11 87.39 87.67 88.52 (0.85) 89.01 (1.34) 91.45

ShuffleNet-x0.5 (0.94M) ResNet20-x0.5 (0.28M) 88.36 89.12 89.07 89.05 89.22 90.29 (1.07) 90.65 (1.43) 91.47

CIFAR100-coarse ResNet20 (1.06M) ResNet20-x0.5 (0.28M) 72.51 73.03 73.18 73.15 73.39 74.32 (0.93) 74.64 (1.25) 78.40

ResNet20 (1.06M) ResNet14-x0.5 (0.18M) 68.55 68.76 68.73 68.69 69.07 69.94 (0.87) 70.18 (1.11) 78.40

ResNet20 (1.06M) ResNet20-x0.375 (0.16M) 66.72 66.98 67.07 67.22 67.45 68.26 (0.81) 68.57 (1.12) 78.40

ShuffleNet-x0.5 (0.94M) ResNet20-x0.5 (0.28M) 72.51 72.96 72.87 72.99 73.27 74.22 (0.95) 74.56 (1.29) 78.69

CIFAR10-fine ResNet20 (1.06M) ResNet20-x0.5 (0.28M) 59.88 60.21 60.46 60.58 60.88 61.93 (1.05) 62.25 (1.37) 68.42

ResNet20 (1.06M) ResNet14-x0.5 (0.18M) 56.23 56.44 56.34 56.26 56.55 57.44 (0.89) 57.68 (1.13) 68.42

ResNet20 (1.06M) ResNet20-x0.375 (0.16M) 53.87 54.09 54.24 54.38 54.52 55.37 (0.85) 55.66 (1.14) 68.42

ShuffleNet-x0.5 (0.94M) ResNet20-x0.5 (0.28M) 59.88 60.15 60.23 60.31 60.97 61.83(0.86) 62.06 (1.09) 68.67

LMTK are carefully designed, so as to achieve a good trade-

off among generalization, sufficiency and moderation of the

distilled knowledge. Therefore, LIRG and LIRG-t are com-

plementary to each other, boosting the performance in har-

mony.

Figure 7 visualizes the distribution of Eltwise9 layer

of the student networks from different methods. The fea-

ture space of LMTK is significantly more separable than

those of the other methods, especially on class bound-

aries. Moreover, different classes are well clustered with

smaller inner-class variation and larger inter-class variation.

LMTK makes usage of three kinds of knowledge from the

teacher network, which enables it to learn more compact

and discriminative representations. On the contrary, previ-

ous methods only utilizes single type of knowledge, thus the

expression ability of the student network is limited.

4.2.3 Evaluation on Different Networks

In this subsection, different teacher-student pairs are ex-

plored. The experimental results are reported in Table 3.

Under different network settings, the proposed method con-

tinuously outperforms the other methods. And we find that

the robustness to the network designs is related to the type

of the distilled knowledge.

First, some of the methods are more sensitive to the

changes of the teacher-student pairs. For instance, FSP and

AT perform worse when the teacher and student have dif-

ferent network architectures. It is because FSP and AT ex-

tract network-related knowledge. FSP extracts feature space

transformation knowledge while AT extracts attention maps

of middle layers. The network-related knowledge is hard to

transform from the teacher to a student with a different net-

work design.

Second, KD, Rocket, LIRG and LMTK are relatively

more robust to the teacher-student pair changes. For ex-

ample, though ResNet20 and ShuffleNet-x0.5 have totally

different architectures, all the four methods perform stably

when the teacher network changes. It is because these meth-

ods utilize the knowledge that is not closely related to the

network architecture. Specifically, KD and Rocket distill

the predicted class probabilities of the teacher, while LIRG

learns instance relationship. Since the class probabilities

and the learned instance relationships are usually stable,

KD, Rocket and LIRG are able to work robust to the net-

work changes. As for LMTK , which consists of three types

of distilled knowledge, is also robust to different networks.

When one of the type, for example, feature transformation

type, works a little worse, the other two types still perform

well. Thus the overall performance does not significantly

decrease.

4.2.4 Evaluation on CIFAR10-small and ImageNet

To explore the effectiveness of the proposed method on

datasets with different scales, experiments are conducted on

CIFAR10-small and ImageNet. According to the results in

Table 4, both LIRG and LMTK continuously outperform

the competing methods, especially on CIFAR10-small.

