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Abstract

Evaluation protocols play key role in the developmen-

tal progress of text detection methods. There are strict re-

quirements to ensure that the evaluation methods are fair,

objective and reasonable. However, existing metrics exhib-

it some obvious drawbacks: 1) They are not goal-oriented;

2) they cannot recognize the tightness of detection methods;

3) existing one-to-many and many-to-one solutions involve

inherent loopholes and deficiencies. Therefore, this pa-

per proposes a novel evaluation protocol called Tightness-

aware Intersect-over-Union (TIoU) metric that could quan-

tify completeness of ground truth, compactness of detection,

and tightness of matching degree. Specifically, instead of

merely using the IoU value, two common detection behav-

iors are properly considered; meanwhile, directly using the

score of TIoU to recognize the tightness. In addition, we

further propose a straightforward method to address the an-

notation granularity issue, which can fairly evaluate word

and text-line detections simultaneously. By adopting the

detection results from published methods and general ob-

ject detection frameworks, comprehensive experiments on

ICDAR 2013 and ICDAR 2015 datasets are conducted to

compare recent metrics and the proposed TIoU metric. The

comparison demonstrated some promising new prospects,

e.g., determining the methods and frameworks for which the

detection is tighter and more beneficial to recognize. Our

method is extremely simple; however, the novelty is none

other than the proposed metric can utilize simplest but rea-

sonable improvements to lead to many interesting and in-

sightful prospects and solving most the issues of the pre-

vious metrics. The code is publicly available at https:

//github.com/Yuliang-Liu/TIoU-metric.

1. Introduction

Recent metrics for evaluating text detection have been

adopted from the object detection Pascal VOC metric [4].

However, unlike object detection, text detection tasks re-

quire the bounding box to be tighter because the primary

goal of detection is to recognize the text. Simply adopting

(a) Cutting. (b) Pure.

(c) Outlier-GTs. (d) Cutting & Outlier-GTs.

Figure 1. Unreasonable cases obtained using recent evaluation

metrics. (a), (b), (c), and (d) all have the same IoU of 0.66 against

the GT. Red: GT. Blue: detection.

the same IoU metric for text detection leads to the following

issues:

• As shown in Fig. 1 (a), detection over a fixed IoU

threshold with the ground truth (GT) may not com-

pletely recall the text (some characters are missed);

however, previous metrics consider that the GT has

been entirely recalled.

• As shown in Figs. 1 (b), (c), and (d), detection over

a fixed IoU threshold with the GT may still contain

background noise; however, previous metrics consider

such detection to have 100% precision.

• As shown in Fig. 1, previous metrics consider detec-

tions (a), (b), (c), and (d) to be equivalent perfect de-

tections because they all have the same IoU value that

is higher than a threshold. However, considering that

the primary goal of detection is to recognize the text,

these detections are not equivalent: 1) In (a), there is

no way to recognize the characters outside the detec-

tion bounding box; 2) in (c), it is very difficult for a

recognizer to distinguish which is the target GT; 3) the

issues pertaining to both (a) and (c) can simultaneous-

ly occur for (d); 4) as for (b), it is easy for a normal

text recognizer to recognize the content correctly.

• Previous metrics severely rely on an IoU threshold.
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However, if a relatively high IoU threshold is set, some

satisfactory bounding boxes may be discarded (e.g., if

0.7 is set as the threshold, the detection in Fig. 1 (b)

will be misjudged); if a low IoU threshold is set, sev-

eral inexact bounding boxes would be included.

The essential reasons that cause such inequalities are: 1)

The detections in Figs. 1 (a) and (d) cut the GT region; 2)

the detections in Figs. 1 (c) and (d) both contain outlier-

GT; and 3) recent metrics use binary results (0 or 100%) to

represent the final recall or precision score.

To solve these issues, an intuitive solution is to penalize

the exceptional detections. In the proposed Tightness-aware

Intersection-over-Union (TIoU) metric, we use the occupa-

tion ratio of detection to GT and occupation ratio of outlier-

GT to detection as penalty factors, respectively. In addition,

we directly use the score of the TIoU as the value of recall

and precision, and thus, the compact degree among differ-

ent methods can be distinguished. The TIoU metric targets

the following three characteristics, which are also the main

contributions of this work:

• Completeness. Using the TIoU metric would force

methods to pay more attention to recalling every part

of the GT, i.e., ensuring the completeness of GT.

• Compactness. Because the detections of outlier-GT

will be punished by TIoU, the compactness of the de-

tection would receive more attention.

