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Abstract

Modern crowd counting methods usually employ deep

neural networks (DNN) to estimate crowd counts via densi-

ty regression. Despite their significant improvements, the

regression-based methods are incapable of providing the

detection of individuals in crowds. The detection-based

methods, on the other hand, have not been largely explored

in recent trends of crowd counting due to the needs for ex-

pensive bounding box annotations. In this work, we instead

propose a new deep detection network with only point su-

pervision required. It can simultaneously detect the size

and location of human heads and count them in crowds.

We first mine useful person size information from point-level

annotations and initialize the pseudo ground truth bounding

boxes. An online updating scheme is introduced to refine

the pseudo ground truth during training; while a locally-

constrained regression loss is designed to provide addition-

al constraints on the size of the predicted boxes in a local

neighborhood. In the end, we propose a curriculum learn-

ing strategy to train the network from images of relative-

ly accurate and easy pseudo ground truth first. Extensive

experiments are conducted in both detection and counting

tasks on several standard benchmarks, e.g. ShanghaiTech,

UCF CC 50, WiderFace, and TRANCOS datasets, and the

results show the superiority of our method over the state-of-

the-art.

1. Introduction

Counting people in crowded scenes is a crucial com-

ponent for a wide range of applications including video

surveillance, safety monitoring, and behavior modeling.

It is a highly challenging task in dense crowds due to

heavy occlusions, perspective distortions, scale variation-

s and varying density of people. Modern regression-based

methods [27, 49, 41, 25, 22, 20, 39] cast the problem as

regressing a density distribution map whose integral over

the map gives the people count within that image (see

Fig 1: Left). Owing to the advent of deep neural network-
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Figure 1: Comparison of our PSDDN with representative

regression- and detection-based crowd counting methods regard-

ing their annotation costs for input and their output information.

s (DNN) [17], remarkable progress has been achieved in

these methods. They do not require annotating the bound-

ing boxes but only the points of person heads at training.

Yet, as a consequence, they can not provide the detection of

persons at testing, neither.

The detection-based methods, which cast the problem as

detecting each individual in the crowds (see Fig 1: Right),

on the other hand, have not been largely explored in re-

cent trends due to the lack of bounding box annotation-

s. Liu et al. [22] have tried to manually annotate on par-

tial of the bounding boxes in ShanghaiTech PartB (SHB)

dataset [49] and train a fully-supervised Faster R-CNN [32].

They combine the detection result with regression result for

crowd counting. Notwithstanding their efforts and obtained

improvements, they did not report results on datasets like

SHA [49] and UCF CC 50 [13], which have crowds on av-

erage five and ten times denser than that of SHB.

Annotating the bounding boxes of persons for training

images can be a great challenge in crowd counting dataset-

s. Meanwhile, knowing the person size and locations in

a crowd at test stage is also very important; for example,

in video surveilance, it enables person recognition [37],

tracking [33], and re-identification [21]. Recently, some re-

searchers [18, 14] start to work on this issue with point su-
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pervision by employing segmentation frameworks [18] or

regressing the localization maps [14] to simultaneously lo-

calize the persons and predict the crowd counts. Because

they only use point-level annotations, they simply focus on

localizing persons in the crowds, but do not consider pre-

dicting the proper size.

To be able to predict the proper size and locations of per-

sons and meanwhile bypass the need for expensive bound-

ing box annotations, we introduce a new deep detection net-

work using only point-level annotations on person heads

(see Fig. 1: Middle). Although the real head size is not

annotated, the intuition of our work is based on the observa-

tions that i) when two persons are close enough, their head

distance indeed reflects their head size (similar to [49]); ii)

due to the perspective distortion, person heads in the same

horizontal line usually have similar size and gradually be-

come smaller in the remote (top) area of the image. Both ob-

servations are common in crowd counting scenarios. They

inspire us to mine useful person size information from head

distances, and generalize a reliable point-supervised person

detector with the help of head point annotations and size

correlations in local areas.

To summarize, our work tries to tackle a very challeng-

ing yet meaningful task which is never handled by before;

we propose a point-supervised deep detection network (PS-

DDN) for crowd counting which takes in cheap point-level

annotations on person heads at training stage and produces

out elaborate bounding box information on person heads at

test stage. The contribution is three-fold:

• We propose a novel online pseudo ground truth updat-

ing scheme which initializes the pseudo ground truth

bounding boxes from point-level annotations (Fig. 1:

Middle top) and iteratively updates them during train-

ing (Fig. 1: Middle bottom). The initialization is based

on the nearest neighbor head distances.

