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Abstract

Temporal action proposal generation is an important

task, aiming to localize the video segments containing hu-

man actions in an untrimmed video. In this paper, we pro-

pose a multi-granularity generator (MGG) to perform the

temporal action proposal from different granularity per-

spectives, relying on the video visual features equipped with

the position embedding information. First, we propose to

use a bilinear matching model to exploit the rich local infor-

mation within the video sequence. Afterwards, two compo-

nents, namely segment proposal producer (SPP) and frame

actionness producer (FAP), are combined to perform the

task of temporal action proposal at two distinct granular-

ities. SPP considers the whole video in the form of feature

pyramid and generates segment proposals from one coarse

perspective, while FAP carries out a finer actionness eval-

uation for each video frame. Our proposed MGG can be

trained in an end-to-end fashion. By temporally adjust-

ing the segment proposals with fine-grained frame action-

ness information, MGG achieves the superior performance

over state-of-the-art methods on the public THUMOS-14

and ActivityNet-1.3 datasets. Moreover, we employ existing

action classifiers to perform the classification of the propos-

als generated by MGG, leading to significant improvements

compared against the competing methods for the video de-

tection task.

1. Introduction

Temporal action proposal [10, 14] aims at capturing

video temporal intervals that are likely to contain an ac-

tion in an untrimmed video. This task plays an important

role in video analysis and can thus be applied in many

areas, such as action recognition [3, 19–21], summariza-

tion [45,47], grounding [6,7] and captioning [39,40]. Many

methods [13,43] have been proposed to handle this task, and

have shown that, akin to object proposals for object detec-
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Figure 1: Our proposed MGG can generate segment propos-

als and frame actionness simultaneously, which helps dis-

cover information about possible actions at both the coarse

and fine levels. By temporally adjusting the boundaries of

the segment within the search space determined by the com-

puted frame actionness, MGG can yield refined action pro-

posals with both high recall and precision.

tion [30], temporal action proposal has a crucial impact on

the quality of action detection.

High-quality action proposal methods should capture

temporal action instances with both high recall and high

temporal overlapping with ground-truths, meanwhile pro-

ducing proposals without many false alarms. One type of

existing methods focuses on generating segment propos-

als [14, 35], where the initial segments are regularly dis-

tributed or manually defined over the video sequence. A bi-

nary classier is thereafter trained to evaluate the confidence

scores of the segments. Such methods are able to gener-

ate proposals of various temporal spans. However, since

the segments are regularly distributed or manually defined,

the generated proposals naturally have imprecise boundary

information, even though boundary regressors are further

applied. Another thread of work, like [33, 43, 50], tackles

the action proposal task in the form of evaluating frame ac-

tionness. These methods densely evaluate the confidence

score for each frame and group consecutive frames together

as candidate proposals. The whole video sequence is ana-

lyzed at a finer level, in contrast with the segment proposal

based methods. As a result, the boundaries of the generated
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proposals are of high precision. However, such methods of-

ten produce low confidence scores for long video segments,

resulting in misses of true action segments and thus low re-

calls.

Obviously, these two types of methods are complemen-

tary to each other. Boundary sensitive network (BSN) [26]

adopts a “local to global” scheme for action proposal, which

locally detects the boudary information and globally ranks

the candidate proposals. Complementary temporal action

proposal (CTAP) [13] consists of three stages, which are

initial proposal generation, complementary proposal collec-

tion, and boundary adjustment and proposal ranking, re-

spectively. However, both of these two methods are multi-

stage models with the modules in different stages trained

independently, without overall optimization of the models.

Another drawback is the neglect of the temporal position

information, which conveys the temporal ordering informa-

tion of the video sequence and is thereby expected to be

helpful for precisely localizing the proposal boundary.

In order to address the aforementioned drawbacks, we

propose a multi-granularity generator (MGG) by taking full

advantage of both segment proposal and frame actionness

based methods. At the beginning, the frame position em-

bedding, realized with cosine and sine functions of differ-

ent wavelengths, is combined with the video frame features.

The combined features are then fed to MGG to perform the

temporal action proposal. Specifically, a bilinear matching

model is first proposed to exploit the rich local informa-

tion of the video sequence. Afterwards, two components,

namely segment proposal producer (SPP) and frame action-

ness producer (FAP), are coupling together and responsible

for generating coarse segment proposals and evaluating fine

frame actionness, respectively. SPP uses a U-shape archi-

tecture with lateral connections to generate candidate pro-

posals of different temporal spans with high recall. For FAP,

we densely evaluate the probabilities of each frame being

the starting point, ending point, and inside a correct pro-

posal (middle point). During the inference, MGG can fur-

ther temporally adjust the segment boundaries with respect

to the frame actionness information as shown in Fig. 1, and

consequently produce refined action proposals.

