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Abstract

This paper studies image-based geo-localization (IBL)

problem using ground-to-aerial cross-view matching. The

goal is to predict the spatial location of a ground-level

query image by matching it to a large geotagged aerial im-

age database (e.g., satellite imagery). This is a challenging

task due to the drastic differences in their viewpoints and

visual appearances. Existing deep learning methods for

this problem have been focused on maximizing feature sim-

ilarity between spatially close-by image pairs, while min-

imizing other images pairs which are far apart. They do

so by deep feature embedding based on visual appearance

in those ground-and-aerial images. However, in everyday

life, humans commonly use orientation information as an

important cue for the task of spatial localization. Inspired

by this insight, this paper proposes a novel method which

endows deep neural networks with the ‘commonsense’ of

orientation. Given a ground-level spherical panoramic im-

age as query input (and a large georeferenced satellite im-

age database), we design a Siamese network which explic-

itly encodes the orientation (i.e., spherical directions) of

each pixel of the images. Our method significantly boosts

the discriminative power of the learned deep features, lead-

ing to a much higher recall and precision outperforming all

previous methods. Our network is also more compact us-

ing only 1/5th number of parameters than a previously best-

performing network. To evaluate the generalization of our

method, we also created a large-scale cross-view localiza-

tion benchmark containing 100K geotagged ground-aerial

pairs covering a city. Our codes and datasets are available

at https://github.com/Liumouliu/OriCNN .

1. Introduction

This paper investigates the problem of image-based geo-

localization using ground-to-aerial image matching. Given

a ground-level query image, we aim to recover the absolute

geospatial location at which the image is taken. This is done

by comparing the query image with a large collection of

geo-referenced aerial images (e.g., satellite images) without

(a) Query image (b) Ground-level panorama

(c) Our satellite dataset (with GPS

footprints)

(d) The matched

satellite image

Figure 1: Given a ground-level spherical omnidirectional image

(a) (or its panoramic representation as shown in (b)) as a query

image, the task of image-based localization (IBL) is to estimate

the location of the query image by matching it to a large satellite

image database covering the same region, as given in (c). The

found correct match is shown in (d), which is centered at the very

same location as (a).

the aid of other localization sensors (such as GPS). Figure

1 illustrates an example scenario of such ground-to-aerial

cross-view localization problem.

While previous image-based geolocalization methods

have been primarily based on ground-to-ground (street-

view level) image matching (e.g., [5, 24, 19, 18, 20, 27]),

using ground-to-aerial cross-view matching (i.e., matching

ground-level photos to aerial imagery ) is becoming an at-

tractive approach for image-based localization, thanks to the

widespread coverage (over the entire Earth) and easy acces-

sibility of satellite and aerial survey images. In contrast, the

coverage of ground-level street views (such as Google-map
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or Bing-map) is at best limited to urban areas.

Another advantage of using ground-to-aerial matching,

which has been overlooked in recent IBL literature, is that

the way to localize using ground-to-aerial matching resem-

bles what a human would localize himself using a tradi-

tional paper map. A map can be considered as a (coarse)

aerial image depicting the geographic region. Imagine the

following scenario where a tourist is lost in a foreign city,

yet he has no modern localization aid with him (e.g., no

GPS, no cell phone, no google map) except for a paper-

version tourist map. In such circumstance, a natural way

for him to re-localize (by himself) is to match the city map

(i.e., an aerial drawing) with what he sees (i.e., a ground-

level street view). In this human localization scenario, to re-

orientate himself (i.e., knowing where the geographic True

North is, both on the map and in the surroundings) is criti-

cally important, which will greatly simplify the localization

task.

Inspired by this insight, we propose a novel deep con-

volutional neural network that explicitly encodes and ex-

ploits orientation (directional) information aiming for more

accurate ground-to-aerial localization. Specifically, we in-

tend to teach a deep neural-network the concept of “di-

rection” or “orientation” at every pixel of the query or

database images. We do so by creating an orientation map,

used as additional signal channels for the CNN. We hope

to learn more expressive feature representations which are

not only appearance-driven and location-discriminative, but

also orientation-selective. The novel way we propose to in-

corporate orientation information is compact, thus our ori-

entation map can be easily plugged to other deep-learning

frameworks or for other applications as well.