• We introduce a novel locally-constrained regression

loss in the point-supervised setting which encourages

the predicted boxes in a local band area to have the

similar size. The loss function is inspired from the

perspective distortion impact on the person size in an

image [39, 6, 47];

• We propose a curriculum learning strategy [3] to feed

the network with training images of relatively accurate

and easy pseudo ground truth first. The image difficul-

ty is defined over the distribution of the nearest neigh-

bor head distances within each image.

In extensive experiments, we show that (1) PSDDN per-

forms close to those regression-based methods in crowd

counting task on ShanghaiTech and UCF CC 50 datasets;

outperforms the state-of-the-arts by integrating with them.

(2) In the mean time it produces very competitive result-

s in person detection task on ShanghaiTech, UCF CC 50,

and WiderFace [46] datasets. (3) We also evaluate PSDDN

on the vehicle counting dataset TRANCOS [10] to show its

generalizability in other detection and counting tasks.

2. Related works

We present a survey of related works in three aspects:

(1) detection-based crowd counting; (2) regression-based

crowd counting; and (3) point-supervision.

2.1. Detectionbased crowd counting

Traditional detection-based methods often employ mo-

tion and appearance cues in video surveillance to detec-

t each individual in a crowd [43, 5, 29]. They are suf-

fered from heavy occlusions among people. Recent meth-

ods in the deep fashion learn person detectors relying on

exhaustive bounding box annotations in the training im-

ages [42, 22]. For instance, [22] have manually annotated

the bounding boxes on partial of SHB and trained a Faster

R-CNN [32] for crowd counting. The annotation cost can

be very expensive and sometimes impractical in very dense

crowds. Our work instead uses only the point-level annota-

tions to learn the detection model.

There are some other works particularly focusing on s-

mall object detection, e.g. faces [12, 26, 1]. [12] proposed

a face detection method based on the proposal network [32]

while [26] proposed to detect and localize faces in a sin-

gle stage detector like SSD [23]. The face crowds tackled

in these works are however way less denser than those in

crowd counting works; moreover, these works are typically

trained with bounding box annotations.

2.2. Regressionbased crowd counting

Earlier regression-based methods regress a scalar value

(people count) of a crowd [6, 7, 13]. Recent methods in-

stead regress a density map of a crowd; crowd count is

obtained by integrating over the density map. Due to the

use of strong DNN features, remarkable progress has been

achieved in recent methods [49, 35, 41, 25, 22, 24, 31, 14,

39]. More specifically, [41] designed a contextual pyramid

DNN system. It consists of both a local and global con-

text estimator to perform patch-based density estimation.

[24] leveraged additional unlabeled data from Google Im-

ages to learn a multi-task framework combining both count-

ing information in the labeled data and ranking information

in the unlabeled data. [31] proposed an iterative crowd

counting network which first produces the low-resolution

density map and then uses it to further generate the high-

resolution density map. Despite the significant improve-

ments achieved in these regression-based methods, they are

usually not capable of predicting the exact person location

and size in the crowds.

[22, 18, 14] are three most similar works to ours. [22]

designed a so-called DecideNet to estimate the crowd den-

sity by generating detection- and regression-based density
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maps separately; the final crowd count is obtained with the

guidance of an attention module. [14] introduced a new

composition loss to regress both the density and localiza-

tion maps together, such that each head center can be di-

rectly inferred from the localization map. [18] employed

the hourglass segmentation network [34] to segment the ob-

ject blobs in each image for crowd counting; instead of

using per-pixel segmentation labels, they use only point-

level annotations [2]. Our work is similar to [22] in the

sense we both train a detection network for crowd counting;

while [22] trained a fully-supervised detector using bound-

ing box annotations, we train a weakly-supervised detector

using only point-level annotations. Our work is also similar

to [14, 18] where we all use point-level annotations; unlike

our method, [14, 18] simply focus on person localization

whereas we aim to predict both the localization and proper

size of the person. Apart from all above, we also notice that

we firstly evaluate the detection results on the dense crowd

counting datasets i.e. ShanghaiTech and UCF CC 50.