In summary, the main contributions of our work are four-

fold:

• We propose an end-to-end multi-granularity generator

(MGG) for temporal action proposal, using a novel

representation integrating video features and the po-

sition embedding information. MGG simultaneously

generates coarse segment proposals by perceiving the

whole video sequence, and predicts the frame action-

ness by densely evaluating each video frame.

• A bilinear matching model is proposed to exploit

the rich local information within the video sequence,

which is thereafter harnessed by the following SPP and

FAP.

• SPP is realized in a U-shape architecture with lateral

connections, capturing temporal proposals of various

spans with high recall, while FAP evaluates the prob-

abilities of each frame being the stating point, ending

point, and middle point.

• Through temporally adjusting the segment proposal

boundaries using the complementary information in

the frame actionness, our proposed MGG achieves the

state-of-the-art performances on the THUMOS-14 and

ActivityNet-1.3 datasets for the temporal action pro-

posal task.

2. Related Work

A large number of existing approaches have been pro-

posed to tackle the problem of temporal action detection

[24, 31, 34, 48, 49, 51]. Inspired by the success of two-stage

detectors like RCNN [17], many recent methods adopt a

proposal-plus-classification framework [5, 9, 33, 44], where

classifiers are applied on a smaller number of class agnos-

tic segment proposals for detection. The proposal stage and

classification stage can be trained separately [33, 35, 51] or

jointly [5, 44], and demonstrate very competitive results.

Regarding temporal action proposal, DAP [10] and SST

[1] introduce RNNs to process video sequences in a sin-

gle pass. However, LSTM [18] and GRU [8] fail to han-

dle video segments with long time spans. Alternatively,

[9,35,41] directly generate proposals from sliding windows.

R-C3D [44] and TAL-Net [5] follow the Faster R-CNN [30]

paradigm to predict locations of temporal proposals and

the corresponding categories. These methods perceive the

whole videos in a coarser level, while the pre-defined tem-

poral intervals may limit the accuracy of generated propos-

als. Methods like temporal action grouping (TAG) [43] and

CDC [33] produce final proposals by densely giving evalu-

ation to each frame. Analyzing videos in a finer level, the

generated proposals are quite accurate in boundaries. In our

work, MGG tackles the problem of temporal action pro-

posal in both coarse and fine perspectives, being better at

both recall and overlapping.

3. Our Approach

Given an untrimmed video sequence s = {sn}
ls
n=1 with

its length as ls, temporal action proposal aims at detecting

action instances ϕp = {ξn = [ts,n, te,n]}
Ms

n=1, where Ms

is the total number of action instances, and [ts,n, te,n] de-

note the starting and ending points of an action instance ξn,

respectively.

We propose one novel neural network, namely MGG

shown in Fig. 2, which analyzes the video and performs
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Figure 2: The architecture of our proposed MGG. The video

visual features are first combined with the position embed-

ding information to form the video representations. The

proposed BaseNet relies on a blinear model to exploit the

rich local information within the sequential video represen-

tations. Segment proposal producer (SPP) is realized by us-

ing a U-shape architecture with lateral connections to gen-

erate proposals of different temporal lengths, while frame

actionness producer (FAP) evaluates each frame whether it

is the starting point, ending point, or middle point. With the

temporal boundary adjustment (TBA) module, boundaries

of the segment proposals are temporally adjusted based on

computed frame actionness, and the refined accurate action

proposals are therefore generated.

temporal action proposal at different granularities. Specifi-

cally, our proposed MGG consists of four components. The

video visual features are first combined with the position

embedding information to yield the video representations.

The subsequent BaseNet relies on a blinear model to ex-

ploit the rich local information within the sequential video

representations. Afterwards, SPP and FAP are used to pro-

duce the action proposals from the coarse (segment) and

fine (frame) perspectives, respectively. Finally, the tem-

poral boundary adjustment (TBA) module adjusts the seg-

ment proposal boundaries regarding the frame actionness

and therefore generates action proposals of both high recall

and precision.

