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Table 2: Architectures used in Kinetics experiments in Table 3(d).

layer output size
C2D

baseline

CPNet (Ours)

6 CP modules

conv1 56× 56× 8
7× 7, 64,

stride 2, 2(, 1)

7× 7, 64

stride 2, 2

res2 56× 56× 8

[

3× 3, 64

3× 3, 64

]

× 2

[

3× 3, 64

3× 3, 64

]

× 2

res3 28× 28× 8

[

3× 3, 128

3× 3, 128

]

× 2





3× 3, 128

3× 3, 128

CP module



× 2

res4 14× 14× 8

[

3× 3, 256

3× 3, 256

]

× 2





3× 3, 256

3× 3, 256

CP module



× 2

res5 7× 7× 8

[

3× 3, 512

3× 3, 512

]

× 2





3× 3, 512

3× 3, 512

CP module



× 2

1× 1× 1 global average pooling, fc 400

The training and validation results are listed in Table 1.

Our model can overfit the toy dataset, while other models

simply generate random guesses and fail in learning the mo-

tion. It’s easy to understand that ARTNet and TRN have

insufficient convolution receptive fields to cover the step of

the motion of the square. However, it’s intriguing that NL

Net, which should have a global receptive field, also fails.

We provide an explanation as follows. Though the toy

NL Net gets by the problem of insufficient convolution re-

ceptive fields, its NL block fails to include positional in-

formation thus can’t learn long-range motion. However,

it’s not straightforward to directly add pairwise positional

information to NL block without significantly increasing

the memory and computation workload to an intractable

amount. Through this experiment, we show another ad-

vantage of our CPNet: by only focusing on top k potential

correspondences, memory and computation can be saved

significantly thus allow positional information and semantic

feature be learned together with more a complicated method

such as a neural network.

5. Experiment Results

To validate the choice of our architecture for data in the

wild, we first did a sequence of ablation studies on Kinet-

ics dataset [16]. Then we re-implemented several recently

published and relevant architectures with the same dataset

and experiment settings to produce results as good as we

can and compare with our results. Next, we experiment

with very large models and compare with the state-of-the-

art methods on Kinetics validation set. Finally, we did ex-

periments on action-centric datasets Something-something

v2 [10] and Jester v1 [28] and report our results on both val-

idation and testing sets. Visualizations are also provided to

help the understanding of our architecture.

5.1. Ablation Studies

Kinetics [16] is one of the largest well-labelled datasets

for human action recognition from videos in the wild. Its

classification task involves 400 action classes. It con-

tains around 246,000 training videos and 20,000 validation

videos. We used C2D ResNet-18 as backbone for all ab-

lation experiments. The architectures we used are derived

from the last column of Table 2. We included C2D baseline

for comparison. We downsampled the video frames to be

only 1/12 of the original frame rate and used only 8 frames

for each clip. This ensures that the clip duration are long

enough to cover a complete action while still maintain fast

iteration of experiment. The single-clip single-center-crop

validation results are shown in Table 3(a)(b)(c).

Ablation on the Number of CP modules. We explored

the effect of the number of CP modules on the accuracy.

We experimented with adding one or two CP modules to

the res4 group, two CP modules to each of res3 and res4
groups, and two CP modules to each of res3, res4 and res5
groups. The results are shown in Table 3(a). As the number

of CP modules increases, the accuracy gain is consistent.

Ablation on k. We explored the the combination of

training-testing time k values and compared the results in

Table 3(b). When ks are the same during training and test-

ing, highest validation accuracy are achieved. It suggests

that using different k forces the architecture to learn dif-

ferent distribution and highest accuracy are achieved only

when training and test distribution are similar.

We also notice that the highest accuracy are achieved at a

sweet point when both k = 8. An explanation is that when

k is too small, CP module can’t get enough correspondence

candidates to select from; when k is too large, clearly unre-

lated elements are also included and introduce noise.