2.3. Point supervision

Point supervision scheme has been widely used in hu-

man pose estimation to annotate key-points of human body

parts [16, 30, 36]; while in object detection or segmenta-

tion, it has often been employed to reduce the annotation

time [4, 44, 45, 2, 28]. For example, Bearman et al. [2]

conducted semantic segmentation by asking the annotators

to click anywhere on a target object while Papadopoulos et

al. [28] asked the annotators to click on the four physical

points on the object for efficient object annotations. The

points can be collected either once offline [2] or in an on-

line interactive manner [4, 44, 45]. We collect the points

once and only use them at training time.

3. Method

3.1. Overview

Our model is based on the widely used anchor based de-

tection framework, such as RPN [32] and SSD [23]. The

network architecture is shown in Fig. 2 where we adopt our

backbone from ResNet-101 with four ResNet blocks (Res

B1- B4) [11]. Likewise in [12], the outputs from Res B3

and Res B4 are taken to connect with two detection layers

with different scales of anchors, respectively. The detection

layer is a 1 x 1 convolutional layer that has the output of

N×N×T×(1+4), where N is the output length of feature

maps and T is the anchor set size (25 in our work). The as-

pect ratios of the predefined anchors are adapted from [32]

by referring to the centroid clustering of the nearest neigh-

bor distance between person heads. For each anchor, we

predict 4 offsets relative to its coordinates and 1 score for

classification. Prediction Pred2 is up-sampled to the same

resolution with Pred1 and added together to produce the fi-

nal map Final Pred. The multi-task loss of bounding box

classification and regression is applied in the end.

We extend the framework to point-supervised crowd

counting with modules marked in bold in Fig .2: a novel on-

line ground truth (GT) updating scheme is firstly presented

which incorporates initializing pseudo GT bounding box-

es from point-level annotations and updating them during

training. Afterwards, a locally-constrained regression loss

is specifically proposed for bounding box regression with

point-supervision. In the end, we introduce a curriculum

learning strategy to train our model from images of rela-

tively accurate pseudo ground truth first.

3.2. Online ground truth updating scheme

Pseudo ground truth initialization. To train a detec-

tion network, we need to first initialize the ground truth

bounding boxes from head point annotations. We follow

the inspiration in [49] that the head size is indeed related to

the distance between the centers of two neighboring head-

s in crowded scenes. We use it to estimate the size of a

bounding-box g as the center distance d(g,NNg) from this

head g to its nearest neighbor NNg (see Fig. 2: red dotted

line). This makes a square bounding box; we find the corre-

sponding anchor box that has the closest size to this square

box as our initialization. We call the initialized bounding

boxes pseudo ground truth. Some examples are shown in

Fig. 1: Middle top. The estimations in dense crowds (top)

are close to the real ground truth while in sparse crowds

(bottom) are often bigger.

Pseudo ground truth updating. To train the detection net-

work, we select positive and negative samples from the pre-

defined anchors through their IoU (intersection-over-union)

with the initialized pseudo ground truth. A binary classifi-

er is trained over the selected positives and negatives so as

to score each anchor proposal. Because the pseudo ground

truth initialization is not accurate, we propose to iteratively

update them to train a reliable object detector (see Fig. 1).

More formally, let g0 denote an initialized ground truth

bounding box at certain position of an image at epoch 0.

Over the positive samples of g0, we select the highest scored

one among those whose size (the smaller value of width or

height) are smaller than d(g,NNg) to replace g0 in the next

epoch; i.e. we denote it by g1 at epoch 1. The anchor set is

densely applied on each detection layer, which guarantees

that most pseudo ground truth can be updated with suitable

predictions iteratively; if sometimes g is too small to have

positives, it will be simply ignored during training.

We notice that the classification loss we use is the same

with [8, 32]. Following [9, 40], we also apply the same on-

line hard mining strategy regarding the positive and nega-

tive selections. Below we introduce our locally-constrained

regression loss.
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Figure 2: Network overview of PSDDN using only point-level annotations. Res B1 - B4 denotes the ResNet block adopted from ResNet-

101 [11]. Person detection is conducted on two scales after Res B3 and B4; their predictions (Pred1 and Pred2) are summed up to

produce the final prediction (Final Pred). We propose an online pseudo ground truth updating scheme which includes pseudo ground truth

initialization and updating; a novel locally-constrained regression loss which encourages the predicted boxes in a local area to have the

similar size. A curriculum learning strategy is proposed to train the network from images of relatively accurate pseudo ground truth first.