3.1. Video Representation

First, we need to encode the video sequence and gener-

ate the corresponding representations. Same as the previous

work [13, 26], one convolutional neural network (CNN) is

used to convert one video sequence s = {sn}
ls
n=1 into one

visual feature sequence f = {fn}
ls
n=1 with fn ∈ Rdf . df

is the dimension of each feature representation. However,

the temporal ordering information of the video sequence is

not considered. Inspired by [15,38], we embed the position

information to explicitly characterize the ordering informa-

tion of each visual feature, which is believed to benefit the

action proposal generation. The position information of the

n-th (n ∈ [1, ls]) visual feature fn is embedded into a fea-

ture pn with a dimension dp by computing cosine and sine

functions of different wavelengths:

pn(2i) = sin(n/100002i/dp),

pn(2i+ 1) = cos(n/100002i/dp),
(1)

where i is the index of the dimension. The generated

position embedding pn will be equipped with the visual

feature representation fn via concatenation, denoted by

ln = [fn, pn]. As such, the final video representations

L = {ln}
ls
n=1 ∈ Rls×dl are obtained, where dl = df + dp

denotes the dimension of the fused representations.

3.2. BaseNet

Based on the video representations, we propose a novel

BaseNet to exploit the rich local behaviors within the video

sequence. As shown in Fig. 2, two temporal convolutional

layers are first stacked to exploit video temporal relation-

ships. A typical temporal convolutional layer is denoted as

Conv(nf , nk,Ω), where nf , nk, and Ω are filter numbers,

kernel size, and activation function, respectively. In our pro-

posed BaseNet, the two convolutional layers are of the same

architecture, specifically Conv(dh, k,ReLU), where dh is

set to 512, k is set to 5, and ReLU refers to the activation of

rectified linear units [29]. The outputs of these two tempo-

ral convolutional layers are denoted as H1 and H2, respec-

tively.

The intermediate representations H1 and H2 express the

semantic information of the video sequence at different lev-

els, which are rich in characterizing the local information.

We propose a bilinear matching model [28] to capture the

interaction behaviors between H1 and H2. Due to a large

number of parameters contained in a traditional bilinear

matching model, which result in an increased computational

complexity and a higher convergence difficulty, we turn to

pursue a factorized bilinear matching model [11, 23]:

Ĥn
1 =Hn

1Wi + bi,

Ĥn
2 =Hn

2Wi + bi,

Tn
i =Ĥn

1 Ĥ
n⊤
2 ,

(2)

where Hn
1 ∈ R1×dh and Hn

2 ∈ R1×dh denote the cor-

responding representations at the n-th location of H1 and

H2, respectively. Wi ∈ Rdh×g and bi ∈ R1×g are the

parameters to be learned, with g denoting a hyperparam-

eter and being much smaller than dh. Due to the smaller

value of g, fewer parameters are introduced, which are eas-

ier for training. As such, the matching video representations

T = [T 1, .., T ls ], with Tn = [Tn
1 , T

n
2 , .., T

n
dh
] denoting the

n-th feature, is obtained and used as the input to the follow-

ing SPP and FAP for proposal generation.

3.3. Segment Proposal Producer

Due to large variations of action duration, capturing pro-

posals of different temporal lengths with high recall is a big
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Figure 3: (a) Overview of SPP with pyramid levels M = 3.

With a U-shape architecture and lateral connections, the

generated feature pyramid FH is helpful for capturing pro-

posals with different temporal durations. (b) The anchor

predict module has two branches which are used for classi-

fication and boundary regression, respectively.

challenge. Xu et al. [44] used one feature map to locate

proposals of various temporal spans, yielding low average

recall. SSAD [24] and TAL-Net [5] use a feature pyramid

network, with each layer being responsible for proposal lo-

calization with specific time spans. However, each pyramid

layer, especially the lower ones being unaware of high-level

semantic information, is unable to localize temporal propos-

als accurately. To deal with this issue, we adopt a U-shape

architecture with lateral connections between the convolu-

tional and deconvolutional layers, as shown in Fig. 3.

With yielded matching video representations T as input,

SPP first stacks three layers, specifically one temporal con-

volutional layer and two max-pooling layers, to reduce the

temporal dimension and hence increase the size of the re-

ceptive field accordingly. As a result, the temporal feature

Tc with temporal dimension ls/8 is taken as the input of the

U-shape architecture.