• Tightness-aware. TIoU can distinguish the tightness

among different detection methods, i.e., a 0.9 IoU de-

tection would be much better than a 0.5 IoU detection

in our metric.

2. Related work

Evaluation methods [18, 28, 4] have been an important

research topic for several decades. For scene text detec-

tion, there are four mainstream evaluation methods that are

largely identical but have minor differences: ICDAR 2003

(IC03) [16], ICDAR 2013 (IC13) [9, 28], ICDAR 2015

(IC15) [8], and AP-based methods [4, 26].

2.1. ICDAR 2003 Evaluating Method

The early IC03 metric [16] is based on the notions used

by the information retrieval community to calculate preci-

sion and recall, which are as follows:

Recall(G,D) =

∑|G|
i=1

BestMatchG(Gi)

|G|
, (1)

Precision(G,D) =

∑|D|
j=1

BestMatchD(Dj)

|D|
, (2)

where, BestMatchG and BestMatchD indicate the result

of the closest match between detection and ground truth

rectangles, as defined below [28]:

BestMatchG(Gi) = max
j=1...|D|

2 ·Area(Gi ∩Dj)

Area(Gi) +Area(Dj)
,

(3)

BestMatchD(Dj) = max
i=1...|G|

2 ·Area(Dj ∩Gi)

Area(Dj) +Area(Gi)
.

(4)

The matching mechanism involves finding the perfect-

matching pairs to detect the matching value, i.e., if a rectan-

gle is perfectly matched, the match value is unity, else the

value is less than 1. The disadvantages of the IC03 met-

ric are as follows: 1) Multiple detections can be repeatedly

matched to the same GT; 2) as the authors reported in [16]

themselves, this evaluation scheme only considers one-to-

one (OO) matches, and thus one-to-many (OM) and many-

to-one (MO) matches [28] are considered to have zero recall

and precision. However, practically, word-level and text-

line detections can both be conducive to recognition.

2.2. ICDAR2013 Evaluation Method

IC13 [9, 28] has three evaluation metrics: IC13, DetEval,

and IoU. The IoU metric is subsequently adopted following

the IC15 [8] metric, which is discussed in the next subsec-

tion.

2.2.1 ICDAR2013, DetEval

Unlike Eqs. 3 and 4, the criteria of these two evaluations are

based on mutual overlap rates between detection ({Dj}j)

and ground truth ({Gi}i):

A(Gi ∩Dj)

A(Dj)
> tp, (5)

A(Gi ∩Dj)

A(Gi)
> tr, (6)

where, tp and tr are the thresholds of precision and recall,

respectively. The metrics evaluate the methods using three

steps including OO, OM, and MO. Unlike the IC03 metric,

OO guarantees that each GT can be at most matched once,

and multiple matching detections are considered false posi-

tives.

OM indicates that a GT is matched by a set of detection

results, and it should satisfy two requirements: a) Sufficient

detections covering the GT; b) each contributing detection is

covered enough by the GT. If these conditions are satisfied,

the precision value of each detection box and recall value of

the GT are both set to 0.8 [9].

MO indicates that a detection is matched by a set of GT.

The following two requirements must be satisfied: a) The

detection must contain sufficiently overlapping GT; b) each
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GT must be recalled with sufficient area. If these conditions

are satisfied, the recall value of each GT and the precision

value of this detection are both set to 1.

Although these two matching methods can overcome the

problem of inconsistency of the annotation granularity to

some extent, such metrics still involve some unsatisfactory

circumstances (examples are shown in Fig. 2):

• For MO matching, a rough detection can recall all GTs,

as shown in the left image of the first row of Fig. 2.

Such rough detection may not be proper recognized,

which is relatively unfair for those methods that can

granularly detect the text.

• For OM matching, many segmented detections are

considered as correct results, which is unfair for sin-

gularly perfect detection. Some examples are shown

in the right image of the first row of Fig. 2. It is

worth mentioning that although 0.8 is set to penalize

over-segmentation, loophole still exists. For example,

if the overall precision is less than 0.8, a method that

separates a perfect detection into numerous small over-

segmented OM detections (e.g., 20) can make the pre-

cision close to 0.8. An example is given below:

origin precision =
0 + 1 + 0 + 0

4
= 0.25 (7)

fake precision =
0 +

20
︷ ︸︸ ︷

0.8 + ...+ 0.8+0 + 0

23
= 0.7

(8)

• For the IC13 metric, the matching order is OO, OM

and MO. Because each GT and detection can only be

matched once, the OO matching pairs would not be

calculated during OM or MO matching, which would

affect the detection results. As shown in the bottom

image of Fig. 2, the long detections do not satisfy MO

matching because the bluish detections have already

OO matched with some GT in advance. Thus, the long

detections are regarded as false positives and the rest

of the GTs are considered to be not recalled.