Ablation on the position of CP modules. We explored

effect of the position of CP modules. We added two CP

modules to three different groups: res3, res4 and res5, re-

spectively. The results are shown in Table 3(c). The high-

est accuracy are achieved when adding two CP modules to

res4 group. A possible explanation is that res3 doesn’t con-

tain enough semantic information for finding correct k-NN

while resolution of res5 is too low (7× 7).

5.2. Comparison with Other Architectures

We compare our architecture with C2D/C3D baselines,

C2D NL Networks [31] and ARTNet [30], on Kinetics. We

did two sets of experiments, with frame rate downsampling

ratio of 12 and 4 respectively. Both experiment sets used

8 frames per clip. The settings enable us to compare the

performance under both low and high frame rates. The ar-

chitecture used in the experiments are illustrated in Table 2.

We experimented with two inference methods: 25-clip 10-

crop with averaged softmax score as in [30] and single-clip

single-center-crop. The results are shown in Table 3(d).

Our architecture outperforms C2D/C3D baselines by a

significant margin, which proves the efficacy of CP mod-

ule. It also outperforms NL Net and ARTNet given fewer
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Table 3: Kinetics datasets results for ablations and comparison with other prior works. The top-1/top-5 accuracies are shown.

(a) number of CP modules

model top-1 top-5

C2D 56.9 79.5

1 CP 60.3 82.4

2 CPs 60.4 82.4

4 CPs 61.0 83.1

6 CPs 61.1 83.1

(b) Ablation on CP module’s k values used in training and testing time.

top-1/top-5

accuracy

test

k = 1 k = 2 k = 4 k = 8 k = 16 k = 32

train

k = 1 59.9/82.3 59.2/81.6 56.6/79.4 52.5/76.1 49.0/72.6 44.6/58.5

k = 2 59.1/81.8 60.2/82.5 59.6/81.8 56.9/80.1 53.0/77.1 48.9/73.5

k = 4 59.0/81.2 60.2/82.4 60.5/82.6 59.0/81.7 55.3/79.2 49.2/73.5

k = 8 53.4/76.3 56.8/79.5 59.6/81.9 60.7/82.8 59.7/82.1 57.0/80.3

k = 16 51.3/75.1 53.8/77.3 56.8/79.7 59.8/82.1 60.6/82.8 59.2/81.8

k = 32 52.6/76.6 53.8/77.7 55.5/79.1 58.2/80.8 60.0/82.2 60.4/82.4

(c) CP module positions

model top-1 top-5

C2D 56.9 79.5

res3 60.4 82.4

res4 60.8 82.8

res5 59.2 81.6

(d) Kinetics validation accuracy of architectures in Table 2. Clip length is 8 frames.

frame rate 1/12 of original frame rate 1/4 of original frame rate

val configuration 1-clip, 1 crop 25-clip, 10 crops 1-clip, 1 crop 25-clip, 10 crops

accuracy top-1 top-5 top-1 top-5 top-1 top-5 top-1 top-5

C2D 56.9 79.5 61.3 83.6 54.1 77.4 60.8 83.3

C3D [26] 58.3 80.7 64.4 85.8 55.0 78.5 63.3 85.2

NL C2D Net [31] 58.6 81.3 63.3 85.1 55.3 78.6 62.1 84.2

ARTNet [30] 59.1 81.1 65.1 86.1 56.1 78.7 64.2 85.6

CPNet (Ours) 61.1 83.1 66.3 87.1 57.2 80.8 64.9 86.5

Table 4: Large RGB-only models on Kinetics validation accuracy.

Clip length for NL Net and our CPNet is 32 frames.

model params (M) top-1 top-5

I3D Inception [2] 25.0 72.1 90.3

Inception-ResNet-v2 [1] 50.9 73.0 90.9

NL C2D ResNet-101 [31] 48.2 75.1 91.7

CPNet C2D ResNet-101 (ours) 42.1 75.3 92.4

parameters, further showing the superiority of our CPNet.

5.3. Large Models on Kinetics

We train a large model with C2D ResNet-101 as back-

bone. We applied three phases of training where we pro-

gressively increase the number of frames in a clip from 8

to 16 and then to 32. We freeze batch normalization layers

starting the second phase. During inference, we use 10-clip

in time dimension, 3-crop spatially fully-convolutional in-

ference. The results are illustrated in Table 4.