Our work makes the following contributions: (1) A sim-

ple yet efficient way to incorporate per-pixel orientation in-

formation to CNN for cross-view localization; (2) A novel

Siamese CNN architecture that jointly learns feature em-

beddings from both appearance and orientation geometry

information; (3) Our method establishes a new state-of-the-

art performance for ground-to-aerial geolocalization; Be-

sides, as a by-product of this work, we also created a new

large-scale cross-view image benchmark dataset (CVACT)

consisting of densely covered and geotagged street-view

panoramas and satellite images covering a city. CVACT is

much bigger than the most popular CVUSA [36] panorama

benchmark (Ref. Table-4). We hope this will be a valuable

addition and contribution to the field.

2. Related Works

Deep cross-view localization. Traditional hand-crafted

features were used for cross-view localization [16, 6, 23].

With the success of modern deep learning based methods,

almost all state of the art cross-view localization methods

([12, 33, 34, 31]) adopted deep CNN to learn discrimina-

tive features. Workman et al. [33] demonstrated that deep

features learned from a classification model pre-trained on

Places [37] dataset outperforms those hand-crafted features.

They further extended the work to cross-view training and

showed improved performance [34]. Vo et al. [31] explored

several deep CNN architectures (e.g., Classification, Hy-

brid, Siamese and Triplet CNN) for cross-view matching,

and proposed a soft margin triplet loss to boost the perfor-

mance of triplet embedding. They also give a deep regres-

sion network to estimate the orientation of ground-view im-

age and utilize multiple possible orientations of aerial im-

ages to estimate the ground-view orientation. This causes

significant overhead in both training and testing. Instead,

we directly incorporate the cross-view orientations to CNN

to learn discriminative features for localization. Recently,

Hu et al. [11] proposed to use NetVLAD [5] as feature ag-

gregation on top of the VGG [28] architecture pre-trained

on ImageNet dataset [7], and obtained the state-of-the-art

performance. Paper [17, 29] tackled the ground to bird-eye

view (45-degree oblique views) matching problem, which is

a relatively easier task in the sense that more overlaps (e.g.,

building facade) between a ground-level and a 45-degree

view can be found.

Transfer between ground and aerial images. The rela-

tionship between a ground-view image and a satellite image

is complex; no simple geometric transformation or photo-

metric mapping can be found other than very coarse ho-

mography approximation or color tune transfer. Existing

attempts [36, 25] used a deep CNN to transfer a ground-

view panorama to an aerial one, or vice versa, in various

approaches including the conditional generative adversar-

ial networks [25]. Zhai et al. [36] proposed to predict the

semantic of a ground-view image from its corresponding

satellite image. The predicted semantic is used to synthe-

size ground-view panorama.

Lending orientation to neural networks. There was lit-

tle work in the literature addressing lending directional in-

formation to neural networks, with a few exceptions. An

early work by Zamel et al. [35] introduced the idea of using

complex-valued neurons to represent (one-dimensional) di-

rection information. Their idea is to equip neural networks

with directional information based on the observation that

a directional signal in the 2D plane can be coded as a com-

plex number, z = |z| exp (−iφ), of which the phase com-

ponent naturally represents the angular directional variable

φ . By this method, conventional real-valued neural net-

works can be extended to complex-valued neural networks,

for which all the learning rules (such as back-propagation

can be adapted accordingly, and directional information is

handled in a straightforward way. Some recent works fur-

ther developed this idea [9, 30].
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3. Method Overview

3.1. Siamese Network Architecture

Using ground-to-aerial cross-view matching for image-

based localization is a challenging task. This is mainly

because of the ultra-wide baseline between ground and

aerial images, which causes a vast difference in their vi-

sual appearances despite depicting the same geographic re-

gion. Such difficulty renders conventional local descriptor

based method (e.g., Bag of SIFTs) virtually useless. Deep-

learning has been adopted for solving this problem, and

obtained remarkable success (e.g., [12, 31, 33, 34, 17]).

A common paradigm that has been used by those deep

methods is to formulate the problem as feature embed-

ding, and extract location-sensitive features by training a

deep convolutional neural network. They do so by force-

fully pulling positive ground-and-aerial matching pairs to

be closer in feature embedding space, while pushing those

features coming from non-matchable pairs far apart.

