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Abstract

We study two important concepts in adversarial deep

learning—adversarial training and generative adversarial

network (GAN). Adversarial training is the technique used

to improve the robustness of discriminator by combining ad-

versarial attacker and discriminator in the training phase.

GAN is commonly used for image generation by jointly

optimizing discriminator and generator. We show these

two concepts are indeed closely related and can be used

to strengthen each other—adding a generator to the ad-

versarial training procedure can improve the robustness of

discriminators, and adding an adversarial attack to GAN

training can improve the convergence speed and lead to bet-

ter generators. Combining these two insights, we develop

a framework called Rob-GAN to jointly optimize generator

and discriminator in the presence of adversarial attacks—

the generator generates fake images to fool discriminator;

the adversarial attacker perturbs real images to fool discrim-

inator, and the discriminator wants to minimize loss under

fake and adversarial images. Through this end-to-end train-

ing procedure, we are able to simultaneously improve the

convergence speed of GAN training, the quality of synthetic

images, and the robustness of discriminator under strong

adversarial attacks. Experimental results demonstrate that

the obtained classifier is more robust than state-of-the-art

adversarial training approach [23], and the generator out-

performs SN-GAN on ImageNet-143.

1. Introduction

Adversarial deep learning has received a significant

amount of attention in the last few years. In this paper,

we study two important but different concepts—adversarial

attack/defense and generative adversarial network (GAN).

Adversarial attacks are algorithms that find a highly resem-

bled images to cheat a classifier. Training classifiers under

adversarial attack (also known as adversarial training) has

become one of the most promising ways to improve the

robustness of classifiers [23]. On the other hand, GAN is
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Figure 1: Illustration of the training process. This is similar

to the standard GAN training, i.e. alternatively updating

the generator G and discriminator D networks. The main

difference is that whenever feeding the real images to the D
network, we first invoke adversarial attack, so the discrimi-

nator is trained with adversarial examples.

a generative model where the generator learns to convert

white noise to images that look authentic to the discrimi-

nator [11, 28]. We show in this paper that they are indeed

closely related and can be used to strengthen each other,

specifically we have the following key insights:

1. The robustness of adversarial trained classifier can be

improved if we have a deeper understanding of the

image distribution. Therefore a generator can improve

the adversarial training process.

2. GAN training can be very slow to reach the equilibrium

if the discriminator has a large curvature on the image

manifold. Therefore an adversarial trained discrimina-

tor can accelerate GAN training.

Based on these findings, we managed to accelerate and stabi-

lize the GAN training cycle, by enforcing the discriminator

to stay robust on image manifold. At the same time, since

data augmentation is used in the robust training process,

the generator provides more information about the data dis-

tribution. Therefore we get a more robust classifier that

generalizes better to unseen data. Our contributions can be

summarized as follows:

1. We give insights why the current adversarial training

algorithm does not generalize well to unseen data. Par-

allelly, we explain why the GAN training is slow to
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reach an equilibrium.

2. We draw a connection between adversarial training and

GAN training, showing how they can benefit each other:

we can use GAN to improve the generalizability of ad-

versarial training, and use adversarial training to accel-

erate GAN training and meanwhile make it converge to

a better generator.

3. We propose a novel framework called Rob-GAN,

which integrates generator, discriminator and adver-

sarial attacker as a three-player game. And we also

show how to train the framework efficiently in an end

to end manner.

4. We formulate a better training loss for conditional GAN

by reformulating the AC-GAN loss.

5. We design a series of experiments to confirm all the hy-

potheses and innovations made in the text. For example,

with GAN data augmentation, we can improve the accu-

racy of state-of-the-art adversarial training method [23]

from 29.6% to 36.4% on ResNet18(+CIFAR10) under

a strong adversarial attack. Moreover, we observe a

3 ∼ 7x speedup in terms of convergence rate, when

inserting the adversarial attacker into GAN training cy-

cle. Lastly, our model attains better inception scores

on both datasets, compared with the strong baseline

(SN-GAN [26]).

Notations Throughout this paper, we denote the (image,

label) pair as (xi, yi), i is the index of data point; The clas-

sifier parameterized by weights w is f(x;w), this function

includes the final Softmax layer so the output is probabili-

ties. Loss function is denoted as ℓ(·, ·). We also define D(x)
andG(z) as the discriminator and generator networks respec-

tively. The adversarial example xadv is crafted by perturbing

the original input, i.e. xadv = x + δ, where ‖δ‖ ≤ δmax.

