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Abstract

Many time-series classification problems involve devel-

oping metrics that are invariant to temporal misalignment.

In human activity analysis, temporal misalignment arises

due to various reasons including differing initial phase, sen-

sor sampling rates, and elastic time-warps due to subject-

specific biomechanics. Past work in this area has only

looked at reducing intra-class variability by elastic tempo-

ral alignment. In this paper, we propose a hybrid model-

based and data-driven approach to learn warping functions

that not just reduce intra-class variability, but also increase

inter-class separation. We call this a temporal transformer

network (TTN). TTN is an interpretable differentiable mod-

ule, which can be easily integrated at the front end of a

classification network. The module is capable of reducing

intra-class variance by generating input-dependent warp-

ing functions which lead to rate-robust representations. At

the same time, it increases inter-class variance by learning

warping functions that are more discriminative. We show

improvements over strong baselines in 3D action recogni-

tion on challenging datasets using the proposed framework.

The improvements are especially pronounced when training

sets are smaller.

1. Introduction

Guaranteed invariances of machine learning algorithms

to nuisance parameters is an important design consideration

in critical applications. Classically, invariances can only be

guaranteed under a model-based approach. Learned repre-

sentations however have not been able to guarantee invari-

ances, except by empirical tests [8]. Learning invariant rep-

resentations that build on analytical models of phenomena

may hold the cue to bridge this gap, and can also help lend

explainability to the model.

However, deep learning presents a challenge for learn-

ing explainable invariants, primarily due to incompatibility
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between the mathematical approaches that underly invari-

ant design, and the architectures prevalent in deep learn-

ing. There have been recent attempts at leveraging model-

based and data-driven approaches to learn invariant repre-

sentations across spatial transforms [16, 14, 38], illumi-

nation [33, 21], and viewpoints [20]. On the other hand,

learning invariant/robust representations to temporal rate-

variations has received significantly less attention. If tack-

led well, many applications of human activity modeling will

benefit, including more robust recognition algorithms for

human-robot interaction, richer synthesis of human motion

for computer-generated imagery, and health applications.

Hybrid model- and data-based approach: In this pa-

per, our chosen application is activity classification from

RGBD devices, where skeleton data are available. Activ-

ities such as walking can be performed at different rates by

different subjects owing to physiological and biomechani-

cal factors. We would like to design representations that

provide robust classification against such nuisance factors.

To do this, we adopt a model-based approach, and constrain

certain layers in deep network using the model. The model

for temporal variability is adopted from past work in elas-

tic temporal alignment which considers temporal variability

as a result of a temporal diffeomorphism acting on a given

time-series [31]. The space of such diffeomorphisms has a

group structure, and can be converted to simpler geometric

constraints by exploiting contemporary square-root forms

to represent the diffeomorphic maps [29].

Compatibility with deep architectures: We design a

novel module, which we refer to as a Temporal Transformer

Network (TTN). The hallmark of this module is that it can

be easily integrated into existing time-series classifiers such

as Temporal Convolution Networks (TCNs) [17] and Long

Short-Term Memory (LSTM) networks [9]. TTN is ex-

plainable in the sense that it is designed so as to interact

with the classification network in a predefined, predictable

and visualizable manner. TTN is a trainable network added

at the beginning of the classifier and operates on the input

sequence by performing selective temporal warping of the

input sequences. As such, it has the ability to factor out
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Figure 1. The Temporal Transformer Network (TTN) is a trainable module that is easily added at the beginning of a time-series classifier.

Its function is to warp the input sequences so as to maximize the classification performance, as shown in the figure for two classes of

waveforms which become more discriminative after passing through the TTN. The sub-modules of the TTN are explained in Section 4.

rate variations, if present in the data, as well as increase the

inter-class separation by learning to align sequences in dis-

similar classes away from each other.

Application impact: Recognition of human activities

from motion capture (mocap) systems such as OptiTrack

or depth sensors like Microsoft Kinect and Intel RealSense

has been gathering a great deal of interest in the recent past.

The cost of these sensors is ever-reducing and the increas-

ing effectiveness of pose estimation algorithms (e.g. [34])

makes 3D skeletons an important sensing modality for ac-

tion recognition. As the problem of action recognition

presents a large amount of variability both inter-class as

well as intra-class, we choose it as the focus of this paper.

Contributions

• We propose the Temporal Transformer Network (TTN),

which performs joint representation learning as well as

class-aware discriminative alignment for time-series clas-

sification including action trajectories.

• We design the TTN to generate highly expressive non-

parametric, order-preserving diffeomorphisms.

• The TTN exploits the non-uniqueness of the optimal

alignment (between equivalence classes) to generate dis-

criminative warps for improved classification.

• The proposed TTN can be easily integrated into existing

time-series classification architectures, with just a single

line of code to employ the warping module.