• For DetEval evaluation, OM and MO are evaluated in

advance before OO, which may lead to unsatisfactory

results. As shown in the middle image of Fig. 2, be-

cause OM is validated in advance, the two detection

bounding boxes have already been used. Thus, the two

jacinth GTs are considered not to be recalled.

2.3. ICDAR 2015 IoU Metric

The IC15 metric [8] follows the same metric as Pascal

VOC [4]. Under this metric, detections are assigned to

Figure 2. The first row shows examples of many-to-one and one-

to-many matching. The second and third rows show some failure

matching cases (using IC13 metric) because of the matching order.

Red: GT bounding box. Blue: detections. Jacinth: GT bounding

boxes that can not be recalled because of one-to-many matching.

Bluish: detection box that causes failure of many-to-one matching.

ground truth objects and judged to be true or false posi-

tives by measuring the bounding box overlap. To be con-

sidered a correct detection, the value of Intersection-over-

Union (IoU, defined in Eq. 9) must exceed 0.5.

A(Gj ∩Di)

A(Gj ∪Di)
> 0.5. (9)

Detections are assigned to true positives only when they

satisfy the overlap criterion and they have the top ranking

confidence to the target GT. Ground truth objects with no

matching detections are false negatives. Although this met-

ric has received the most attention, it still has many draw-

backs, which have been pointed out in the introduction sec-

tion.

2.4. APbased evaluation method

To avoid finetuning the output detection confidence,

dataset such as RCTW-17 [26] has adopted interpolated av-

erage precision as the main detection evaluation metric: For

a given task and class, the precision-recall curve is com-

puted based on the method’s ranked output. Basically, this

metric relies on the IoU metric to calculate the precision and

recall in advance.

3. Methodology

3.1. Tightnessaware IntersectionoverUnion
(TIoU) Metric

The primary goal of text detection evaluation metrics is

to quantify the performance of different methods. Because

the major function of detecting text regions is to recognize

text, it is a strong requirement for detecting bounding boxes

to preserve the completeness of text information and avoid

interference with other text instances. However, previous

evaluation metrics mentioned in Section 2 do not consid-

er the impact of cutting GT regions and outlier-GT. Mean-

while, it is not easy to distinguish the tightness of detec-
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Rec. ovince

IoU 0.585

TIoU-R 0.342

Ct 0.415

NED 0.25

Rec. ovinc

IoU 0.652

TIoU-R 0.424

Ct 0.348

NED 0.375

Rec. province

IoU 0.891

TIoU-R 0.866

Ct 0.028

NED 0

Rec. province

Rec. dowing

IoU 0.612

TIoU-R 0.375

Ct 0.386

NED 0.625

Detection #1 Detection #2 Detection #3 Detection #4

Ground Truth

(a) Cutting effect.

Ground Truth

Detection #4

Rec. batf

IoU 0.507

TIoU-R 0.491

Ct 0.032

TIoU-P 0.262

Ot 0.484

NED 0.75

Detection #3

Rec. than

IoU 0.516

TIoU-R 0.516

Ct 0.0

TIoU-P 0.266

Ot 0.483

NED 0.75

Detection #2

Rec. tarp

IoU 0.776

TIoU-R 0.736

Ct 0.052

TIoU-P 0.629

Ot 0.190

NED 0

Detection #1

Rec. rtarp

IoU 0.628

TIoU-R 0.513

Ct 0.184

TIoU-P 0.459

Ot 0.269

NED 0.25

Rec. tarp

(b) Outlier effect.

Figure 3. Qualitative visualization of TIoU metric. Blue: Detection. Bold red: Target GT region. Light red: Other GT regions. Rec.:

Recognition results by CRNN [24]. NED: Normalized edit distance. Previous metrics evaluate all detection results and target GTs as 100%

precision and recall, respectively, while in TIoU metric, all matching pairs are penalized by different degrees. Ct is defined in Eq. 10. Ot

is defined in Eq. 13.

tions. Hence, the merits of the detecting methods cannot be

thoroughly embodied. To address these problems, our so-

lution is derived from three basic annotating concepts: (a)

Annotation does not cut the text instance; (b) annotation

contains less background noise, especially outlier text in-

stances; (c) annotations may not be perfect matching the

text instance, they should be as much perfect as possible.