In this paper, we adopt a Siamese-type two-branch CNN

network of 7 layers (showing in Figure 2) as the basis of

this work. Each branch learns deep features that are suit-

able for matching between the two views. Unlike previ-

ous Siamese networks for ground-to-ground localization,

the two branches of our Siamese net do not share weights,

because the domains (and modalities) of ground and aerial

imagery are different. It is beneficial to allow more degree

of freedom for their own weights to evolve.

Ground-level panorama

Satellite image

CNN

CNN

Loss

Figure 2: Our baseline Siamese network: the inputs to the two

branches are ground-level panoramas and satellite images, respec-

tively. Features are learned by minimizing a triplet loss [12].

3.2. Use of Orientation Information

As discussed previously, we notice that most of those

previous deep localization networks all focus on capturing

image similarity in terms of visual appearance (and seman-

tic content); they have all overlooked an important geo-

metric cue for localization, namely, the orientation or di-

rectional information of the views - an important cue that

humans (and many animals) often use for spatial awareness

and localization [1].

On the other hand, knowing the orientation (i.e., know-

ing in which direction every point in an image is pointing

to) will greatly simplify the localization task. Almost all

off-the-shelf satellite image databases are georeferenced, in

which the geographic ‘North’ direction is always labeled

on the images. In the context of image-based localization,

if one is able to identify the True North on a ground-level

query image, then that image can be placed in a geomet-

rically meaningful coordinate frame relative to the satel-

lite images’ reference frame. This will significantly reduce

the search space for finding the correct ground-to-satellite

matches, resulting in much faster searches and more accu-

rate matches. To show the importance of knowing orien-

tation with respect to the task of localization, let us return

to our previous example, and examine what a disoriented

tourist would do in order to quickly relocalize himself in a

foreign city with a paper map. First, he needs to identify

in which direction lies the geographic True North in the for-

eign street he is standing in; Second, face the True North di-

rection, and at the same time rotate the paper map so that its

‘North’ is pointing the same direction; Third, look in certain

directions and try to find some real landmarks (along those

directions) that match the landmarks printed on the map.

Finding enough good matches suggests that the location of

him is recovered.

This paper provides an efficient way to teach (and to en-

dow with) deep neural networks the notion of (geographic)

orientation – this is one of the key contributions of the work.

Next, we explain how we encode such per-pixel orientation

information in a convolutional neural network.

3.3. Representing Orientation Information

Many real-world problems involve orientation or direc-

tional variables, e.g., in target detection with radar or sonar,

microphone array for stereo sound/acoustic signal process-

ing, and in robot navigation. However, few neural networks

addressed or exploited such directional information, with

only a few exceptions including the complex-valued Boltz-

mann network [35]. While our method to be described in

this paper was originally inspired by paper [35], we find it

unsuitable for the task of image-based localization, for two

reasons. First, in image-based localization, the direction of

each pixel is actually two dimensional (i.e., the two spheri-

cal angles parameterized by ((θ, φ)) –azimuth and altitude),

rather than a single phase angle. There is no simple way to

represent two angles with a single complex number. Sec-

ond, both the time and memory complexities of a complex-

valued network are expensive. Given these reasons, we

abandoned the idea of using a complex network. Instead,

we propose a very simple (and straightforward) way to di-

rectly inject per-pixel orientation information via orienta-

tion maps. Details are to be given next.
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Figure 3: We use spherical angles (azimuth and altitude) to define

the orientation at each pixel of a ground-level panorama (shown in

the left), and use polar coordinates (azimuth and range) to define

the orientation for pixels in a satellite image (shown in the right).

Parameterization. We consider a ground-level query im-

age as a spherical view covering a full omnidirectional

360◦ × 180◦ Field-of-View (FoV). The orientation of each

pixel therein is parameterized by two spherical angles: az-

imuth and altitude θ and φ. The mapping between a spher-

ical image to a rectangular panoramic image can be done

by using equirectangular projection. Note that, in order to

know the relative angle between pixels we assume the in-

put panorama image is intrinsically calibration. Getting in-

trinsic calibration is an easy task. Moreover, for the sake

of IBL, even a very coarse estimate of the camera intrin-

sics is adequate for the task. Since satellite view captures

an image orthogonal to the ground plane, without loss of

generality, we assume the observer is standing at the cen-

ter location of the satellite view. We then simply use polar

angle (in the polar coordinate system) to represent the az-

imuth angle θi, and range ri to represent the radial distance

of a pixel in the satellite image relative to the center, i.e.,

ri = (y2i + x2

i )
1/2; θi = arctan 2(yi, xi).