Compared with large models of several previous RGB-

only architectures, our CPNet achieves higher accuracy

with fewer parameters. We point out that Kinetics is an

appearance-centric dataset where static appearance infor-

mation dominates the classification. We will show later

that our CPNet has larger advantage on other action-centric

datasets where dynamic component more important.

5.4. Results on Something-Something

Something-Something [10] is a recently released dataset

for recognizing human-object interaction from video. It

has 220,847 videos in 174 categories. This challenging

dataset is action-centric and especially suitable for eval-

uating recognition of motion components in videos. For

example its categories are in the form of ”Pushing some-

thing from left to right”. Thus solely recognizing the object

doesn’t guarantee correct classification in this dataset.

We trained two different CPNet models with ResNet-18

and -34 C2D as backbone respectively. We applied two

phases of training where we increase the number of frames

in a clip from 12 to 24. We freeze batch normalization

layers in the second phase. The clip length are kept to

be 2s 1. During inference, we use 6-crop spatially fully-

convolutional inference. We sample 16 clips evenly in tem-

poral dimension from a full-length video and compute the

averaged softmax scores over 6 × 16 clips. The results are

listed in Table 5(a).

Our CPNet model with ResNet-34 backbone achieves

the state-of-the-art results on both validation and testing ac-

curacy. Our model size is less than half but beat Two-stream

TRN [37] by more than 2% in validation accuracy and more

than 1% testing accuracy. Our CPNet model with ResNet-

18 also achieves competing results. With fewer than half

parameters, it beats MultiScale TRN [37] by more than 5%

in validation and more than 2% in testing accuracy. Be-

sides, we also showed the effect of CP modules by com-

paring against respective ResNet C2D baselines. Although

parameter size increase due to CP module is tiny, the vali-

dation accuracy gain is significant (>14%).

5.5. Results on Jester

Jester [28] is a dataset for recognizing hand gestures

from video. It has 148,092 videos in 27 categories. This

dataset is also action-centric and especially suitable for

evaluating recognizing motion components in video recog-

nition models. One example of its categories is ”Turn-

ing Hand Clockwise”: solely recognizing the static gesture

1There are space for accuracy improvement when using 48 frames.

4278



Table 5: TwentyBN datasets results. Our CPNet outperforms all published results, with fewer number of parameters.

(a) Something-Something v2 Results

model
params val test

(M) top-1 top-5 top-1 top-5

Goyal et al. [10] 22.2 51.33 80.46 50.76 80.77

MultiScale TRN [37] 22.8 48.80 77.64 50.85 79.33

Two-stream TRN [37] 46.4 55.52 83.06 56.24 83.15

C2D Res18 baseline 10.7 35.24 64.49 - -

C2D Res34 baseline 20.3 39.64 69.61 - -

CPNet Res18, 5 CP (ours) 11.3 54.08 82.10 53.31 81.00

CPNet Res34, 5 CP (ours) 21.0 57.65 83.95 57.57 84.26

(b) Jester v1 Results

model
params

val test
(M)

BesNet [9] 37.8 - 94.23

MultiScale TRN [37] 22.8 95.31 94.78

TPRN [33] 22.0 95.40 95.34

MFNet [18] 41.1 96.68 96.22

MFF [17] 43.4 96.33 96.28

C2D Res34 baseline 20.3 84.73 -

CPNet Res34, 5 CP (ours) 21.0 96.70 96.56

doesn’t guarantee correct classification in this dataset. We

used the same CPNet with ResNet-34 C2D backbone and

the same training strategy as subsection 5.4. During infer-

ence, we use 6-crop spatially fully-convolutional inference.

We sample 8 clips evenly in temporal dimension from a full-

length video and compute the averaged softmax scores over

6× 8 clips. The results are listed in Table 5(b).

Our CPNet model outperforms all published results on

both validation and testing accuracy, while having the

smallest parameter size. The effect of CP modules is also

shown by comparing against ResNet-34 C2D baselines.