3.1.1 TIoU-Recall

Intuitively, one GT rectangle Gi cut by a detection bounding

box Dj may result in incorrect recognition. Although tra-

ditional IoU metrics can measure the tightness between Gi

and Dj , it can not goal-oriented evaluate the cases shown in

Fig. 1 (a) and (b) (Detections in (a) and (b) have the same

value of IoU (0.66) against the ground truth, while the for-

mer one do not recall a few characters of the GT). To solve

this issue, the cutting behavior can be penalized by the pro-

portion of intersection in GT.

Firstly, we define the not-recalled area of Gi as Ct:

Ct = A(Gi)−A(Dj ∩Gi), Ct ∈ [0, A(Gi)], (10)

where A(∗) means the area of the region. Then, the propor-

tion of intersection in Gi is given by:

f(Ct) = 1− x, x =
Ct

A(Gi)
. (11)

Therefore, the final TIoU-Recall is defined as follows:

TIoURecall =
A(Gi ∩Dj) ∗ f(Ct)

A(Gi ∪Dj)
. (12)

Equation 12 is a simple but effective solution for manag-

ing the cutting behavior, e.g., the TIoU-Recall in Fig. 1 (a)

and (b) are 0.424 and 0.66, respectively, which implies that

missing characters account for a 35.8% decline in recall.

3.1.2 TIoU-Precision

On the other hand, one detection covers several GTs may

also affect the recognition results because it is intricate for

recognition methods to distinguish which text is target GT,

as shown in Fig. 1 (c). The proposed solution is to pe-

nalize such type of detections to make detection compact

for avoiding outlier-GTs. Nevertheless, if the outlier-GTs

are inside the target GT region, even the perfect detec-

tion bounding box cannot avoid containing these outlier-

s. Therefore, only the outlier-GT region that is inside the

detection bounding box but outside the target GT region

would be penalized. The area (Ot) of the union of all el-

igible outlier-GTs is calculated using equation 13:

Otij =A((G1 ∩Dj −G1 ∩Dj ∩Gi)∪

... ∪ (Gi−1 ∩Dj −Gi−1 ∩Dj ∩Gi)∪

(Gi+1 ∩Dj −Gi+1 ∩Dj ∩Gi) ∪ ... ∪

(Gn ∩Dj −Gn ∩Dj ∩Gi)),

Otij ∈ [0, A(Dj −Dj ∩Gi)].

(13)

Note that for each Gn(n 6= i) that does not intersect with

Dj , it can be simply ignored, which can improve comput-

ing efficiency. Then, the proportion of intersection in Dj is

given by:

f(Ot) = 1− x, x =
Ot

A(Dj)
. (14)

Using equation 14, we can define the TIoU-Precision in the

same way as TIoU-Recall, as shown in equation 15:

TIoUPrecision =
A(Dj ∩Gi) ∗ f(Ot)

A(Dj ∪Gi)
. (15)

For intuitively understanding the performance of TIoU

metrics, we show many examples in Fig. 3, which will be

further discussed in Section 4.2.
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3.2. Tightnessaware Metric

To calculate the final score, the harmonic mean of recall

and precision is usually adopted as the primary metric:

Hmean = 2
Recall · Precision

Recall + Precision
, (16)

where recall and precision are calculated by

Recallori =

∑
Matchgti

Numgt

, (17)

Precisionori =

∑
Matchdtj

Numdt

. (18)

IC13 and IC15 both use a binary [0, 100%] results to deter-

mine Matchgti and Matchdtj .

Binary results can not quantify the tightness of the meth-

ods, e.g., two detections D1 and D2 would be regarded

the same event if the IoU of D1 is 51% and that of D2 is

100%. This is unreasonable because a good evaluation pro-

tocol should be able to reflect the discrepancy of detecting

tightness.