Color-coded orientation maps. We borrow the same

color-coding scheme developed for visualizing 2D optical-

flow field [4] to represent our 2D orientation map. Specif-

ically, the hue (H) and saturation (S) channels in a color

map each represents one of the two orientation parameters.

Specifically, for a ground-level panorama, the two channels

are θ (azimuth) and φ (altitude), and for an overhead satel-

lite image, the two channels are θ (azimuth) and r (range).

This way, we can simply consider the orientation map is

nothing but two additional color-channels (we denote them

as U-V channels), besides the original 3-channel RGB input

image. Figure 4 shows such two color orientation maps.

4. Joint Image and Orientation Embedding

Now that with the above preparations in place, we are

ready to describe our joint image and orientation feature

embedding method.

Figure 4: Color-coded orientation maps (i.e., U-V maps) . Left:

U-V map for ground-level panorama; Right: U-V map for aerial

view.

4.1. Where to inject orientation information?

Our network is based on the Siamese architecture of 7
convolutional layers, which are cropped from the generator

network in view synthesis [25, 14]. Each layer consists of

convolution, leaky-ReLU, and batch-normalization. Imple-

mentation details are deferred to Section-5.

We devise two different schemes (Scheme-I, and

Scheme-II) for injecting orientation information to the

Siamese net at different layers. In Scheme-I, we concate-

nate cross-view images and orientation masks along RGB

channels to yield cross-view inputs. In Scheme-II, besides

concatenating cross-view images and orientation masks as

inputs, we also inject orientation information to interme-

diate convolutional blocks. Down-sampled cross-view ori-

entation maps are concatenated with output feature map of

each convolutional block. These two schemes are illustrated

in Figure 5.

Concat

Downsampling

64 128 256 512 512 512 512 Feature

U-V map

RGB

Concat

64 128 256 512 512 512 512 Feature

U-V map

RGB

Figure 5: Two schemes to incorporate orientation information.

Scheme-I (top): orientation information (U-V map) are injected to

the input layer only; Scheme-II (bottom): orientation information

(U-V map) are injected to all layers.

4.2. Deep feature embedding

We aggregate feature maps obtained at the last three lay-

ers to form multi-scale feature vectors. Intermediate feature

maps are resized and concatenated along the feature dimen-

sion to form a 3D tensor Xi, i ∈ {g, s} of WixHixD di-

mension, where Wi, Hi, and D are the width, height, and
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Figure 6: Our overall network architecture (in Scheme-I). Cross-

view images and their associated orientation maps are jointly fed

to the Siamese net for feature embedding. The learned two feature

vectors are passed to a triplet loss function to drive the network

training. The numbers next to each layer denote the number of

filters.

feature dimension, respectively.

We aim to extract a compact embedding from Xi. We

add a pooling layer acting on Xi and outputs a vector fi.

Since cross-view images usually have different sizes, we

adopted the generalized-mean pooling (proposed in [24, 8])

to get the following embedding: fi =
[

f1

i , .., f
D
i

]T
, fk

i =
(

1

WiHi

∑Wi

w=1

∑Hi

h=1
xp
w,h,k

)1/p

. Variable xw,h,k is a

scalar at the k-th feature map of tensor Xi, and p is a scalar.

We set D = 1536, and normalize all f ′is to be unit L2-norm.

4.3. Triplet loss for crossview metric learning

Given embeddings fg and fs of the ground-view

panorama and satellite image, respectively, the aim of cross-

view metric learning is to embed the cross-view embed-

dings to a same space, with metric distances (L2-metric)

between embeddings reflect the similarity/dissimilarity be-

tween cross-view images. There are many metric learn-

ing objective functions available, e.g., triplet ranking [5],

SARE [19], contrastive [24], angular [32] losses. All losses

try to pull the L2 distances between matchable cross-view

embeddings, while pushing the L2 distances among non-

matchable cross-view embeddings. We adopt the weighted

soft-margin ranking loss [12] to train our Siamese net for

its state-of-the-art performance in this cross-view local-

ization task. The loss function L is defined by: L =

log
{

1 + exp
[

α
(

‖fg − fs‖
2
− ‖fg − f

∗

s ‖
2

)]}

, where fg

and fs are features from matchable cross-view pair, and f
∗

s

is non-matchable to fg . α is a parameter chosen empirically.