We validate our contributions by demonstrating improved

performance on small and large, and real and synthetic

datasets, for action recognition from 3D pose obtained from

two different modalities – Kinect and mocap. The com-

bined architecture of the TTN and the classifier consis-

tently yields improved classification performance compared

to several baseline classifiers.

2. Related work

Deep learning of invariant representations: One of the

main inspirations for this work is the paper by Jaderberg et

al. [11] on Spatial Transformer Networks (STNs) where a

smaller network first predicts a geometric transform of the

input grid parameterized by affine transforms or thin plate

splines. The transformation is then applied to the input be-

fore feeding it to the classification network. A recent work

is that of Detlefsen et al. [4] who improve the performance

of spatial transformers by replacing affine transforms and

thin plate splines with a richer class of parameterized dif-

feomorphic transforms called continuous piecewise-affine

transforms, but at the expense of complex implementation

and considerably longer training times. Both these works

are aimed at building invariances to spatial geometric trans-

forms of images. Capsule networks by Sabour et al. [25]

expand the expressive capacity of CNNs by allowing them

to learn explicit spatial relationships. An interesting recent

work by Tallec and Ollivier [32] show that LSTM networks

have the capability to learn to warp input sequences. Our

experiments show that by integrating LSTMs with the mod-

ule designed in this paper, the performance can be further

increased, as the proposed framework can also lead to more

discriminative representations.

In this paper, we design a module to predict warping

functions in the temporal domain which when applied to the

input sequences lead to higher classification performance.

This requires the predicted warping functions to satisfy the

order-preserving property. Moreover, in our case, the pre-

dicted warping functions are non-parameterized, can span

the entire space of rate-modifying transforms and are much

more expressive than earlier related works. The warping is

also elastic, as opposed to rigid deformations which is the

case with STNs. We note that these are important design

requirements in the case of temporally varying signals, that

are different from transforms in the 2D spatial domain.

Alignment of time-series data: The most commonly

used method to align time-series data is Dynamic Time

Warping (DTW) [2, 26]. DTW tries to minimize the L
2

distance between two time series after a time warping is
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applied to one of them, and is agnostic of class informa-

tion. To address some of DTW’s shortcomings, new meth-

ods have been proposed recently, including the elastic func-

tional data and shape analyses [30, 31] which defined proper

metrics that are invariant to time warping, and soft-DTW

which is a differentiable loss function that may be integrated

into neural networks [3]. There are also several works on

Canonical Time Warping (CTW) for multimodal data where

the time series from different streams are projected to a

common space (similar to canonical correlation analysis)

before aligning them [43]. Deep learning versions of CTW

have also been proposed recently [36, 35, 12].

One of the major differences between our proposed

method and the aforementioned optimization-based time

warping methods is that our approach performs discrimina-

tive warping based on class information and does not need

signal templates. This is further discussed in Section 4.

During the preparation of this document, we came across

the paper by Oh et al. [24] who propose a similar architec-

ture for clinical time series data classification but restricted

to the space of linear time scaling and offsets.

3D action recognition using deep learning: As sensing

systems like Microsoft Kinect, Intel RealSense and camera-

based mocap systems are getting more effective at acquir-

ing depth and at human pose estimation with centimeter-

to millimeter-level accuracy, research and commercial in-

terest in employing 3D pose data for action recognition has

understandably increased. Recent experiments suggest that

for small datasets, recognition accuracies are better with 3D

pose information compared to video frames [7]. That sim-

ple landmark-based or skeleton-based action recognition

can be effective is supported by evidence from works in psy-

chology which show that humans are excellent at recogniz-

ing actions only from a few points on the human body [13].

Recurrent neural architectures, especially Long Short-

Term Memory (LSTM) networks have been used to per-

form 3D action recognition e.g. [5, 27]. Song et al. pro-

pose including layers for spatial and temporal attention

(STA-LSTM) [28] which greatly improves the recognition

performance. For majority of the experiments in this pa-

per, we will use the Temporal Convolution Network (TCN)

with residual connections [18] as they are effective, sim-

ple to build and faster to train compared to LSTM-based

networks. Additionally, Kim and Reiter have shown excel-

lent results on using TCNs for 3D action recognition [17].

This network outperforms STA+LSTM [28] for 3D action

recognition. They further show that TCNs can learn both

spatial and temporal attention without the need for special

attention layers. Also, the network filter activations are in-

terpretable by design because of the residual connections.

We also note that the TCN architecture presented in [17]

incorporates pooling mechanisms inside the network.