To this end, we follow and improve IC03 method that

directly uses the matching value to represent the score of

each item, i.e., binary [0, 100%] results are replaced by a

continuous [0-100%] index. However, unlike IC03, TIoU

guarantees that all GT can be matched only once. In ad-

dition, we use a more reasonable TIoU value as the score,

instead of using Eq. 3 and 4. Meanwhile, if the highest IoU

is less than 0.5, the score is set to 0. Therefore, equations 17

and 18 become

RecallSIoU =

∑
IoUi

Numgt

, (19)

PrecisionSIoU =

∑
IoUj

Numdt

. (20)

Equations 19 and 20 are referred to as the Score

Intersection-over-Union (SIoU) metric, which is now

tightness-aware for evaluating detection methods. To fur-

ther consider cutting and outlier intervention, we can use

the score of TIoU-Recall and TIoU-Precision to calculate

the results, as shown in equations 21 and 22:

RecallTIoU =

∑
TIoUrecall

Numgt

(21)

PrecisionTIoU =

∑
TIoUprecision

Numdt

(22)

3.3. The Solution of Onetomany and Manytoone
Metrics.

Based on our observation, the annotation inconsistency

exists on nearly all benchmark datasets. Currently, there is

no strict objective annotation protocol, and thus, such am-

biguous inconsistency is hard to avoid. Detection methods

cannot be fairly evaluated if the GT annotation is incon-

sistent. Taking the dataset of ICDAR 2015 challenge 4 as

an example: This dataset adopts word-level annotation, but

sometimes different words are stacked together even with-

out obvious interval. Some examples are shown in Fig. 4.

Mandatory labeling the text by words is practically demand-

ing for detection methods.

Figure 4. Examples of annotation inconsistency of GT images in

the ICDAR 2015 challenge 4 dataset. Some words without ap-

parent interval are separately annotated while some are annotated

with single bounding box.

The motivation of the OM and MO metrics is to solve the

inconsistency of annotation granularity because both word-

level and text-line detections may appear simultaneously,

and it is hard to judge which one is better for recognition.

Section 2 has already pointed out the weaknesses of the

existing OM and MO methods. This section presents a very

straightforward solution, i.e., the metric should be used with

both word-level and text-line annotations being provided.

However, to avoid redundant calculation of the same GT,

the evaluation requires thorough consideration. Taking the

IC15 dataset as an example, the evaluating steps can be out-

lined as follows (algorithm procedures can be found on ap-

pendix):

• Creating text-line annotations based on word-level an-

notations. Each text-line annotation contains at least t-

wo word annotations. All the “don’t cared” regions are

ignored in the former. Because IC15 test set contains

only 2077 GT boxes, the entire creation procedure is

very fast.

• The auxiliary text-line annotations are evaluated in ad-

vance with the same metric as that used for evaluating

word-level annotation. If a detection is matched to a

text-line GT, we can calculate the TIoU-precision ac-

cording to Eq. 12. In the subsequent word-level evalu-

ation stage, the matched detection is ignored. Then, we

use word-level annotation and Eq. 6 to decide whether
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the word-level GTs inside this text-line GT are suffi-

ciently recalled. If a word-level GT is recalled, the

text-line TIoU-Recall is given by:

TIoU∗
Recall =

A(Gj ∩Di) ∗ f(Ct)

A(Gj)
. (23)

In the next word-level evaluating stage, this GT would

be considered as “don’t cared”. If the GT is not suf-

ficiently recalled, the TIoU-Recall of this GT will be

calculated in word-level stage.

(a) MTS. (b) FEN. (c) R2CNN.

Figure 5. According to Table 1, the performances of these three

methods are comparable under previous metrics but different while

using TIoU metric. This is because TIoU can perceive the com-

pleteness of the target GT, the compactness of the detection, and

the tightness of the matching. We can also find that a detection that

achieves 0.9 or higher TIoU value is nearly perfect, which could be

directly served as a new manual annotation. MTS: MaskTextSpot-

ter.

(a) East. (b) PixelLink. (c) RRD.

Figure 6. The visualization results are corresponding to Table 2.

The performances of PixelLink and RRD are much better than East

under previous metrics. However, in TIoU metric, the results are

comparable, and East can even outperform RRD, which is mainly

because the detections of East are tighter than other two methods.

4. Experiments

This section quantitatively and qualitatively tested the

proposed TIoU metric on two most popular scene text de-

tection datasets - IC13 [9] and IC15 [8].

4.1. Quantitative evaluation

Quantitative experiments have been conducted to eval-

uate the differences between the previous metrics and the

proposed TIoU metric. To evaluate the results, several state-

of-the-art methods were adopted. All the methods were s-

elected based on three criteria: 1) The methods have been

frequently referred to in the literature; 2) the authors are

willing to provide their detection results for our evaluation;

3) the authors or other researchers have published the source

code or test model, thus making the result easy to reproduce,

such as PixelLink [2]. Some results of IC13 directly used

the model of IC15 provided by the authors (because they

did not provide IC13 model).