Again, although parameter size increase due to CP module

is tiny, the validation accuracy gain is significant (≈12%).

5.6. Visualization

To understand the behavior of CP module and demystify

why it works, we provide visualization in three aspects with

the datasets used in previous experiments as follows.

What correspondences are proposed? We are inter-

ested to see whether CP module is able to learn to propose

reasonable correspondences purely based on semantic fea-

ture similarity. As illustrated in Figure 5, in general CP

module can find majority of reasonable correspondences.

Due to k being a fixed hyperparameter, its k-NN in seman-

tic space may also include wrong correspondences.

Which of proposed correspondences activate output

neurons? We are curious about CP module’s robustness to

wrong proposals. We trace which of the k proposed corre-

spondence pairs affect the value of output neurons after max

pooling. Mathematically, let gi0c and ζ
(i0,ij)
c be the dimen-

sion c of gi0 and ζ(f i0 , f ij , tij − ti0 , hij − hi0 , wij −wi0)
from Equation (1) respectively, we are interested in the set

Ai0 = {j ∈ {1, . . . , k} | ∃c ∈ {1, . . . , C}, ζ(i0,ij)c = gi0c }
(2)

associated with a feature i0, where j not being in Ai0 means

pair (i0, ij) is entirely overwhelmed by other proposed cor-

respondence pairs and thus filtered by max pooling when

calculating output feature i0. We illustrate Ai0 of several

selected features in Figure 5 and show that CP module is

robust to incorrectly proposed correspondences.

How semantic feature map changes? We show in Fig-

ure 5 the heatmap of change in L1 distance of the semantic

feature map for each frame after going through CP module.

We found that CP modules make more changes to features

that correspond to moving pixels. Besides, CP modules on

a later stage focus more on the moving parts with specific

semantic information that helps final classification.

6. Discussion

6.1. Relation to Other Single-stream Architectures

Note that since the MLPs in CP modules can potentially

learn to approximate any continuous set functions, CPNet

can be seen as a generalization of several previous RGB-

only architectures for video recognition.

CPNet can be reduced to a C3D [26] with kernel size

u × v × w, if we set the k of CP modules to be uvw − 1,

determine the k nearest neighbors in spatiotemporal space

with L1 distance and let the MLP learn to compute inner

product operation within the u× v × w neighborhood.

CPNet can also be reduced to an NL Net [31], if we set

the k of CP modules to be maximum THW − 1 and let the

MLP learn to perform the same distance and normalization

functions as the NL block.

CPNet can also be reduced to a TRN [37], if we put one

final CP module at the end of C2D, determine the k nearest

neighbors in temporal-only space, and let the MLP learn to

perform the same gθ and hφ functions defined in [37].

6.2. Pixel-level Motion vs. Feature-level Motion

In two-stream architectures, motion in pixel level, i.e.

optical flow fields, are first estimated before sent into deep

networks. In contrast, CP modules captures motion in se-

mantic feature level. We point out that, though CP module

process positional information at a lower spatial resolution

(e.g. 14× 14), detailed motion feature can still be captured,

since the semantic features already encode rich information

within the receptive fields [20].

In fact, migrating positional reasoning from the original

input data to semantic representation has contributed to sev-

eral successes in computer vision research. For example, in

4279



4280



References

[1] Y. Bian, C. Gan, X. Liu, F. Li, X. Long, Y. Li, H. Qi, J. Zhou,

S. Wen, and Y. Lin. Revisiting the effectiveness of off-the-

shelf temporal modeling approaches for large-scale video

classification. arXiv preprint arXiv:1708.03805, 2017. 6

[2] J. Carreira and A. Zisserman. Quo vadis, action recognition?

a new model and the kinetics dataset. In CVPR, 2017. 2, 6

[3] A. Z. Christoph Feichtenhofer, Axel Pinz. Convolutional

two-stream network fusion for video action recognition. In

CVPR, 2016. 2

[4] J. Donahue, L. Anne Hendricks, S. Guadarrama,

M. Rohrbach, S. Venugopalan, K. Saenko, and T. Dar-

rell. Long-term recurrent convolutional networks for visual

recognition and description. In CVPR, 2015. 2

[5] A. Dosovitskiy, P. Fischer, E. Ilg, P. Hausser, C. Hazirbas,

V. Golkov, P. van der Smagt, D. Cremers, and T. Brox.

Flownet: Learning optical flow with convolutional networks.