For convenience, we consider ℓ∞-norm in our experiments.

The real and fake images are denoted as xreal/fake. Note that

in this paper “fake” images and “adversarial” images are

different: fake images are generated by generator, while ad-

versarial images are made by perturbing the natural images

with small (carefully designed) noise. The training set is

denoted as Dtr, with Ntr data points. This is also the em-

pirical distribution. The unknown data distribution is Pdata.

Given the training set Dtr, we define empirical loss function
1
Ntr

∑Ntr

i=1 ℓ(f(xi;w), yi) = E(x,y)∼Dtr
ℓ(f(x;w), y).

2. Background and Related Work

2.1. Generative Adaversarial Network

A GAN has two competing networks with different ob-

jectives: in the training phase, the generator G(z) and the

discriminator D(x) are evolved in a minimax game, which

can be denoted as a unified loss:

min
G

max
D

{

E
x∼Dtr

[

logD(x)
]

+ E
z∼Pz

[

log(1−D(G(z))
]

}

,

(1)

where Pz is the distribution of noise. Unlike traditional

machine learning problems where we typically minimize

the loss, (1) is harder to optimize and that is the focus of

recent literature. Among them, a guideline for the architec-

tures of G and D is summarized in [30]. For high resolution

and photo-realistic image generation, currently the standard

way is to first learn to generate low resolution images as

the intermediate products, and then learn to refine them pro-

gressively [9, 20]. This turns out to be more stable than

directly generating high resolution images through a gigan-

tic network. To reach the equilibrium efficiently, alternative

loss functions [1, 2, 5, 13, 37] are applied and proven to

be effective. Among them, [1] theoretically explains why

training DCGAN is highly unstable. Following that work,

[2] proposes to use Wasserstein-1 distance to measure the

distance between real and fake data distribution. The result-

ing network, namely “Wasserstein-GAN”, largely improves

the stability of GAN training. Another noteworthy work in-

spired by WGAN/WGAN-GP is spectral normalization [26].

The main idea is to estimate the operator norm σmax(W ) of

weights W inside layers (convolution, linear, etc.), and then

normalize these weights to have 1-operator norm. Because

ReLU non-linearity is 1-Lipschitz, if we stack these layers

together the whole network will still be 1-Lipschitz, which

is exactly the prerequisite to apply Kantorovich-Rubinstein

duality to estimate Wasserstein distance.

2.2. Adversarial attacks and defenses

Another key ingredient of our method is adversarial train-

ing, originated in [35] and further studied in [12]. They

found that machine learning models can be easily “fooled”

by slightly modified images if we design a tiny perturbation

according to some “attack” algorithms. In this paper we ap-

ply a standard algorithm called PGD-attack [23] to generate

adversarial examples. Given an example x with ground truth

label y, PGD computes adversarial perturbation δ by solving

the following optimization with Projected Gradient Descent:

δ := argmax
‖δ‖≤δmax

ℓ
(

f(x+ δ;w), y
)

, (2)

where f(·;w) is the network parameterized by weights w,

ℓ(·, ·) is the loss function and for convenience we choose

‖ · ‖ to be the ℓ∞-norm in accordance with [23, 4], but note

that other norms are also applicable. Intuitively, the idea

of (2) is to find the point xadv := x + δ within an ℓ∞-ball

such that the loss value of xadv is maximized, so that point

is most likely to be an adversarial example. In fact, most

optimization-based attacking algorithms (e.g. FGSM [12],

C&W [7]) share the same idea as PGD attack.

Opposite to the adversarial attacks, the adversarial de-

fenses are techniques that make models resistant to ad-

versarial examples. It is worth noting that defense is a

much harder task compared with attacks, especially for
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high dimensional data combined with complex models.

Despite that huge amount of defense methods are pro-

posed [29, 23, 6, 22, 15, 10, 39, 34, 31], which can be iden-

tified as either random based, projection based, or de-noiser

based. In the important overview paper [4, 3], adversarial

training [23] is acknowledged as one of the most powerful

defense algorithm, which can be formulated as

min
w

E
(x,y)∼Pdata

[

max
‖δ‖≤δmax

ℓ
(

f(x+ δ;w), y
)

]

, (3)

where (x, y) ∼ Pdata is the (image, label) joint distribu-

tion of data, f(x;w) is the network parameterized by w,

ℓ
(

f(x;w), y
)

is the loss function of network (such as the

cross-entropy loss). We remark that the ground truth data

distribution Pdata is not known in practice, which will be

replaced by the empirical distribution.