In addition, we further compared the metrics by several

popular general object detection frameworks on the IC13

dataset. All the training data for these general detection

frameworks are strictly the same, including 1715 samples

from FORU [27] and 229 samples from the official IC13

training set.

To further demonstrate the effectiveness of the TIoU

metric, we adopted two recognition methods (CRNN [24]

and RARE [25]) to evaluate end-to-end results. The end-

to-end metric assesses the localization in the same way as

detection task, and then evaluate the recall, precision, and

Hmean based on transcription perfect match [8].

The results are shown in Table 1 and Table 2, respective-

ly. From Table 1, several new prospects can be observed:

• The values of TIoU show a similar tendency as end-

to-end evaluation results. For example, Faster R-

CNN outperforms SSD by 5% in the original IoU met-

ric (0.676 vs. 0.626); however, in TIoU metric, the

latter surpasses the former by almost 5%, which is cor-

responding to End-to-end results: For Fe1 and Fe2, the

latter exceeds the former by 7.8% and 6%, respective-

ly. To make it clearer, we further draw a line chart

which can be more intuitive to visualize the correla-

tions, as shown in Figure 7. From the figure, we can

find the results of the Fe1, Fe2, and FTIoU are ex-

tremely similar whereas the results of the FIoU are

clearly different from the other three results. On the

other hand, the correlation coefficients r(FTIoU ; Fe1)

and r(FTIoU ; Fe2) are higher than r(FIoU ; Fe1) and

r(FIoU ; Fe2), with 0.5% and 2.6%, respectively.

• TIoU is tightness-aware. FEN, R2CNN, and Mask-

TextSpotter (MTS) are comparable under previous

metrics; however, in TIoU metrics, the results are

much different, with 0.751, 0.704, and 0.769, respec-

tively for these three methods. This is mainly because

the TIoU is tightness-aware: Examples are shown in

Fig. 5, MTS is the tightest method, and next is FEN

and R2CNN, which are corresponding to the TIoU

ranks.
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Table 1. Comparison of evaluation methods on ICDAR 2013 for general detection frameworks and previous state-of-the-art methods. det:

DetEval. i: IoU. e1: End-to-end recognition results by using CRNN [24]. e2: End-to-end recognition results by using RARE [25]. t:

TIoU.
Methods Rdet Pdet Fdet Ri Pi Fi Re1 Pe1 Fe1 Re2 Pe2 Fe2 Rt Pt Ft

Faster R-CNN (VGG16) [22] 0.410 0.549 0.469 0.615 0.752 0.676 0.396 0.432 0.413 0.406 0.442 0.423 0.377 0.554 0.448

SSD (300x300) [14] 0.476 0.88 0.618 0.484 0.886 0.626 0.398 0.639 0.491 0.391 0.629 0.483 0.377 0.727 0.496

YOLO-v2 (320x320) [20] 0.431 0.772 0.553 0.481 0.877 0.621 0.372 0.548 0.443 0.526 0.571 0.547 0.339 0.682 0.453

YOLO-v3 (320x320) [21] 0.648 0.823 0.725 0.68 0.874 0.765 0.519 0.611 0.561 0.523 0.516 0.566 0.502 0.696 0.583

YOLO-v3 (512x512) [21] 0.694 0.867 0.771 0.721 0.895 0.799 0.566 0.65 0.605 0.585 0.672 0.625 0.549 0.73 0.627

Mask R-CNN [5] 0.767 0.793 0.780 0.718 0.715 0.716 0.544 0.494 0.518 0.58 0.525 0.551 0.527 0.545 0.536

R-FCN (resNet-50) [1] 0.603 0.796 0.686 0.656 0.869 0.748 0.527 0.627 0.573 0.543 0.647 0.59 0.488 0.712 0.579

Faster R-CNN-FPN [13] 0.674 0.882 0.764 0.686 0.875 0.769 0.578 0.678 0.624 0.597 0.699 0.644 0.551 0.737 0.631

RetinaNet (resNet-50-FPN) [13] 0.452 0.901 0.602 0.46 0.906 0.611 0.409 0.744 0.528 0.385 0.7 0.497 0.375 0.77 0.504

East [32] 0.707 0.816 0.758 0.731 0.835 0.779 0.588 0.595 0.591 0.6 0.607 0.603 0.567 0.684 0.620