In ICCV, 2015. 2, 8

[6] L. Fan, W. Huang, C. Gan, S. Ermon, B. Gong, and J. Huang.

End-to-end learning of motion representation for video un-

derstanding. In CVPR, 2018. 2

[7] R. Girshick. Fast r-cnn. In ICCV, 2015. 8

[8] R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich fea-

ture hierarchies for accurate object detection and semantic

segmentation. In CVPR, 2014. 8

[9] E. Gölge. Random Dilation Networks for Action Recog-

nition in Videos. http://www.erogol.com/random-dilation-

networks-action-recognition-videos, 2017. 7

[10] R. Goyal, S. E. Kahou, V. Michalski, J. Materzynska,

S. Westphal, H. Kim, V. Haenel, I. Fründ, P. Yianilos,

M. Mueller-Freitag, F. Hoppe, C. Thurau, I. Bax, and

R. Memisevic. The ”something something” video database

for learning and evaluating visual common sense. CoRR,

abs/1706.04261, 2017. 2, 5, 6, 7

[11] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. In ICCV, 2015. 4

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 4

[13] E. Ilg, N. Mayer, T. Saikia, M. Keuper, A. Dosovitskiy, and

T. Brox. Flownet 2.0: Evolution of optical flow estimation

with deep networks. In CVPR, 2017. 2, 8

[14] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

CoRR, abs/1502.03167, 2015. 4

[15] A. Karpathy, G. Toderici, S. Shetty, T. Leung, R. Sukthankar,

and L. Fei-Fei. Large-scale video classification with convo-

lutional neural networks. In CVPR, 2014. 2

[16] W. Kay, J. Carreira, K. Simonyan, B. Zhang, C. Hillier,

S. Vijayanarasimhan, F. Viola, T. Green, T. Back, P. Natsev,

M. Suleyman, and A. Zisserman. The kinetics human action

video dataset. CoRR, abs/1705.06950, 2017. 2, 5

[17] O. Kopuklu, N. Kose, and G. Rigoll. Motion fused frames:

Data level fusion strategy for hand gesture recognition. In

CVPR Workshops, 2018. 7

[18] M. Lee, S. Lee, S. Son, G. Park, and N. Kwak. Motion fea-

ture network: Fixed motion filter for action recognition. In

ECCV, 2018. 7

[19] X. Liu, C. R. Qi, and L. J. Guibas. Learning scene flow in 3d

point clouds. arXiv preprint, 2018. 2, 3, 4

[20] J. L. Long, N. Zhang, and T. Darrell. Do convnets learn

correspondence? In NIPS, 2014. 7

[21] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep

learning on point sets for 3d classification and segmentation.

In CVPR, 2017. 2, 3

[22] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep

hierarchical feature learning on point sets in a metric space.

NIPS, 2017. 2, 3

[23] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

NIPS, 2015. 8

[24] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski,

R. Pascanu, P. Battaglia, and T. Lillicrap. A simple neural

network module for relational reasoning. In NIPS, 2017. 2

[25] K. Simonyan and A. Zisserman. Two-stream convolutional

networks for action recognition in videos. In NIPS, 2014. 2

[26] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri.

Learning spatiotemporal features with 3d convolutional net-

works. In ICCV, 2015. 2, 6, 7

[27] D. Tran, J. Ray, Z. Shou, S. Chang, and M. Paluri. Convnet

architecture search for spatiotemporal feature learning. arXiv

preprint, 2017. 2

[28] TwentyBN. The 20BN-jester Dataset V1. https://

20bn.com/datasets/jester. 2, 5, 6
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