It is worth noting that one of our contributions is to use

GAN to defend the adversarial attacks, which is superficially

similar to Defense-GAN [32]. However, they are totally

different underneath: the idea of Defense-GAN is to project

an adversarial example to the space of fake images by min-

imizing ℓ2 distance: xout = argminG(z) ‖x
adv − G(z)‖2,

and then making prediction on the output xout. In contrast,

our defense mechanism is largely based on adversarial train-

ing [23]. Another less related work that applies GAN in

adversarial setting is AdvGAN [38], where GAN is used to

generate adversarial examples. In comparison, we design a

collaboration scheme between GAN and adversarial training

and both parts are trained jointly.

3. Proposed Approach

We propose a framework called Rob-GAN to jointly op-

timize generator and discriminator in the presence of adver-

sarial attacks—the generator generates fake images to fool

discriminator; the adversarial attack perturbs real images to

fool discriminator, and the discriminator wants to minimize

loss under fake and adversarial images (see Fig. 1). In fact,

Rob-GAN is closely related to both adversarial training and

GAN. If we remove generator, Rob-GAN becomes standard

adversarial training method. If we remove adversarial attack,

Rob-GAN becomes standard GAN. But why do we want to

put these three components together? Before delving into

details, we first present two important motivations: I) Why

can GAN improve the robustness of adversarial trained dis-

criminator? II) Why can adversarial attacker improve the

training of GAN?

We answer I) and II) in Section 3.1 and 3.2, and then give

details of Rob-GAN in Section 3.3.

3.1. Insight I: The generalization gap of adversarial
training — GAN aided adversarial training

In Sec. 2.2 we listed some works on adversarial defense,

and pointed out that adversarial training is one of the most

effective defense method to date. However, until now this

method has only been tested on small dataset like MNIST

and CIFAR10 and it is still an open problem whether adver-

sarial training can scale to large dataset such as ImageNet.

Furthermore, although adversarial training leads to certified

robustness on training set (due to the design of the objective

function (3)), the performance usually drops significantly on

the test set. This means that the generalization gap is large

under adversarial attacks (Fig. 2 (Left)). In other words, de-

spite that it is hard to find an adversarial example near the

training data, it is much easier to find one near the testing

data. In the following, we investigate the reason behind this

huge (and enlarging) generalization gap, and later we will

solve this problem with GAN aided adversarial training.

To make our model robust to adversarial distortion, it is

desirable to enforce a small local Lipschitz value (LLV) on

the underlining data distribution Pdata. This idea includes

many of the defense methods such as [8]. In essence, re-

stricting the LLV can be formulated as a composite loss

minimization problem:

min
w

E
(x,y)∼Pdata

[

ℓ
(

f(x;w), y
)

+ λ ·
∥

∥

∂

∂x
ℓ
(

f(x;w), y
)∥

∥

2

]

.

(4)

Note that (4) can be regarded as the “linear expansion” of (3).

In practice we do not know the ground truth data distribution

Pdata; instead, we use the empirical distribution to replace

(4):

min
w

1

Ntr

Ntr
∑

i=1

[

ℓ
(

f(xi;w), yi
)

+λ·
∥

∥

∂

∂xi
ℓ
(

f(xi;w), yi
)
∥

∥

2

]

,

(5)

where {(xi, yi)}
Ntr

i=1 are feature-label pairs of the training

set. Ideally, if we have enough data and the hypotheses

set is moderately large, the objective function in (5) still

converges to (4). However when considering adversarial

robustness, we have one more problem to worry about:

Does small LLV in training set automatically gen-

eralize to test set?

The enlarged accuracy gap shown in Fig. 2 (Left) implies

a negative answer. To verify this phenomenon in an ex-

plicit way, we calculate Lipschitz values on samples from

training and testing set separately (Fig. 2 (Right)). We can

see that similar to the accuracy gap, the LLV gap between

training and testing set is equally large. Thus we conclude

that although adversarial training controls LLV around

training set effectively, this property does not generalize

to test set. Notice that our empirical findings do not con-

tradict the certified robustness of adversarial training using

generalization theory (e.g. [33]), which can be loose when

dealing with deep neural networks.