5. Experiments

Training and testing datasets. We use the CVUSA

panorama dataset [36] to evaluate our method. CVUSA is

a standard cross-view dataset, containing 35,532 ground-

and-satellite image pairs for training, and 8,884 for test-

ing. It has been popularly used by many previous works

([12, 34, 31, 36]), thus allows for easy benchmarking. A

sample pair of a ground-level panorama and satellite im-

age from CVUSA is displayed in Figure 7. In the course

Figure 7: A sample ground-level panorama and satellite image

pair from CVUSA dataset.

of this research, in order to evaluate our network’s gener-

alization ability, we also collected and created a new (and

much larger) cross-view localization benchmark dataset –

which we call the CVACT dataset – containing 92,802 test-

ing pairs (i.e., 10× more than CVUSA) with ground-truth

geo-locations. Details about the CVACT dataset will be

given in a later subsection, Section-5.4.

Implementation details. We train our 7-layer Siamese net-

work from scratch, i.e., from randomly initialized network

weights (with zero mean and 0.02 stdv. Gaussian noise).

We use 4 × 4 convolution kernel throughout and strides at

2 with zero padding. The smaller slope for the of Leaky-

ReLU is 0.2. Momentum in batch normalization is set at

0.1, and gamma is randomly initialized with a Gaussian

noise with unit mean, and stdv=0.02. In computing the

triplet loss, we use the same α = 10 as in [12]. For the

generalized-mean pooling layer, we set p = 3 as recom-

mended by [24]. Our CNN is implemented in Tensorflow

using Adam optimizer [15] with a learning rate of 10−5 and

batch size of B = 12. We use exhaustive mini-batch strat-

egy [31] to maximize the number of triplets within each

batch. Cross-view pairs are fed to the Siamese net. For

each ground-view panorama, there are 1 positive satellite

image and B − 1 negative satellite images, resulting in to-

tal B(B − 1) triplets. For each satellite image, there are

also 1 positive ground-view panorama and B − 1 negative

ground-view panoramas, resulting in total B(B−1) triplets.

In total, we employ 2B(B − 1) triplets.

Data augmentation. To improve our network’s robustness

against errors in the global orientation estimation of a query

image, we adopt ‘data augmentation’ strategy. This is done

by circularly shifting the input ground-level panorama by a

random relative angle, resulting in a random rotation of the

ground-level image along the azimuth direction (i.e., esti-

mated ‘True North’ direction).

Evaluation metrics. The most commonly used metric for

evaluating the performance of IBL methods is the recall
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Table 1: Recall performance on CVUSA dataset [36].

Method|Recalls r@1 r@5 r@10 r@ top 1%

Baseline (RGB) 9.83 23.66 32.68 68.61

Our -I (RGB-UV) 31.71 56.61 67.57 93.19

Our -II (RGB-UV) 31.46 57.22 67.90 93.15

rates (among the found top-K candidates, where K = 1, 2,

3,...). For ease of comparison with previous methods, we

use recalls at top 1% as suggested by [12, 31, 34] – detailed

definition can be found therein. In this paper, we only dis-

play the recalls at top-1, top-5, top-10, up to top 1%.

5.1. Effect of Orientation Map

This is our very first (and also very important) set of

experiments, through which we intend to show that lend-

ing orientation information to deep network greatly im-

proves the performance of cross-view matching based geo-

localization.

Recall that we have developed two different schemes of

adding orientation information to our Siamese network. In

Scheme-1 we simply augment the input signal from a 3-

channel RGB image to having 5 channels (i.e., RGB + UV);

and in Scheme-2 we inject the UV map to each of the seven

CNN layers. Our experiments however found no major dif-

ference in the performances by these two schemes. For this

reason, in all our later experiments, we only test Scheme-1.

Scheme-1 is not only easy to use, but also can be plugged to

any type of network architectures (e.g., VGG [28], ResNet

[10], U-net [26], or DenseNet [13]) without effort. Figure 6

gives our CNN architecture based on Scheme-1.