3.3. Locallyconstrained regression loss

We first refer to [9] for some notations in bounding box

regression. The anchor bounding box a = (ax, ay, aw, ah)
specifies the pixel coordinates of the center of a togeth-

er with its width and height in pixels. a’s correspond-

ing ground truth g is specified in the same way: g =
(gx, gy, gw, gh). The transformation required from a to

g is parameterized as four variables dx(a), dy(a), dw(a),
dh(a). The first two specify a scale-invariant translation

of the center of a, while the second two specify log-space

translations of the width and height of a. These variables

are produced by bounding box regressor; we can use them

to transform a into a predicted ground-truth bounding box

ĝ = (ĝx, ĝy, ĝw, ĝh):

ĝx = aw · dx(a) + ax, ĝy = ah · dy(a) + ay

ĝw = aw · exp(dw(a)), ĝh = ah · exp(dh(a))
(1)

The target is to minimize the difference between g and ĝ.

The ground truth g in our framework is a pseudo ground

truth: the center coordinates gx, gy are accurate but gw,

gh are not. Based on this, we can not employ the origi-

nal bounding box regression loss but instead we propose a

locally-constrained regression loss.

We first define a loss function lxy regarding the center

distance between g and ĝ:

lxy = (gx− ĝx)2 + (gy − ĝy)2. (2)

With respect to the loss function on width and height, it is

not realistic to directly compare between g and ĝ. We rely

on the observation (Observ) that in a crowd image bound-

ing boxes of persons along the same horizontal line should

have similar size. This is due to the commonly occurred

perspective distortions in crowd images: perspective values

are equal in the same row, and decreased from the bottom

to top of the image [6, 47, 39]. As long as the camera is

not severely rotated and the ground in the captured scene

is mostly flat, the above observation should apply. Hence,

we propose to penalize the predicted bounding boxes ĝ if its

width and height clearly violate the Observ.

Formally, denoting by gij = (gxij , gyij , gwij , ghij) the

pseudo ground truth at position ij on the feature map, we

first compute the mean and standard deviation of the widths

(heights) of all the bounding boxes within a narrow band

area (row: i−1 : i+1; column: 1 : W ) on the feature map,

W is the feature map width. We use Gi to denote the set of

ground truth head positions within the narrow band related

to i. The corresponding statistics are:

µwi =
1

|Gi|

∑

mn∈Gi

gwmn

σwi =

√
1

|Gi|

∑

mn∈Gi

(gwmn − µwi)2,

(3)

where |Gi| signifies the cardinality of the set. µhi and σhi

can be obtained in the same way. We adopt a three-sigma

rule: if the predicted bounding box width ĝwij is larger than

µwi+3σwi or smaller than µwi−3σwi, it will be penalized;

otherwise not. The loss function lwij regarding the width

of bounding box ĝij is thus defined as:

lwij =





(ĝwij − (µwi + 3σwi))
2 ĝwij > µwi + 3σwi

((µwi − 3σwi)− ĝwij)
2 ĝwij < µwi − 3σwi

0 otherwise

(4)
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lhij can be obtained in a similar way. We do not require

a restrict compliance with the Observ in a local area, but

instead design the narrow band and three-sigma rule for the

tolerance of head size variation among individuals.

The overall bounding box regression loss Lreg is:

Lreg =
∑

ij∈G

l̃xyij + l̃wij + l̃hij , (5)

where G denotes the set of ground truth head points in one

image. We add a tilde to each subloss symbol to signify

that in real implementation the center coordinates, widths

and heights of g and ĝ are normalized in a way related to

the anchor box a following the Eq. 6-9 in [8].

3.4. Curriculum learning

Referring to Sec. 3.2: in very sparse crowds, the initial-

ized pseudo ground truth are often inaccurate and much big-

ger than the real ground truth; on the other hand, in very

dense crowds, the initializations are often too small and

hard to be detected. Both cases are likely to corrupt the

model and result in bad detection. Instead of training the

model on the entire set once, we adopt a curriculum learn-

ing strategy [3, 38, 48] to train the model from images of

relatively accurate and easy pseudo ground truth first.