CIFAR10-small. For real world applications, there are

usually limited labeled images in hand. It is necessary

to evaluate the model performance on small-scale dataset.

Therefore, CIFAR10-small is constructed by randomly se-

lecting 10% samples from the training set CIFAR10. Then
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Table 4: Model performance on CIFAR10-small and ImageNet. We randomly select 10% of the training instances for 10
times and the average performance is reported.

Dataset Teacher Net. Student Net. Baseline KD FSP AT Rocket† LIRG LMTK Teacher

CIFAR10-small ResNet20 ResNet14-x0.5 55.53 59.29 60.11 59.98 62.23 64.87 (2.64) 66.04 (3.81) 91.45

ResNet20 ResNet20-x0.375 57.32 62.83 63.21 63.52 64.14 66.96 (2.82) 68.16 (4.02) 91.45

ImageNet ResNet101-v2 ResNet18 70.83 71.43 71.28 71.58 71.93 72.68 (0.75) 73.06 (1.13) 78.05

ResNet101-v2 ResNext26 74.89 75.60 75.62 75.73 76.16 76.87 (0.71) 77.18 (1.02) 78.05

(a) (b)

Figure 8: Test loss and accuracy comparisons.

all the student networks are trained on CIFAR10-small and

the accuracy on the test set of CIFAR10 is reported in Table

4. Note that the teacher network is still trained on the full

training set of CIFAR10.

According to the results, the performance gain (the num-

bers in the brackets) is tripled compared with the original

CIFAR10 settings. We attribute it to the ability to extract

sufficient knowledge of the proposed method. Previous

works extract knowledge from independent instances from

the teacher network. Thus, the amount of their knowledge

is proportional to the number of training samples N . The

knowledge is very limited when there are only a few train-

ing samples. LIRG and LMTK , by digging N instance fea-

tures and N2 instance relationships stored in IRG, extract

much more knowledge from the teacher.

ImageNet. Experiments are conducted on ImageNet to

show the efficienctiveness of the proposed method on large-

scale dataset. Since ImageNet consists millions of high-

resolution images, ResNet101-v2 is used as the teacher net-

work while ResNet18 and ResNext-26 are introduced as the

students. For training, images are first resized to 299× 299
and randomly cropped to 224× 224. As shown in Figure 3,

LIRG and LMTK outperform competing methods by a sig-

nificant margin. It indicates the proposed method is efficient

on large-scale dataset.

4.2.5 Complexity Analysis

Since the proposed method computes IRGs and IRG trans-

formations, it takes extra training time and GPU memory.

In this section, the complexity of the algorithm is analyzed.

According to the experiments, the additional resource cost

is limited under different experimental settings. In partic-

ular, the extra time and memory are proportional to batch

size and number of feature channels. In other words, once

the batch size and feature channel are fixed, the additional

training time and GPU memory is a constant. To be spe-

cific, for CIFAR10, it takes 3-4 hours to train a student with

LMTK , while the typical time of Rocket is 1.2 hours and

the typical time of baseline is around an hour. For Ima-

geNet, LMTK just takes around 4 hours more compared

with the one-week baseline process. On the other hand, the

extra GPU memory cost is around 100M for both CIFAR10

and ImageNet. Therefore, the proposed method can be eas-

ily deployed for real world applications with a little extra

training resource cost but significant performance gain.

Though additional loss functions are introduced, the pro-

posed method takes similar or less epochs to converge, com-

pared with the best competing method. As shown in Figure

8, both LIRG and LMTK achieve lower test loss and higher

accuracy compared with Rocket, under the same training

configuration. Furthermore, LMTK shows more stable con-

vergence since LIRG-t introduces the moderate knowledge,

namely feature space transformation.

5. Conclusion

We find that knowledge can be divided into three types:

instance features, instance relationships and feature space

transformation. However, most recent works only concen-

trate on the instance features. In this paper, an Instance Re-

lationship Graph (IRG) is defined to preserve all the types

of knowledge. IRG-based knowledge distillation method

is then proposed and hint loss functions corresponding to

different types of knowledge are presented to optimize the

student network. The experiments verify that the proposed

method shows strong robustness to teacher-student architec-

ture changes. In addition, it shows superior performance on

both big-scale and small-scale datasets over existing meth-

ods.
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