SegLink [23] 0.6 0.739 0.662 0.572 0.666 0.615 0.485 0.497 0.491 0.495 0.507 0.501 0.387 0.471 0.425

PixelLink [2] 0.633 0.679 0.655 0.621 0.618 0.619 0.539 0.481 0.508 0.549 0.489 0.517 0.432 0.442 0.437

TextBox [11] 0.731 0.896 0.805 0.741 0.892 0.809 0.594 0.643 0.618 0.614 0.664 0.638 0.564 0.712 0.629

SWT-MSER [3, 19] 0.371 0.258 0.305 0.17 0.181 0.175 0.083 0.075 0.079 0.317 0.243 0.275 0.122 0.136 0.129

FEN [30] 0.899 0.947 0.923 0.885 0.934 0.909 0.719 0.716 0.717 0.759 0.757 0.758 0.721 0.783 0.751

R2CNN [7] 0.905 0.943 0.923 0.875 0.908 0.891 0.745 0.732 0.738 0.762 0.749 0.756 0.687 0.721 0.704

MaskTextSpotter [17] 0.886 0.95 0.917 0.873 0.935 0.903 0.751 0.752 0.752 0.766 0.766 0.766 0.733 0.809 0.769

WordSup [6] 0.871 0.928 0.899 0.702 0.821 0.757 0.611 0.648 0.629 0.624 0.662 0.642 0.533 0.626 0.575

AF-RPN [31] 0.896 0.945 0.92 0.854 0.902 0.877 0.731 0.72 0.725 0.756 0.744 0.75 0.665 0.711 0.687

Table 2. Comparison of metrics on the ICDAR 2015 challenge 4. Word&Text-Line Annotations use our new solution to address OM and

MO issues. i: IoU. s: SIoU. t: TIoU.

Methods
Original Word-level-Only Annotations Word&Text-Line Annotations

Ri Pi Fi Rs Ps Fs Rt Pt Ft Ri Pi Fi Rt Pt Ft

SegLink [23] 0.728 0.802 0.764 0.54 0.594 0.566 0.467 0.581 0.517 0.747 0.836 0.789 0.505 0.598 0.548

East [32] 0.772 0.846 0.808 0.593 0.65 0.62 0.528 0.635 0.576 0.785 0.864 0.823 0.567 0.64 0.601

RRD [12] 0.778 0.868 0.821 0.594 0.663 0.627 0.515 0.652 0.575 0.783 0.879 0.829 0.53 0.653 0.585

PixelLink [2] 0.817 0.829 0.823 0.616 0.626 0.621 0.552 0.618 0.583 0.829 0.851 0.84 0.585 0.627 0.605

TextBox++ [10] 0.808 0.891 0.847 0.619 0.683 0.649 0.537 0.672 0.597 0.812 0.9 0.854 0.549 0.67 0.603

DMPNet [15] 0.765 0.757 0.761 0.564 0.558 0.561 0.479 0.546 0.51 0.781 0.779 0.78 0.512 0.554 0.532

WordSup [6] 0.773 0.805 0.789 0.568 0.591 0.579 0.49 0.577 0.53 0.785 0.831 0.807 0.522 0.588 0.553

R2CNN [7] 0.828 0.887 0.855 0.641 0.687 0.663 0.559 0.676 0.612 0.831 0.901 0.865 0.577 0.676 0.622

AF-RPN [31] 0.832 0.891 0.861 0.645 0.69 0.667 0.577 0.677 0.623 0.844 0.912 0.877 0.607 0.681 0.642

MaskTextSpotter [17] 0.795 0.89 0.84 0.6 0.671 0.633 0.527 0.658 0.585 0.803 0.906 0.851 0.549 0.662 0.6

(a) Line chart. (b) Correlation coefficients.

Figure 7. (a) X-axis represents the detection methods listed in Ta-

ble 1, and Y-axis represents the values of the F-measures. (Zoom

in for better visualization)

• Text detection is still a challenging task. Compar-

ing the TIoU metric and previous metrics among all

detection methods, most of the results consistently de-

crease by more than 10%, which indicates there are

still insufficiencies of text detection methods. In ad-

dition, even the best performance of TIoU Hmean is

under 0.8, which further shows that designing a robust

text detection method is not an easy task.