The generalization gap can be reduced if we have a direct

access to the whole distribution Pdata, instead of approxi-
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Figure 2: Left: Accuracy under different levels of attack. The model (VGG16) is obtained by adversarial training on CIFAR-10

with the maximum perturbation in adversarial training set as 8/256. We can observe that: 1) the accuracy gap between training

and testing is large, 2) the gap is even larger than the attack strength (after attack strength ≈ 0.03, both training and testing

accuracy go down to zero, so the gap also decreases). Right: The local Lipschitz value (LLV) measured by gradient norm

‖ ∂
∂xi

ℓ
(

f(xi;w), yi
)

‖2. Data pairs (xi, yi) are sampled from the training and testing set respectively. During the training

process, LLV on the training set stabilizes at a low level, while LLV on the test set keeps growing.

mating it by limited training data. This leads to our first

motivation:

Can we use GAN to learn Pdata and then perform

the adversarial training process on the learned

distribution?

If so, then it becomes straightforward to train an even more

robust classifier. Here we give the loss function for doing

that, which can be regarded as composite robust optimization

on both original training data and GAN synthesized data:

min
w

Lreal(w, δmax) + λ · Lfake(w, δmax),

Lreal(w, δmax) ,
1

Ntr

Ntr
∑

i=1

max
‖δi‖≤δmax

ℓ
(

f(xi + δi;w); yi
)

,

Lfake(w, δmax) , E
(x,y)∼Pfake

max
‖δ‖≤δmax

ℓ
(

f(x+ δ;w); y
)

.

(6)

Again the coefficient λ is used to balance the two losses.

To optimize the objective function (6), we adopt the same

stochastic optimization algorithm as adversarial training.

That is, at each iteration we draw samples from either train-

ing or synthesized data, find the adversarial examples, and

then calculate stochastic gradients upon the adversarial ex-

amples. We will show the experimental results in Sec. 4.

3.2. Insight II: Accelerate GAN training by robust
discriminator

If even a well trained deep classifier can be easily

“cheated” by adversarial examples, so can the others. Recall

in conditional GANs, such as AC-GAN [28], the discrim-

inator should not only classify real/fake images but also

assign correct labels to input images. Chances are that, if

the discriminator is not robust enough to the adversarial at-

tacks, then the generator could make use of its weakness

and “cheat” the discriminator in a similar way. Furthermore,

even though the discriminator can be trained to recognize

certain adversarial patterns, the generator will find out other

adversarial patterns easily, so the minimax game never stops.

Thus we make the following hypothesis:

Fast GAN training relies on robust discriminator.

Before we support this hypothesis with experiments, we

briefly review the development of GANs: the first version

of GAN objective [11] is unstable to train, WGAN [2, 14]

adds a gradient regularizer to enforce the discriminator to

be globally 1-Lipschitz continuous. Later on, SN-GAN [26]

improves WGAN by replacing gradient regularizer with spec-

tral normalization, again enforcing 1-Lipschitz continuity

globally in discriminator. We see both methods implicitly

make discriminator to be robust against adversarial attacks,

because a small Lipschitz value (e.g. 1-Lipschitz) enables

stronger invariance to adversarial perturbations.

Despite the success along this line of research, we wonder

if a weaker but smarter regularization to the discriminator is

possible. After all, if the regularization effect is too strong,

then the model expressiveness will be restricted. Concretely,

instead of a strict one-Lipschitz function globally, we re-

quire a small local Lipschitz value on image manifold. As

we will see, this can be done conveniently through adversar-

ial training to the discriminator. In this way, we can draw a

connection between the robustness of discriminator and the

learning efficiency of generator, as illustrated in Fig. 3.

As one can see in Fig. 3, if a discriminatorD(x) has small

LLV (equivalently, small ‖D′(x)‖), then we know D(x +
δ) ≈ D(x) + D′(x) · δ ≈ D(x) for a “reasonably” small

δ. In other words, for a robust discriminator, the perturbed

fake image xadv = x0 + δ is unlikely to be misclassified as

real image, unless δ is large. Different from the setting of

adversarial attacks (2), in GAN training, the “attacker” is

now a generator network G(z;w) parameterized by w ∈ R
d.