Same as the previous work, such as Unet [32], FPN [27],

and DSSD [12], our U-shape architecture also consists of a

contracting path and an expansive path as well as the lateral

connections. Regarding the contracting path, with repeated

temporal convolutions with stride 2 for downsampling, the

feature pyramid (FP) FL = {f
(0)
L , f

(1)
L , ...f

(M−1)
L } is ob-

tained, where f
(n)
L is the n-th level feature map of FL with

temporal dimension ls
8∗2n . M denotes the total number of

pyramid levels. For the expansive path, temporal decon-

volutions are adopted on multiple layers with an upscal-

ing factor of 2. Via lateral connections, high-level features

from the expansive path are combined with the correspond-

ing low-level features, with the fused features denoted as

f
(n)
H . Repeating this operation, the fused feature pyramid is

defined as FH = {f
(0)
H , f

(1)
H , ...f

(M−1)
H }. Different levels

of feature pyramids are of different receptive fields, which

are responsible for locating proposals of different temporal

spans.

A set of anchors are regularly distributed over each level

of feature pyramid FH , based on which segment proposals

are produced. As shown in Fig. 3, each fH is followed by

two branches, with each branch realized by stacking two

layers of temporal convolutions. Specifically, one branch

is the classification module to predict the probability of a

ground-truth proposal being present at each temporal loca-

tion for each of the ρ anchors, where ρ is the number of an-

chors per location of the feature pyramid. The other branch

is the boundary regression module to yield the relative off-

set between the anchor and the ground-truth proposal.

3.4. Frame Actionness Producer

Based on the yielded matching video representations T ,

the frame actionness producer (FAP) is proposed to evaluate

the actionness of each frame. Specifically, three two-layer

temporal convolutional networks are used to generate the

starting point, ending point, and middle point probabilities

for each frame, respectively. Please note that two-layer tem-

poral convolutional networks share the same configuration,

where the first one is defined as Conv(df , k,ReLU) and the

second one is Conv(1, k, Sigmoid). df is set to 64, while

k, as the kernel size, is set to 3. And their weights are not

shared. As a result, we obtain three probability sequences,

namely the starting probability sequence Ps = {psn}
ls
n=1,

the ending probability sequence Pe = {pen}
ls
n=1, and the

middle probability sequence Pm = {pmn }
ls
n=1, with psn, pen,

and pmn denoting the starting, ending, and middle probabil-

ities of the n-th feature, respectively. Compared with the

generated segment proposals by SPP, the frame actionness

yielded by FAP densely evaluates each frame in a finer man-

ner.

4. Training and Inference

In this section, we will first introduce how to train our

proposed MGG network, which can subsequently generate

segment proposals and frame actionness. During the infer-

ence, we propose one novel fusion strategy by temporally

adjusting the segment boundary information with respect to

the frame actionness.

4.1. Training

As introduced in Sec. 3, our proposed MGG considers

both the SPP and FAP together with a shared BaseNet. Dur-

ing the training process, these three components cooperate

with each other and are jointly trained in an end-to-end fash-

ion. Specifically, the objective function of our proposed
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MGG is defined as:

LMGG = LSPP + βLFAP , (3)

where LSPP and LFAP are the objective functions defined

for SPP and FAP, respectively. β is a parameter to adjust

their relative contributions, which is empirically set to 0.1.

Detailed information about LSPP and LFAP will be intro-

duced in what follows.

4.1.1 SPP Training

Our proposed SPP produces a set of anchor segments for

each level of the fused feature pyramids FH . We first in-

troduce how to assign labels to the corresponding anchor

segments. Subsequently, the objective function by referring

to the assigned labels is introduced.

Label Assignment. Same as Faster RCNN [30], we as-

sign a binary class label to each anchor segment. A positive

label is assigned if it overlaps with some ground-truth pro-

posals with temporal Intersection-over-Union (tIoU) higher

than 0.7, or has the highest tIoU with a ground-truth pro-

posal. Anchors are regarded as negative if the maximum

tIoU with all ground-truth proposals is lower than 0.3. An-

chors that are neither positive nor negative are filtered out.

To ease the issue of class imbalance, we sample the positive

and negative examples with a ratio of 1:1 for training.

Objective Function. As shown in Fig. 3 (b), we per-

form a multi-task training for SPP, which not only predicts

the actionness of each anchor segment but also regresses its

boundary information. For actionness prediction, the cross-

entropy function is used, while the smooth L1 loss func-

tion, as introduced in [16], is used for boundary regression.

Specifically, the objective function is defined as:

LSPP =
1

Ncls

∑

i

Lcls(pi, p
∗

i )+

γ
1

Nreg

∑

i

[p∗i > 1]Lreg(Wi,W
∗

i ),

(4)

where γ is a trade-off parameter, which is set to 0.001
empirically. Ncls is the total number of training exam-

ples. pi stands for the yielded score. p∗i is the label, 1 for

positive samples and 0 for negative samples. Lcls is the

cross-entropy loss function between pi and p∗i . The smooth

L1 loss function Lreg is activated only when the ground-

truth label p∗i is positive, and disabled otherwise. Nreg

is the number of training examples whose p∗i is positive.