Experiments on the IC15 dataset also demonstrate the

effectiveness of the proposed metrics, as shown in Table 2:

• TIoU is also tightness-aware on multi-oriented

dataset. For example, PixelLink and RRD outperfor-

m East in previous IoU metric Fi; however, the gap

reduces using SIoU Fs, which indicates that the de-

tections of East are tighter; in TIoU metric Ft, East

can further surpass RRD. This is because TIoU metric

can reflect the tightness of different detection meth-

ods. As some detection results shown in Fig. 6, al-

though the rotated detecting rectangles of RRD satis-

fy the requirement of previous IoU metric, they may

cut the GT regions to some extent, which is the main

reason that cause the decrease of TIoU. This example

also implies that tighter quadrilateral detection meth-

ods may reasonably be more benefit from TIoU metric
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than rectangle-based methods.

• Objectively evaluated Text-line detections. Because

there are many ambiguous annotation granularities on

the IC15 dataset (shown in Fig. 4), we have added

the text-line level annotations of this dataset, and us-

ing our new solution (details in Section 3.3) for OM

and MO matching. The results show that the results

of all methods can be increased by different degrees in

both the IoU and the TIoU metrics. This is mainly be-

cause some fine text line detections are fairly evaluated

instead of treating them as false positives. For exam-

ple, before using our new Joint-word&text-line eval-

uation metric, TextBox++ outperformed PixelLink for

a large margin (2.4%). However, the former is worse

than the latter by 0.2% with joint text-line annotations.

The variation can be explained by visualization results

shown in Fig. 8. The quantitative and qualitative re-

sults both demonstrate that our solution can reveal the

potential novelty of segmentation-based methods.

(a) Original GT. (b) PixelLink. (c) TextBox++.

Figure 8. Examples of ambiguous detections by different meth-

ods. If using original metrics, detections of PixelLink in this fig-

ure are false positives, which is the main reason that PixelLink

(0.823) is worse than TextBox++ (0.847) (refer to Tab. 2). While

using our joint word&text-line solution, such text-line detections

can be fairly evaluated, and PixelLink (0.605) can even outperform

TextBox++ (0.603) in TIoU metric (refer to Tab. 2).

4.2. Qualitative evaluation

Fig. 3 shows some examples of the qualitatively evalu-

ated results. If previous IoU metrics are used, all detections

and target GTs of Fig. 3 are considered to have 100% pre-

cision and recall because the their IoUs are all higher than

0.5. Clearly, this is unreasonable because some detection-

s significantly reduce the recognition performance, such as

Detection #1 in Fig. 3 (a) and Detection #3 in Fig. 3 (b).

Using the TIoU metric can assist in avoid these phe-

nomenons. As shown in Fig. 3, the TIoU recall and preci-

sion are associated to recognition to some extent. For exam-

ple, NED of detection #1 in (a) is 0.625, which means only

37.5% of the text can be correctly recognized because of

the cutting effect. In this case, the TIoU-recall is also equal

to 37.5%. This coincidence doesn’t imply there is a specific

relationship between the TIoU and recognition performance

because NED can vary depending on the recognition meth-

ods. However, in Fig. 3, it is intuitive that high NED cases

usually have a relative strong penalizes of TIoU value. Note

that, for some high IoU (but not perfect detections) such as

Detection #2 in Fig. 3 (a), the recall only decreases slight-

ly (from 0.891 to 0.866), which still meets our subjective

judgment.

5. Conclusion

In this paper, we presented a goal-oriented TIoU metric

to address many drawbacks of previous metrics. The TIoU

metric is simple but intuitive, which moderately consider

two common detection behaviors that may significantly in-

fluence the recognition. It uses the TIoU score as a measure

of recall and precision to perceive the tightness of detection

methods. Quantitative experiments on ICDAR 2013 and IC-

DAR 2015 datasets showed that the proposed metric has a

similar tendency of the end-to-end detection and recogni-

tion results among general object detection frameworks and

previous state-of-the-art text detection methods. Qualitative

experiments further demonstrated the reduction from previ-

ous IoU to TIoU is mainly because TIoU can perceive and

quantify the tightness of detections.

In addition, because the previous one-to-many and

many-to-one metrics have many drawbacks, we proposed

a straightforward solution to solve these issues. The result-

s on the ICDAR 2015 dataset show that all methods can

be improved with different degrees using our new solution.

This is mainly because the proposed method can reasonably

evaluate the text-line detections instead of roughly regard-

ing them as false positives.

In future, we will try to use TIoU metric to guide train-

ing because its characteristics may be benefited to provide

a strong supervision. In addition, it can also be used to help

incremental or semi-supervised learning because TIoU can

judge whether a detection is suitable to serve as a new GT

annotation.
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