Baseline network. We first implemented a simple 7-layer

Siamese net, and the net is trained using standard 3-channel

RGB input. This is our baseline network for comparison.

Note that all ground-view panoramas are aligned to the

north direction. The first row of Table-1 shows this base-

line performance, namely, recalls for the top-1, top-5 and

top-10 and top-1% candidates are 9.8%, 23.6%, 32.6%, and

68.6%, respectively.

Our new network. We then trained and tested our

new method with 5-channel input (for both Scheme-1 and

Scheme-2), and obtained much higher recalls throughout

the experiments. The results are shown in the 2nd and 3rd

rows of Table-1. For example, by our Scheme-1 we ob-

tained recalls for top-1, top-5, top-10, and top-1% at 31.7%,

56.6%, 67.5%, and 93.1% respectively – showing signifi-

cant improvements of more than 25 percentage all-round.

5.2. Comparisons with Other Methods

We compare our method with state-of-the-art methods,

which include Workman et al. [34], Vo et al. [31], Zhai et

al. [36] and CVM-Net [12]. The results (of recall top 1%)

1 5 10 1%

Top-K
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R
e
c
a
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Figure 8: This graph shows that, simply by exploiting orientation

information to a baseline Siamese network (via U-V maps) we

are able to boost the success rates (measured in recalls) by over

25%. Our new method also outperforms the SOTA deep cross-

view localization method of CVM-net.

Table 2: Comparison of recall @top 1% recalls by state-of-the-art

methods on CVUSA dataset [36].

Ours Workman [34] Zhai [36] Vo [31] CVM-net [12]

r@top 1% 93.19 34.30 43.20 63.70 91.54

Table 3: Comparison of recall performance with CVM-net [12]

on CVUSA dataset [36].

Method r@1 r@5 r@10 r@top 1%

Our 7-layer network 31.71 56.61 67.57 93.19

Our 16-layer VGG 27.15 54.66 67.54 93.91

CVM-net [12] 18.80 44.42 57.47 91.54

are given in Table-2.

Table-3 gives more results in terms of recalls. We ob-

serve that 1) CVM-net leverages the feature maps obtained

by VGG16 net [28] pre-trained on ImageNet [7], and uses

NetVLAD [5] for feature aggregation ; 2) Compared with

CVM-net [12], our method achieves a relative improve-

ment of +1.65% for recall@top 1% and +12.91% for

recall@top-1; 3) Our network is more compact than CVM-

net, can be quickly trained from scratch. The total number

of trainable parameters and storage cost of our net is 30-

millions and 368MB, while in the case of CVM-Net [12]

the corresponding numbers are 160-millions and 2.0GB,

respectively. Based on a single GTX1080Ti GPU the to-

tal training time for our 7-layer Siamese net took about 3

days on CVUSA dataset. The average query time is only

at 30 ms per query, about 1/3 of CVM-net. We also exper-

imented plugging our orientation map to a 16-layer VGG

net, and similar improvements are obtained.
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5.3. Detailed analyses of the proposed network

t-SNE visualization of the feature embedding. Our net-

work learns location-discriminative feature embeddings. To

visualize the embeddings, we plot those learned features in

2D using t-SNE [22]. Figure 9 shows a result for CVUSA

[36]. Clearly, spatially near-by cross-view image pairs are

embedded to close to each other.

Figure 9: t-SNE visualization of cross-view features learned by

our method. The ID on the top-left corner of each image denotes

the index of the cross-view pair [22]. (Best viewed on screen with

zoom-in)

Robustness to errors in orientation estimation. Our

method utilize North-direction aligned street-view panora-

mas and satellite images for cross-view localization. Note

that satellite images are always north-aligned and it is not

difficult to roughly align street-view panoramas to the true

north with a smart-phone or compass (e.g., a Google Nexus-

4 has an average orientation error of 3.6◦[21]). Neverthe-

less, it is important to know the impact of errors in the es-

timated ‘North’. We add different levels of noise between

0 to 20◦. At each error level, we generate a random angle,

and rotate the ground-level panorama by this random angle.