Wi = {tc, tl} represents the predicted relative offsets of

anchor segments. W ∗

i = {t∗c , t
∗

l } indicates the relative off-

sets between ground-truth proposals and the anchors, which

can be computed:

{

t∗c = (c∗i − ci)/li,
t∗l = log(l∗i /l

i),
(5)

where ci and li indicate the center and length of anchor

segments, respectively. c∗i and l∗i represent the center and

length of the ground-truth action instances.

4.1.2 FAP Training

FAP takes the matching video representations with their

length as ls as input and outputs three probability se-

quences, namely the starting probability sequence Ps =

{psn}
ls
n=1, the ending probability sequence Pe = {pen}

ls
n=1,

and the middle probability sequence Pm = {pmn }
ls
n=1.

Label Assignment. The ground-truth annotations

of temporal action proposals are denoted as π =
{ψn = [ts,n, te,n]}

Ma

n=1, whereMa is the total number of an-

notations. For each action instance ψn ∈ π, we define the

starting, ending, and middle regions as [ts,n−dd,n/η, ts,n+
dd,n/η], [te,n − dd,n/η, te,n + dd,n/η], and [ts,n, te,n], re-

spectively, where dd,n = te,n − ts,n is the duration of the

annotated action instance and η is set to 10 empirically.

For each visual feature, if it lies in the starting, ending,

or middle regions of any action instances, its correspond-

ing starting, ending, or middle label will be set to 1, oth-

erwise 0. In this way, we obtain the ground-truth label for

the three sequences, which are denoted as Gs = {gsn}
ls
n=1,

Ge = {gen}
ls
n=1, and Gm = {gmn }

ls
n=1, respectively.

Objective Function. Given the predicted probability se-

quences and ground-truth labels, the objective function for

FAP is defined as:

Lall
FAP = λsL

s
FAP + λeL

e
FAP + λmL

m
FAP . (6)

The cross-entropy loss function is used for calculating all

the three losses Ls
FAP , Le

FAP , and Lm
FAP , where a weight-

ing factor set by an inverse class frequency is introduced

to address class imbalance. Lall
FAP is the sum of the start-

ing loss Ls
FAP , ending loss Le

FAP , and middle loss Lm
FAP ,

where λs, λe, and λm are the weights specifying the rel-

ative importance of each part. In our experiments, we set

λs = λe = λm = 1.

4.2. Inference

As aforementioned, SPP aims to locate segment propos-

als of various temporal spans, thus yielding segment pro-

posals with inaccurate boundary information. On the con-

trary, FAP gives an evaluation of each video frame in a finer

level, which makes it sensitive to boundaries of action pro-

posals. Obviously, SPP and FAP are complementary to each

other. Therefore, during the inference phase, we propose

the temporal boundary adjustment (TBA) module realized

in a two-stage fusion strategy to improve the boundary ac-

curacy of segment proposals with respect to the frame ac-

tionness.

Stage I. We first use non-maximum suppression (NMS)

to post-process the segment-level action instances detected

3608



by SPP. The generated results are denoted as ϕp = {ξn =

[ts,n, te,n]}
Ms

n=1, where Ms is the total number of the de-

tected action instances, and ts,n and te,n denote the corre-

sponding starting and ending times of an action instance ξn,

respectively. We will adjust ts,n and te,n by referring to

the starting and ending scores detected in FAP. Firstly, we

set two context regions ξsn and ξen, which are named as the

searching space:

ξsn = [ts,n − dd,n/ε, ts,n + dd,n/ε],

ξen = [te,n − dd,n/ε, te,n + dd,n/ε],
(7)

where dd,n = te,n − ts,n is the duration of ξn. ε which

controls the size of the searching space is set to 5 . The max

starting score and the corresponding time in the region of

ξsn are defined as csn and tmax
s,n , respectively , and the max

ending score and the corresponding time in the region of

ξen are defined as cen and tmax
e,n , respectively. If csn or cen is

higher than a threshold σ ∈ [0, 1], which is set manually for

each specific dataset, we adjust the starting or ending point

of ξn with a weighting factor δ to control the contribution of

tmax
s,n and tmax

e,n and yield the refined action instance ξ⋆n. As

such, the new segment-level action instance set is refined to

be ϕ⋆
p = {ξ⋆n}

Ms

n=1.