Suppose at time t, the discriminator can successfully identify
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Figure 3: Comparing robust and non-robust discriminators,

for simplicity, we put them together into one graph. Concep-

tually, the non-robust discriminator tends to make all images

close to the decision boundary, so even a tiny distortion δ can

move a fake image x0 to across the decision boundary and

leads to a mis-classification: xadv = x0+δ. In contrast, such

δ is expected to be much larger for robust discriminators.

fake images, or equivalently D(G(z;wt)) ≈ 0 for all z,

then at time t + 1 what should the generator do to make

D(G(z;wt+1)) ≈ 1? We can develop the following bound

by assuming the Lipschitz continuity of D(x) and G(z;w),

1 ≈D(G(z;wt+1))−D(G(z;wt))

/‖D′
(

G(z;wt)
)

‖ · ‖G(z;wt+1)−G(z;wt)‖

/‖D′
(

G(z;wt)
)

‖ · ‖
∂

∂w
G(z;wt)‖ · ‖wt+1 − wt‖

≤LDLG‖w
t+1 − wt‖,

(7)

where LD,G indicates the Lipschitz constants of discrim-

inator and generator. As we can see, the update of gen-

erator weights is inversely proportional to LD and LG:

‖wt+1−wt‖ ∝ 1
LDLG

. If the discriminator is lacking robust-

ness, meaning LD is large, then the generator only needs to

make a small movement from the previous weights wt, mak-

ing the convergence very slow. This validates our hypothesis

that fast GAN training relies on robust discriminator. In

the experiment section, we observe the same phenomenon

in all two experiments, providing a solid support for this

hypothesis.

3.3. Rob-GAN: Adversarial training on learned im­
age manifold

Motivated by Sec. 3.1 and 3.2, we propose a system that

combines generator, discriminator, and adversarial attacker

into a single framework. Within this framework, we conduct

end-to-end training for both generator and discriminator: the

generator feeds fake images to the discriminator; meanwhile

real images sampled from training set are preprocessed by

PGD attacking algorithm before sending to the discriminator.

The network structure is illustrated in Fig. 1.

Discriminator and the new loss function: The discrimi-

nator could have the standard architecture like AC-GAN. At

each iteration, it discriminates real and fake images. When

the ground truth labels are available, it also predicts the

classes. In this paper, we only consider the conditional

GANs proposed in [25, 28, 27], and their architectural dif-

ferences are illustrated in Fig. 4. Among them we sim-

ply choose AC-GAN, despite that SN-GAN (a combination

of spectral normalization [26] and projection discrimina-

tor [27]) performs much better in their paper. The reason

we choose AC-GAN is that SN-GAN’s discriminator relies

on the ground truth labels and their objective function is not

designed to encourage high classification accuracy. But sur-

prisingly, even though AC-GAN is beaten by SN-GAN by a

large margin, after inserting the adversarial training module,

the performance of AC-GAN matches or even surpasses the

SN-GAN, due to the reason discussed in Sec. 3.2.

We also improved the loss function of AC-GAN. Recall

that the original loss in [28] defined by discrimination likeli-

hood LS and classification likelihood LC :

LS = E[logP(S = real|Xreal)] + E[logP(S = fake|Xfake)]

LC = E[logP(C = c|Xreal)] + E[logP(C = c|Xfake)],
(8)

where Xreal/fake are any real/fake images, S is the discrim-

inator output, and C is the classifier output. Based on (8),

the goal of discriminator is to maximize LS + LC while

generator aims at maximizing LC − LS . According to this

formula, both G and D are trained to increase LC , which

is problematic because even if G(z;w) generates bad im-

ages, D(x) has to struggle to classify them (with high loss),

and in such case the corresponding gradient term ∇LC can

contribute uninformative direction to the discriminator. To

resolve this issue, we split LC to separate the contributions

of real and fake images,

LC1
= E[logP(C = c|Xreal)]

LC2
= E[logP(C = c|Xfake)],

(9)

then discriminator maximizes LS +LC1
and generator max-

imizes LC2
− LS . The new objective function ensures that

discriminator only focuses on classifying real images and

discriminating real/fake images, and the classifier branch

will not be distracted by the fake images.