For an equirectangular rectified panorama, this is done by

a simple circular crop-and-paste. Figure 10 gives the recall

performance at top 1% and recall@K accuracy with differ-

ent errors. As can be seen, both the recall at top 1% and

recall@K decrease gracefully with the increase of error lev-

els.

5.4. ACT cityscale crossview dataset

To validate the generalization ability of our method on

larger-scale geographical localization instances, we collect

and create a new city-scale and fully gps-tagged cross-

view dataset (named the ‘CVACT dataset’) densely cover-

ing Canberra. GPS footprints of the dataset are displayed
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Figure 10: Comparison of recalls with respect to errors in the

‘true north’ estimation on CVUSA. Our method degrades grace-

fully as the error increases.

in Figure 1 (c). Street-view panoramas are collected from

Google Street View API [3] covering a geographic area of

300 square miles at zoom level 2. The image resolution of

panoramas is 1664 × 832. Satellite images are collected

from Google Map API [2]. For each panorama, we down-

load the matchable satellite image at the GPS position of

the panorama at the best zoom level 20. The image resolu-

tion of satellite images is 1200 × 1200 after removing the

Google watermark. The ground resolution for satellite im-

ages is 0.12 meters per pixel. A comparison between our

CVACT dataset and CVUSA is given in Table-4. Figure 1

(b,d) gives a sample cross-view image pair of our dataset.

Table 4: Comparison of CVUSA and CVACT datasets

Ground-view

FoV/image res.
GPS-tag

Satellite

resolution
#training #testing

CVACT 360/1664x832 Yes 1200x1200 35,532 92,802

CVUSA 360/1232x224 No 750x750 35,532 8,884

Since our dataset is equipped with accurate GPS-tags,

we are able to evaluate metric location accuracy. We tested

92, 802 cross-view image pairs – viz. 10× bigger than

CVUSA dataset [36]. We make sure that image pairs in the

training set and the testing set are non-overlapping. We use

the metric in [5] to measure the localization performance.

Specifically, the query image is deemed localized if at least

one of the top N retrieved database satellite images is within

5 meters from the ground-truth location. A recall@K curve

is given in Figure 12. We can see that our method outper-

forms [12], with an improvement of 15.84% at top-1. This

result also reveals the difficulty of our new dataset, namely

only 19.90% query images get to be localized within an ac-

curacy of ≤ 5m-level; We hope this will motivate other re-

searchers to tackle this challenge task and use our CVACT

dataset. Some example localization results by our method
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(a) Query (b) Top 1 (c) Top 2 (d) Top 3 (e) Top 4 (f) Top 5

Figure 11: Example localization results on CVACT dataset by our method. From left to right: query image and the Top 1-5 retrieved

images. Green borders indicate correct retrieved results. Since our dataset densely covers a city-scale environment, a query image may

have multiple correct matches (e.g., the 3
rd row). (Best viewed in color on screen)

are shown in Figure 11.
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Figure 12: Localization performance of our method versus

CVM-net on our new CVACT dataset.

6. Conclusion

Image-based geo-localization is essentially a geometry

problem, where the ultimate goal is to recover 6-DoF cam-

era pose (i.e., both location and orientation). As such, ap-

plying geometric cues (e.g., orientation) to localization is

both natural and desirable. However, most previous image-

based localization methods have either overlooked such im-

portant cues, or have no effective way to incorporate such

geometry information. Instead, they treat the problem as a

pure content-based image retrieval task, and focus on find-

ing visual similarity in terms of appearance and semantic

contents of the images.

In this work, we have successfully demonstrated that,

by adding a simple orientation map we are able to teach a

Siamese localization network the (geometric) notion of ori-

entation. This results in significant improvement in local-

ization performance (e.g., our top 1% recall rate is boosted

by over 25% compared with without using orientations).

Our method for adding orientation map to a neural network

is simple, and transparent; the same idea may be applied to

other types of deep networks or for different applications

as well. It is our position that, in solving geometry-related

vision problems, whenever geometry clues (or insights) are

available, one should always consider how to exploit them,

rather than training a CNN end-to-end as a blind black-box.

We hope our idea can inspire other researchers working on

related problems. Our second contribution of this paper is a

large-scale, fully-annotated and geo-referenced cross-view

image localization dataset – the CVACT dataset. We hope

it is a valuable addition to the localization benchmark and

literature.
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