Stage II. The middle probability sequence illustrates

the probability of each frame whether it is inside one ac-

tion proposal or not. We use the grouping scheme simi-

lar to TAG [43] to group the consecutive frames with high

middle probability into regions as the candidate action in-

stances. Such generated action instances are denoted by

ϕtag = {φn}
Mt

n=1 with Mt indicating the total number of

grouped action instances. We propose to make a further po-

sition adjustment by considering both ϕtag and ϕ⋆
p. Specif-

ically, for each action instance ξ⋆n in ϕ⋆
p, its tIoU with all

the action instances in ϕtag are computed. If the maximum

tIoU is higher than 0.8, the boundaries of ξ⋆n will be re-

placed by the corresponding action instance φn in ϕtag . Via

such an operation, the substituted proposals are sensitive to

boundaries and the overall boundary accuracy is improved

accordingly.

5. Experiments

5.1. Datasets

THUMOS-14 [22]. It includes 1,010 videos and 1,574

videos with 20 action classes in the validation and test sets,

respectively. There are 200 and 212 videos with temporal

annotations of actions labeled in the validation and testing

sets, respectively. We conduct the experiments on the same

public split as [13, 43].

ActivityNet-1.3 [2]. The whole dataset consists of

19,994 videos with 200 classes annotated, with 50% for

training, 25% for validation, and the rest 25% for testing.

Table 1: Performance comparisons with DAPs [10], SCNN-

prop [35], SST [1], TURN [14], BSN [26], TAG [43], and

CTAP [13] on THUMOS-14 in terms of AR@AN.

Feature Method @50 @100 @200 @500 @1000

Flow TURN 21.86 31.89 43.02 57.63 64.17

2-Stream TAG 18.55 29.00 39.61 - -

2-stream CTAP 32.49 42.61 51.97 - -

2-Stream BSN+NMS 35.41 43.55 52.23 61.35 65.10

2-Stream MGG 39.93 47.75 54.65 61.36 64.06

C3D DAPs 13.56 23.83 33.96 49.29 57.64

C3D SCNN-prop 17.22 26.17 37.01 51.57 58.20

C3D SST 19.90 28.36 37.90 51.58 60.27

C3D TURN 19.63 27.96 38.34 53.52 60.75

C3D BSN+NMS 27.19 35.38 43.61 53.77 59.50

C3D MGG 29.11 36.31 44.32 54.95 60.98

We train our model on the training set and perform evalua-

tions on the validation and testing sets, respectively.

5.2. Temporal Proposal Generation

In this section, we compare our proposed MGG against

the existing state-of-the-art methods on both THUMOS-14

and ActivityNet-1.3 datasets.

For temporal action proposal, Average Recall (AR) com-

puted with different tIoUs is usually adopted for perfor-

mance evaluation. Following traditional practice, tIoU

thresholds set from 0.5 to 0.95 with a step size of 0.05 are

used on ActivityNet-1.3, while tIoU thresholds set from 0.5

to 1.0 with a step size of 0.05 are used on THUMOS-14. We

also measure AR with different Average Numbers (ANs)

of proposals, denoted as AR@AN. Moreover, the area un-

der the AR-AN curve (AUC) is also used as one metric on

ActivityNet-1.3, where AN ranges from 0 to 100.

Table 1 illustrates the performance comparisons on the

testing set of THUMOS-14. Different feature representa-

tions will significantly affect the performances. As such,

we adopt the two-stream [36] and C3D [37] features for fair

comparisons. Taking the two-stream features as input, the

AR@AN performances are consistently improved for AN

ranging from 50 to 500, while BSN+NMS achieves a bet-

ter performance with AN equal to 1000. While the C3D

features are adopted, the AR@AN of MGG is higher than

those of the other methods, with AN ranging from 50 to

1000. Such experiments clearly indicate the effectiveness

of MGG in temporal proposal generation.

Furthermore, Fig. 4 illustrates the AR-AN and

recall@100-tIoU curves of different models on the testing

split of THUMOS-14. It can be observed that our proposed

MGG outperforms the other methods in terms of AR-AN

curves. Specifically, when AN equals 40, MGG signifi-

cantly improves the performance from 33.02% to 37.01%.

For recall@100-tIoU, MGG gains a significantly higher re-

call when tIoU ranges from 0.5 to 1, indicating high accu-

racy of our proposal results.
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Figure 4: AR-AN and recall@AN=100 curves of differ-

ent temporal action proposal methods on the testing set of

THUMOS-14.