Each pseudo ground truth g is initialized with size

d(g,NNg) (Sec. 3.2). In a typical crowd counting dataset,

very big or small boxes are only a small portion, most box-

es are of medium/medium-small size, which are relatively

more accurate and easier to learn. The mean µ and stan-

dard deviation σ of d(g,NNg) can be computed over the

entire training set. We therefore employ a Gaussian func-

tion Φ(dg|µ, σ) to produce scores for pseudo ground truth

bounding boxes, such that the medium-sized boxes are in

general assigned with big scores. The mean score within an

image is given by 1
|G|

∑
g∈G Φ(dg|µ, σ), where G denotes

the bounding box set in the image. We define the training

difficulty TL for an image as

TL = 1−
1

|G|

∑

g∈G

Φ(dg|µ, σ) (6)

If an image contains mostly medium-sized bounding boxes,

its difficulty will be small; otherwise, big.

Having the definition of image difficulty, we can split

the training set I into Z folds I1, I2, .., IZ accordingly.

Likewise in [38, 48], we start by running PSDDN on the

first fold I1 with images containing mostly medium-sized

bounding boxes. Training on this fold will lead to a rea-

sonable detection model. After a couple of epochs running

PSDDN on I1, the process moves on to the second fold I2,

adding all its images into the current working set I1 ∪ I2
and running PSDDN again. The process will iteratively

move on to the final fold IZ and run PSDDN on the join-

t set I1 ∪ I2 ∪ ... ∪ IZ . By the time it reaches IZ with

images containing mostly super small/big bounding boxes,

the model will already be very good and will do a much bet-

ter job than training all the samples together from the very

beginning. Z is empirically chosen as 3 in our experiment.

4. Experiments

We first introduce two crowd counting datasets and one

face detection dataset. A vehicle counting dataset is also

introduced to show the generalizability of our method. Af-

terwards, we evaluate our method on these datasets.

4.1. Datasets

ShanghaiTech [49]. It consists of 1,198 annotated images

with a total of 330,165 people with head center annotation-

s. This dataset is split into two parts: SHA and SHB. The

crowd images are sparser in SHB compared to SHA: the av-

erage crowd counts are 123.6 and 501.4, respectively. Fol-

lowing [49], we use 300 images for training and 182 images

for testing in SHA; 400 images for training and 316 images

for testing in SHB.

UCF CC 50 [13]. It has 50 images with 63,974 head cen-

ter annotations in total. The head counts range between 94

and 4,543 per image. The small dataset size and large vari-

ance make it a very challenging counting dataset. We call

it UCF for short. Following [13], we perform 5-fold cross

validations to report the average test performance.

WiderFace [46]. It is one of the most challenging face

datasets due to the wide variety of face scales and occlu-

sion. It contains 32,203 images with 393,703 bounding-box

annotated faces. The average annotated faces per image are

12.2. 40% of the data are used as training, another 10%

form the validation set and the rest are the test set. The val-

idation and test sets are divided into “easy”, “medium”, and

“hard” subsets. Test set evaluation has to be conducted by

the paper authors. For convenience, we train all models on

the train set and evaluate only on the validation set.

TRANCOS [10]. It is a public traffic dataset containing

1244 images of different congested traffic scenes captured

by surveillance cameras with 46,796 annotated vehicles.

The regions of interest (ROI) are provided for evaluation.

4.2. Implementation details

To augment the training set, we randomly re-scale the

input image by 0.5X, 1X, 1.5X, and 2X (four scales) and

crop 500*500 image region out of the re-scaled output as

training samples. Testing is also conducted with four scales

of input and combined together. We set the learning rate as

10−4, with weight decay 0.0005 and momentum 0.9. Given

the pseudo ground-truth and anchor bounding boxes dur-

ing training, we decide positive samples to be those where

IoU overlap exceeds 70%, and negative samples to be those

where the overlap is below 30%. We use a batch size of
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12 images. In general, we train models for 50 epochs and

select the best-performing epoch on the validation set.

4.3. Evaluation protocol

We evaluate both the person detection and counting per-

formance. For the counting performance, we adopt the

commonly used mean absolute error (MAE) and mean

square error (MSE) [35, 41, 22] to measure the difference

between the counts of ground truth and estimation.