Generator: Similar to the traditional GAN training, the

generator is updated on a regular basis to mimic the distribu-

tion of real data. This is the key ingredient to improve the

robustness of classification task: as shown in Sec. 3.1, model

from adversarial training performs well on training set but

is vulnerable on test set. Intuitively, this is because during

adversarial training, the network only “sees” adversarial ex-

amples residing in the small region of all training samples,

whereas the rest images in the data manifold are undefended.
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Figure 4: Comparing the architectures of discriminators. Our architecture is similar to AC-GAN [28], but they are different in

loss functions, if one compares (8) with (9). (x, y) is (image, label) pair, φ and ψ denote different network blocks. Recall in

AC-GAN and our architecture, the discriminator has two branches, one is for discriminating “real/fake” images and the other

is for classification.

Data augmentation is a natural way to resolve this issue, but

traditional data augmentation methods like image jittering,

random resizing, rotation, etc. [21, 16, 36, 40, 18] are all

simple geometric transforms, they are useful but not effec-

tive enough: even after random transforms, the total number

of training data is still much fewer than required. Instead,

our system has unlimited samples from generator to provide

a continuously supported probability density function for

the adversarial training. Unlike traditional augmentation

methods, if the equilibrium in (1) is reached, then we can

show that the solution of (1) would be Pfake(z)
dist.

= Preal [11],

and therefore the classifier can be trained on the ground truth

distribution Preal.

Figure 5: Illustration of fine-tuning the discriminator. We

omit the adversarial attack here for brevity.

Fine-tuning the classifier: After end-to-end training, the

discriminator has learned to minimize both discrimination

loss and classification loss (see Fig. 1). If we want to train

the discriminator to conduct a pure multi-class classification

task, we will need to fine-tune it by combining fake and real

images and conducting several steps of SGD only on the

robustness classification loss (illustrated in Fig. 5):

Lcls
D , E

(x,y)∼Preal

ℓ(f(xadv;w), y)+

λ · E
(x,y)∼Pfake

ℓ(f(xadv;w), y),
(10)

where xadv = argmin‖x′−x‖≤δmax
ℓ(f(x′;w), y). Here the

function f(x;w) is just the classifier branch of discriminator

D(x), recalling that we are dealing with conditional GAN.

As we can see, throughout the fine-tuning stage, we force the

discriminator to focus on the classification task rather than

the discrimination task. The experiments will show that the

fine-tuning step improves the accuracy by a large margin.

4. Experimental Results

We experiment on both CIFAR10 and a subset of Im-

ageNet data. Specifically, we extract classes yi such that

yi ∈ np.arange(151, 294, 1) from the original Im-

ageNet data: recall in total there are 1000 classes in Im-

ageNet data and we sampled 294 − 151 = 143 classes

from them. We choose these datasets because 1) the cur-

rent state-of-the-art GAN, SN-GAN [27], also worked on

these datasets, and 2) the current state-of-the-art adversarial

training method [23] cannot scale to ImageNet-1k data. In

order to have a fair comparison, we copy all the network ar-

chitectures of generators and discriminators from SN-GAN.

Other important factors, such as learning rate, optimization

algorithms, and number of discriminator updates in each

cycle are also kept the same. The only modification is that

we discarded the feature projection layer and applied the

auxiliary classifier (see Fig. 4).

4.1. Quality of Discriminator

We show that Rob-GAN leads to more robust discrimina-

tor than state-of-the-art adversarial trained models.

Effect of fine-tuning. We first compare Rob-GAN

with/without fine-tuning to verify our claim in Sec. 3.3 that

fine-tuning improves classification accuracy. To this end, we

compare two sets of models: in the first set, we directly ex-

tract the auxiliary classifiers from discriminators to classify

images; in the second set, we apply fine-tuning strategy to

the pretrained model as Fig. 5 illustrated. The results are in

Fig. 6 (left), which suggests that fine-tuning is useful.
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Figure 6: Left two panels: The effect of fine-tuning on prediction accuracy (left: CIFAR10, middle: ImageNet-64px). Right

panel: Comparing the accuracy gap between adversarial training model and GAN data augmentation model.

Accuracy gap comparison: with or without data aug-

mentation. We check whether adversarial training with

fake data augmentation (6) really shrinks the generalization

gap. To this end, we draw the same figure as Fig. 2, except

that now the classification model is the discriminator of Rob-

GAN with fine tuning. We compare the accuracy gap in

Fig. 6 (Right). Clearly the model trained with the adversar-

ial real+fake augmentation strategy works extremely well:

it improves the testing accuracy under PGD-attack and so

the generalization gap between training/testing set does not

increase that much.