Table 2: Performance comparisons with TCN [9],

MSRA [46], Prop-SSAD [25], CTAP [13], and BSN [26]

on the validation and testing splits of ActivityNet-1.3.

Method TCN MSRA Prop-SSAD CTAP BSN MGG

AUC (val) 59.58 63.12 64.40 65.72 66.17 66.43

AUC (test) 61.56 64.18 64.80 - 66.26 66.47

AR@100 - - 73.01 73.17 74.16 74.54

Table 2 illustrates the performance comparisons on the

ActivityNet-1.3 dataset, where a two-stream Inflated 3D

ConvNet (I3D) model [4] is used to extract features. Specif-

ically, we compare our proposed MGG with the state-

of-the-art methods, namely TCN [9], MSRA [46], Prop-

SSAD [25], CTAP [13], and BSN [26], in terms of AUC and

AR@100. It can be observed that the proposed MGG out-

performs the other methods on both the validation and test-

ing sets. Specifically, MGG improves AR@100 on the vali-

dation set from 74.16 of the state-of-the-art method BSN to

74.54.

Fig. 5 illustrates some qualitative results of the gener-

ated proposals by MGG on ActivityNet-1.3 and THUMOS-

14. Each is composed of a sequence of frames sampled

from a full video. By analyzing videos from both coarse

and fine perspectives, MGG generates the refined propos-

als, with high overlapping with ground-truth proposals.

5.3. Ablation Study

In this subsection, the effect of each component in MGG

is studied in detail. We ablate the studies on the validation

set of ActivityNet-1.3. Specifically, in order to verify the

component effectiveness of MGG: position embedding, bi-

linear matching, U-shape architecture in SPP, FAP, and SPP,

we perform the ablation studies as follows:

MGG-P: We discard the position information of the input

video sequence and directly feed the visual feature repre-

sentations into MGG.

MGG-B: We discard the bilinear matching model which

exploits the interactions between the two temporal convo-

lutions within BaseNet, and instead feed the output of the

Time(s)

17.3 17.7 18.0 55.3 56.5 56.9

Time(s)

17.3 18.1 18.3 136.9 137.4 138.1

Time(s)

504.4 504.6 505.1 510.3 510.6

Ground-Truth Segment Proposals Refined Proposals

Figure 5: Qualitative results of the proposals generated by

MGG on ActivityNet-1.3 (top and middle) and THUMOS-

14 (bottom). It can be observed that the boundary informa-

tion of the segment proposals generated by SPP is further

adjusted using FAP, resulting in more precise proposals.

Table 3: Ablation studies on the validation set of

ActivityNet-1.3 in terms of AUC and AR@AN.

Method AUC (val) @30 @50 @80 @100

MGG-P 65.59 65.21 69.93 72.88 73.92

MGG-B 65.88 65.56 70.41 73.19 73.89

MGG-U 65.02 64.85 69.41 72.95 73.71

MGG-F 64.31 63.76 67.91 71.04 72.24

MGG-S 59.91 59.53 63.05 67.18 68.96

MGG 66.43 66.21 70.97 73.87 74.54

second convolutional layer to the following SPP and FAP.

MGG-U: We discard the U-shape architecture which is pro-

posed in SPP to increase semantic information of the lower

layers. Correspondingly, only the expansive path of the fea-

ture pyramid is used.

MGG-F: We only consider SPP to generate the final pro-

posals, without considering FAP and the following TBA

module.

MGG-S: We only consider FAP to generate the final pro-

posals, without considering SPP and the following TBA

module.

As shown in Table 3, our full model MGG outperforms

all its variants, namely MGG-P, MGG-B, MGG-U, MGG-F,

and MGG-S, which verifies the effectiveness of the compo-

nents. In order to examine the detailed effectiveness of the

U-shape architecture, we compare the recall rate of gener-

ated proposals in different lengths. As shown in Table 4,

the recall rate of short proposals drops dramatically, when

the U-shape architecture is removed. The reason is that the

U-shape architecture transfers higher semantic information

to the lower layers, which can perceive global information

of the video sequence, and is thus helpful for capturing pro-

posals with short temporal extents.

3610



Table 4: Recall rates of MGG-U and MGG on generated

proposals of different temporal extents on the validation set

of ActivityNet-1.3, where AN and tIoU thresholds are set to

100 and 0.75, respectively.