Regarding the detection performance, in the WiderFace

dataset, bounding box annotations are available for each

face; a good detection ĝ is therefore judged by the IoU

overlap between the ground truth g and detected bound-

ing box ĝ, i.e. IoU(g, ĝ) > 0.5. In the ShanghaiTech

and UCF CC 50 datasets, we do not have the annotations

of bounding boxes but only head centers. We define a good

detection of ĝ based on two criteria:

• the center distance between the ground truth g and de-

tected ĝ is smaller than a constant c.

• the width or height of ĝ is smaller than r ∗ d(g,NNg),
where r is a constant.

c is set to 20 (pixels) by default. As for r, there does not ex-

ist an exact selection of it since the real ground truth bound-

ing boxes are not available. In dense crowds where persons

are very close to each other or even occluded, r could be a

bit bigger than 1 to allow a complete detection around each

head; while in sparse crowds, it is the opposite that r should

be smaller than 1. Building upon this, we choose r by de-

fault as 0.8 for SHB and 1.2 for SHA and UCF. Different c

and r will be evaluated in later sessions.

We compute the precision and recall by ranking our de-

tected bounding boxes (good ones) according to their confi-

dence scores. Average precision (AP) is computed eventu-

ally over the entire dataset.

4.4. Counting

ShanghaiTech We first present an ablation study of PS-

DDN and then compare it with state-of-the-art.

Ablation study. We present several variants (Pv0-Pv3) of

PSDDN by gradually adding the proposed elements into the

network. Referring to Sec. 3, we denote by Pv0 the mod-

el trained in a fully-supervised way using the fixed pseudo

ground truth initialization and classic bounding-box regres-

sion as in [32]; Pv1: the pseudo ground truth in Pv0 is it-

eratively updated; Pv2: the classic bounding box regression

in Pv1 is upgraded to our new way; Pv3 (PSDDN): the cur-

riculum learning strategy is adopted in Pv2.

The result is presented in Table 1 on both SHA and

SHB. We take SHA as an example: the MAE for Pv0 s-

tarts from 168.6; it decreases to 104.7 for Pv1 and 89.8 for

Pv2, respectively; finally, it reaches the lowest MAE 85.4

Dataset SHA SHB

Measures MAE MSE MAE MSE

Pv0 168.6 268.3 69.8 98.1

Pv1 104.7 193.8 41.7 66.6

Pv2 89.8 169.5 19.1 42.4

Pv3(PSDDN) 85.4 159.2 16.1 27.9

PSDDN + [20] 65.9 112.3 9.1 14.2

Li et al. [20] 68.2 115.0 10.6 16.0

Ranjan et al. [31] 68.5 116.2 10.7 16.0

Liu et al. [24] 73.6 112.0 13.7 21.4

Liu et al. [22] - - 20.7 29.4

DetNet in [22] - - 44.9 73.2

Sindagi et al. [41] 73.6 106.4 20.1 30.1

Sam et al. [35] 90.4 135.0 21.6 33.4

Table 1: Crowd counting: ablation study of PSDDN (Pv0-Pv3 de-

note different variants of PSDDN) and its comparison with state-

of-the-art on ShanghaiTech dataset.

for Pv3, which is the full version of PSDDN. In the mean-

time, the MSE also significantly decreases from 268.3 of

Pv0 to 159.2 of Pv3. We notice that the same observation

goes with SHB as well. The result shows that each com-

ponent of PSDDN provides a clear benefit in the overall

system.

Comparison with state-of-the-art. We compare our work

with prior arts [20, 31, 24, 22, 41, 35]. It can be seen that

our detection-based method PSDDN already performs close

to recent density-based methods. Furthermore, by comb-

ing our PSDDN result with [20] using the attention module

in [22] we show that the obtained result outperforms the

state-of-the-art. For instance, on SHA, PSDDN + [20] pro-

duces MAE 65.9 on SHA and 9.1 on SHB. We notice two

things: 1) we can obtain better counting results by adjust-

ing the detection confidence scores; on the contrary, we fix

it with a high value (0.8) for all datasets to guarantee that

the predictions are reliable at every local position; 2) the

regression-based methods sometimes produce bad results in

some local area of the image, which can not be reflected in

the MAE metric; there is another metric called GAME [10]

which is able to overcome this limitation. We will discuss

later in TRANCOS dataset to show that our detection-based

method is much better in the GAME metric. We show some

examples of PSDDN in Fig. 3.