Dataset Defense
δmax of ℓ∞ attacks

0 0.02 0.04 0.08

CIFAR10
Adv. training 81.45% 69.15% 53.74% 23.58%

Rob-GAN (w/ FT) 81.1% 70.41% 57.43% 30.25%

0 0.01 0.02 0.03

ImageNet†

(64px)

Adv. Training 20.05% 18.3% 12.52% 8.32%

Rob-GAN (w/ FT) 32.4% 25.2% 19.1% 13.7%

†Denotes the 143-class subset of ImageNet.

Table 1: Accuracy of our model under ℓ∞ PGD-attack. “FT”

means fine-tuning.

Robustness of discriminator: comparing robustness

with/ without data augmentation. In this experiment, we

compare the robustness of discriminators trained by Rob-

GAN with the state-of-the-art adversarial training algorithm

by [23]. As shown in a recent comparison [4], adversarial

training [23] achieve state-of-the-art performance in terms

of robustness under adversarial attacks. Since adversarial

training is equivalent to Rob-GAN without the GAN compo-

nent, for fair comparison we keep all the other components

(network structures) the same.

To test the robustness of different models, we choose the

widely used ℓ∞ PGD attack [23], but other gradient based

attacks are expected to yield the same results. We set the ℓ∞
perturbation to δmax ∈ np.arange(0, 0.1, 0.01)

as defined in (2). Another minor detail is that we scale the

images to [−1, 1] rather than usual [0, 1]. This is because

generators always have a tanh() output layer, so we need to

do some adaptations accordingly. We present the results in

Tab. 1, which clearly shows that our method (Rob-GAN w/

FT) performs better than state-of-the-art defense algorithm.

4.2. Quality of Generator

Next we show that by introducing adversarial attack in

GAN training, Rob-GAN improves the convergence of the

generator.

Effect of split classification loss. Here we show the ef-

fect of split classification loss described in (9). Recall that

if we apply the loss in (8) then the resulting model is AC-

GAN. It is known that AC-GAN can easily lose modes in

practice, i.e. the generator simply ignores the noise input

z and produces fixed images according to the label y. This

defect is observed in many previous works [17, 24, 19]. In

this ablation experiment, we compare the generated images

trained by two loss functions in Fig. 7. Clearly the proposed

new loss outperforms the AC-GAN loss.

Quality of generator and convergence speed. Finally,

we evaluate the quality of generators trained on two datasets:

ImageNet subset - 64px and ImageNet subset - 128px. We

compare with the generator obtained by SN-GAN, which

has been recognized as a state-of-the-art conditional-GAN

model for learning hundreds of classes. Note that SN-GAN

can also learn the conditional distribution of the entire Ima-

geNet data (1000 classes), unfortunately, we are not able to

match this experiment due to time and hardware limit. To

show the performance with/without adversarial training and

with/without new loss, we report the performance of all the

four combinations in Figure 8. Note that “original loss” is

equivalent to AC-GAN. Based on Figure 8 we can make the

following three observations. First, adversarial training can

improve the convergence speed of GAN training and make it

converge to a better solution. Second, the new loss leads to

better solutions on both datasets. Finally, the proposed Rob-

GAN outperforms SN-GAN (in terms of inception score) on

these two datasets.
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Figure 7: Comparing the generated images trained by our modified loss(left) with the original AC-GAN loss(right). For fair

comparison, both networks are trained by inserting adversarial attacker (Sec. 3.2). We can see images from AC-GAN loss are

more distorted and harder to distinguish.
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Figure 8: Results on subset of ImageNet, left: 64px, right: 128px. Here we tried four combinations in total: with or without

adversarial training, new loss or original loss. We have three findings: 1) Compared with SN-GAN, our model (new loss +

adversarial) learns a high quality generator efficiently: in both datasets, our model surpasses SN-GAN in just 25 epochs (64px)

or 50 epochs (128px). 2) When comparing the new loss with the original loss, we see the new loss performs better. 3) Using

the new loss, the adversarial training algorithm has a great acceleration effect.

5. Conclusions

We show the generator can improve adversarial train-

ing, and the adversarial attacker can improve GAN training.

Based on these two insights, we proposed to combine gen-

erator, discriminator and adversarial attacker in the same

system and conduct end-to-end training. The proposed sys-

tem simultaneously leads to a better generator and a more

robust discriminator compared with state-of-the-art models.
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