Method 0-5s 5-10s 10-15s 15-20s 25-30s 35-40s 40-45s

MGG-U 0.15 0.63 0.73 0.80 0.91 0.93 0.94

MGG 0.21 0.73 0.82 0.90 0.93 0.93 0.92

Table 5: Performance comparisons of the two-stage TBA

on the validation set of ActivityNet-1.3 in both end-to-end

training and stagewise training manners.

Stagewise End-to-end

MGG-F X X X X X X

Stage I X X X X

Stage II X X

AUC(val) 64.12 65.40 66.28 64.31 65.54 66.43

AR@100 72.05 73.41 74.19 72.24 73.48 74.54

Moreover, it can be observed that MGG-F and MGG-S

both perform inferiorly to our full MGG. The main reason

is that SPP and FAP generate proposals at different granu-

larities. Our proposed TBA can exploit their complemen-

tary behaviors and fuse them together to produce proposals

with more precise boundary information. As introduced in

Sec. 4.2, TBA performs in two stages:

Stage I: The starting and ending probability sequences gen-

erated by FAP are used to adjust boundaries of segment pro-

posals from SPP.

Stage II: The middle probability sequence is grouped into

proposals with the method similar to [43] and gives a final

adjustment to boundaries of proposals from Stage I.

Table 5 illustrates the effectiveness of each stage in TBA.

It can be observed that the two stages of TBA can both

refine boundaries of segment proposals, thus consistently

improving the performances, with AUC increasing from

64.31% to 66.43%.

Training: Stagewise v.s. End-to-end. MGG is de-

signed to jointly optimize SPP and FAP in an end-to-end

fashion. It is also possible to train SPP and FAP sepa-

rately, in which they do not work together. Such a train-

ing scheme is referred to as the stagewise training. Ta-

ble 5 illustrates the performance comparisons between end-

to-end training and stagewise training. It can be observed

that models trained in an end-to-end fashion can outper-

form those learned with stagewise training under the same

settings. It clearly demonstrates the importance of jointly

optimizing SPP and FAP with BaseNet as a shared block to

provide intermediate video representations.

Table 6: Performance comparisons between MGG and the

other proposal generation methods in terms of video detec-

tion on the testing set of THUMOS-14, where mAP is re-

ported with tIoU set from 0.3 to 0.7.

Proposal Method Classifier 0.7 0.6 0.5 0.4 0.3

SST [1] SCNN-cls - - 23.0 - -

TURN [14] SCNN-cls 7.7 14.6 25.6 34.9 44.1

CTAP [13] SCNN-cls - - 26.9 - -

BSN [26] SCNN-cls 15.0 22.4 29.4 36.6 43.1

MGG SCNN-cls 15.8 23.6 29.9 37.8 44.9

SST [1] UNet 4.7 10.9 20.0 31.5 41.2

TURN [14] UNet 6.3 14.1 24.5 35.3 46.3

BSN [26] UNet 20.0 28.4 36.9 45.0 53.5

MGG UNet 21.3 29.5 37.4 46.8 53.9

5.4. Action Detection

In order to further examine the quality of generated pro-

posals by MGG, we feed the detected proposals into the

state-of-the-art action classifiers, including SCNN [35] and

UntrimmedNet [42]. For fair comparisons, the same clas-

sifiers are also used for other proposal generation methods,

including SST [1], TURN [14], CTAP, and BSN. We adopt

the conventional mean Average Precision (mAP) metric,

where Average Precision (AP) reports the performance of

each activity category. Specifically, mAP with tIoU thresh-

olds {0.3, 0.4, 0.5, 0.6, 0.7} is used on THUMOS-14.

Table 6 illustrates the performance comparisons, which

are evaluated on the testing set of THUMOS-14. With the

same classifier, MGG achieves better performance than the

other proposal generators, and outperforms the state-of-the-

art proposal methods, namely CTAP [13] and BSN [26],

thus demonstrating the effectiveness of our proposed MGG.

6. Conclusion

In this paper, we proposed a novel architecture, namely
MGG, for the temporal action proposal generation. MGG
holds two branches: one is SPP perceiving the whole
video in a coarse level and the other is FAP working in
a finer level. SPP and FAP couple together and integrate
into MGG, which can be trained in an end-to-end fashion.
By analyzing whole videos from both coarse and fine
perspectives, MGG generates proposals with high recall
and more precise boundary information. As such, MGG
achieves better performance than the other state-of-the-art
methods on the THUMOS-14 and ActivityNet-1.3 datasets.
The superior performance of video detection relying on the
generated proposals further demonstrates the effectiveness
of the proposed MGG.
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