The notation “DetNet” for [22] denotes the counting-by-

detection result in it, where they annotate on partial of the

bounding boxes in SHB and train a fully-supervised Faster

R-CNN detector. PSDDN clearly outperforms the DetNet

results. But we do not claim that point (weakly)-supervised

learning is normally better than fully-supervised learning.

Specifically for DetNet, they did not employ any of the data

augmentation tricks as in PSDDN. The main limitation for

fully-supervised detection methods in crowd counting lies
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Figure 3: Examples from WiderFace, SHB, UCF, SHA, and TRANCOS datasets. The top row is test images with ground truth (bounding

boxes or dots) while the bottom row is our detection. The numbers in images denote the ground truth and estimated counts, respectively.

The green bounding boxes denote good detection while the yellows are not according to our evaluation protocol.

Counting UCF

Measures MAE MSE AP

Li et al. [20] 266.1 397.5 -

Liu et al. [24] 279.6 388.9 -

Sindagi et al. [41] 295.8 320.9 -

Sam et al. [35] 318.1 439.2 -

PSDDN 359.4 514.8 0.536

Table 2: Comparison of PSDDN with state-of-the-art on

UCF dataset. MAE, MSE are reported for crowd counting

while AP is reported for person detection.

in the large amount of bounding box annotations required.

It can be unrealistic in very dense crowds. Our PSDDN

instead provides an alternative way to conduct counting-by-

detection with only point supervision; it performs very well

in the evaluation of both counting and detection.

UCF CC 50 It has the densest crowds so far in crowd

counting task. We show in Table 2 that our PSDDN can

still produce competitive result: the MAE is 359.4 while

the MSE is 514.8. In the detection session, we will show

that despite the tiny heads in UCF, PSDDN is still able to

produce reasonable bounding boxes on them (Fig. 3: third

column).

4.5. Detection

ShanghaiTech In Fig. 4, we first present the precision-

recall curves of different c and r (see Sec. 4.3) on SHA

and SHB. The recall rates of different curves stop at some

points as we fix the confidence score in the detection out-

put. When we fix r, the AP improves with an increase of

c; c is chosen by default as 20 to apply a hard constraint on

the center distance between the prediction and ground truth.

On the other hand, when we fix c, the AP improves with an

increase of r. As mentioned in Sec. 4.3, the crowds in SHA

are much denser than in SHB, we choose by default r = 1.2

SHBSHA

Figure 4: Precision-recall curves with different c and r.

Dataset Pv0 Pv1 Pv2 Pv3 (PSDDN)

SHA 0.308 0.491 0.539 0.554

SHB 0.015 0.241 0.582 0.663

Table 3: Person detection: ablation study of PSDDN on Shang-

haiTech (SHA and SHB) dataset. AP is reported.

for SHA and r = 0.8 for SHB. We also present the result of

r = ∞ which only cares the head center localizations (like

in [18, 14]): we get very good AP 0.737 and 0.759 for SHA

and SHB, respectively. [18, 14] did not present localization

results in ShanghaiTech, we can not directly compare with

them. But simply localizing the head centers is not enough

for a detection task, we will further discuss in the Wider-

Face dataset where we have the real ground truth bounding

boxes for evaluation.

Following the counting experiment, we also present the

ablation study of PSDDN in detection. The result is shown

in Table 3: the AP on SHA is significantly increased from

0.308 for Pv0 to 0.554 for Pv3; the same goes for SHB,

where the AP is increased from 0.015 to 0.663 eventually.

We notice we also tried to train a Faster R-CNN [32] using

the fixed pseudo ground truth, which is as low as in Pv0.

UCF CC 50 Table 2 shows the detection performance of

PSDDN on UCF. In this dataset with very dense crowds,

our method still achieves the AP of 0.536. An example is
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Methods Annotations
WiderFace

easy medium hard

Avg. BB points(test)+ mean size 0.002 0.083 0.059

FR-CNN (ps) points(train) + mean size 0.008 0.183 0.108

FR-CNN (fs) bounding boxes (train) 0.840 0.724 0.347

PSDDN points(train) 0.605 0.605 0.396

Table 4: Person detection on WiderFace. “Annotations” denotes

different levels of annotations employed in the methods. “mean

size” refers to the mean ground truth bounding box size over the

training set while “point(test)” specifically denotes that the bound-

ing box centers are known for test. Avg. BB adds bounding boxes

at each test point using the mean size. FR-CNN: Faster R-CNN.

shown in Fig. 3: third column. We refer the readers to those

people sitting in the upper balcony (e.g. yellow ones): they

are not annotated as ground truth but detected by PSDDN.

WiderFace WiderFace is a face detection dataset, its

crowd density is less denser than that in a typical crowd

counting dataset; we report results in Table 4 to show the

generalizability of our method. It can be seen using on-

ly point-level annotations PSDDN still manages to achieve

AP 0.605, 0.605, 0.396 on the easy, medium, and hard set.

Comparison to others. Since we have the bounding box

annotations available for both training and test in Wider-

Face, we try to compare PSDDN with [18, 14, 22]. [18, 14]

predicts either localization maps or segmentation blobs for

both object localization and crowd counting. Predicting the

exact size and shape of the object is not considered neces-

sary for crowd counting in their works. However, we argue

that it is important to object recognition and tracking. We

assume there exists another method that can correctly local-

ize every head center at test (better than any of [18, 14]),

bounding boxes are added in a post-processing way using

the mean ground truth size from the training set. It is denot-

ed as Avg.BB in Table 4. The results are very low. We notice

that we also tried to add the boxes in a similar way to our

pseudo ground truth initialization at each test point, the APs

are also very low. This demonstrates that it is not straight-

forward to add bounding boxes on top of the head point

localization results. We also compare PSDDN with Faster

R-CNN [32] using two different levels of annotations in Ta-

ble 4: FR-CNN(ps) and FR-CNN(fs). First, we use the head

point annotations together with the mean ground truth size

to generate bounding boxes for training; it performs much

worse than our PSDDN. Next, we follow [15] to use the

manually annotated bounding boxes to train Faster R-CNN,

which is analogue to the DetNet in [22]. PSDDN performs

lower AP than FR-CNN(fs) on the easy and medium set but

higher AP on the hard set. We point out that, many faces

are well covered by the detection of PSDDN but not tak-

en as good ones (yellow ones in Fig. 3: first column) only

because of their low IoU with the annotated ground truth.

Methods GAME0 GAME1 GAME2 GAME3 AP

Victor et al. [19] 13.76 16.72 20.72 24.36 -

Onoro et al. [27] 10.99 13.75 16.09 19.32 -

Li et al. [20] 3.56 5.49 8.57 15.04 -

PSDDN 4.79 5.43 6.68 8.40 0.669

Table 5: Results on TRANCOS dataset.

We believe this has displayed some potential for future im-

provement.

TRANCOS We evaluate PSDDN on TRANCOS dataset

to test its generalizability, though it is proposed for person

detection and counting. The Grid Average Absolute Error

(GAME) is used to evaluate the counting performance. We

refer the readers to [20, 10] for the definition of GAME(L)

with different levels of L. For a specific L, GAME(L) sub-

divides the image using a grid of 4L non-overlapping re-

gions, and the error is computed as the sum of the mean

absolute errors in each of these regions. When L = 0, the

GAME is equivalent to the MAE metric. We present the

result of our PSDDN in Table 5 where we obtain 4.79,

5.43, 6.68 and 8.40 for GAME0, GAME1, GAME2 and

GAME3, respectively. Comparing our method with the

state-of-the-art, PSDDN outperforms the best regression-

based method [20] on GAME1, GAME2 and GAME3 and

is competitive with it on GAME0. Unsurprisingly, the

GAME theory is designed to penalize those predictions with

a good MAE but a wrong localization of the objects. Our

method produces good results on both overall vehicle count-

ing and local vehicle localization/detection. The AP result

of PSDDN for detection is 0.669 with r = 1.

5. Conclusion

In this paper we propose a point-supervised deep detec-

tion network for person detection and counting in crowds.

Pseudo ground truth bounding boxes are firstly initialized

from the head point annotations, and updated iteratively

during the training. Bounding box regression is conduct-

ed in a way to compare each predicted box with the ground

truth boxes within a local band area. A curriculum learn-

ing strategy is introduced in the end to cope with the densi-

ty variation in the training set. Thorough experiments have

been conducted on several standard benchmarks to show the

efficiency and effectiveness of PSDDN on both person de-

tection and crowd counting. Future work will be focused on

further reducing the supervision in this task.
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