We note that more recently, newer architectures have

proposed modifications to baseline architectures by using

graph convolutions to better take into account the spatial

structure of the joints in the human body [39]. However, it

has a much higher computational load. Other representa-

tions include image-based ones [15, 20], and fusing skele-

ton information with velocity information [19] etc. Our

contributions in this paper are orthogonal to these works,

and the main focus of the paper is to design a specialized

module for learning rate-robust discriminative representa-

tions. As such, for our experiments, we choose two effec-

tive widely used simple-to-implement architectures as our

baselines – TCNs and LSTMs – and demonstrate improve-

ments in recognition performance over these frameworks.

3. Diffeomorphic models for rate variation

A continuous time-series can be represented as a single-

parameter curve, which we denote by α(.), where t ∈ [0, 1]
is the parameter. In our case, t is time and we assume

α(t) ∈ R
N . Another curve β is a resampling of α if

β = α ◦ γ, where ◦ is a function composition, and γ is the

resampling/warping function. We focus on a specific set Γ
of these warping functions (defined below), and two curves

α1, α2 differing only by a change of rate of execution obey

the equation α1 = α2 ◦ γ, for some γ ∈ Γ. Figure 2 shows
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Figure 2. Top-left, Bottom-left: the trajectories and sampling

points of the same action (“wearing jacket”) before and after a

time warping (Center). The parameterized trajectories are visual-

ized in R
3 by using the sums of x, y, z coordinates of all joints.

Notice how the time series of x, y, z, which are the inputs of a

neural network (Top-right and Bottom-right), are quite different

despite the action being the same. Here the action is segmented

and colored to highlight the rate variation.
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an example of such time warping, illustrated in R
3.

Given a 1-differentiable function γ defined on the do-

main [0, T ], for γ to be an element of Γ, γ needs to satisfy

the following conditions:

γ(0) = 0, γ(1) = 1, and γ(t1) < γ(t2), if t1 < t2 (1)

The above conditions fix the boundary conditions, and

imply that any γ ∈ Γ is a monotonically increasing func-

tion. This property is also called order-preserving which is

important to the current discussion of action recognition as

actions are critically dependent on sequencing/ordering of

poses/frames. It is easy to show that

• ∀γ1, γ2 ∈ Γ, γ1 ◦ γ2 ∈ Γ,
• γId ∈ Γ,
• ∀γ ∈ Γ, ∃γ−1 ∈ Γ s.t. γ ◦ γ−1 = γId, where γId(t) =
t, the identity warping function.

These properties imply that Γ admits a group structure with

the group action being function composition. We denote by

γ̇, the first derivative of γ ∈ Γ, or

γ(t) =

∫ t

0

γ̇(t)dt,

∫

1

0

γ̇(t)dt = γ(1)− γ(0) = 1 (2)

Further, due to the monotonically increasing property of

γ, we have γ̇ > 0. This, in conjunction with (2), implies that

γ̇ has the properties of a probability distribution function

(positive, and integrates to 1), and the corresponding γ is

thus equivalent to a cumulative distribution function.

As we work with digitized signals from sensors such as

Kinect and mocap, we represent a discrete time series (ei-

ther signals or features) by X = {x1,x2, . . . ,xT }. In this

paper, we will work with time series in R
N . Each xt ∈ R

N

is called a frame of the sequence X . More clearly, we have

α(t) = xt, t ∈ {1, 2, . . . , T}. The warping function in

the case of a discrete time signal is a discretized version

of γ ∈ Γ, which we represent using γ with a slight abuse

of notation. The derivative γ̇ can be approximated by first

order numerical differencing. Thus, (2) now becomes

γ(t) =

t
∑

i=1

γ̇(i) and
1

T

T
∑

i=1

γ̇(t) = 1. (3)

Two sequences α and β are said to be equivalent if there

exists a γ ∈ Γ such that α = β◦γ, and the set {α◦γ |γ ∈ Γ}
is called the equivalence class of α under rate variations

and is denoted by [α]. In classical elastic alignment, given

two signals, a metric between sequences is defined as the

minimal distance between their equivalence classes. This

approach can be used to develop class-specific templates,

and phase-amplitude separation [23] that reduces intra-class

variance, but does not promote inter-class separation. Once

the equivalence classes are defined, metrics are designed

to compute distances between equivalence classes and de-

velop methods to compute statistical measures such as mean

and variance, which can be used to compute optimal align-

ments [31].

4. Temporal transformers for learning dis-

criminative warping functions
The main idea presented in this paper is to use a special-

ized module, which we call a Temporal Transformer Net-

work (TTN) for neural network-based classification which,

given an input test sequence X , generates a warping func-

tion γ used to warp the input sequence by computing X ◦ γ
and feed it to the classification network. It is important to

note that the warping is carried out using linear interpola-

tion. This makes it possible to train both the TTN and the

classifier jointly end-to-end as the entire pipeline is (sub-)

differentiable. Another notable aspect of this framework is

that the warping functions are predicted without a “class-

template”. Even though this sounds paradoxical, we will

soon show that this allows our framework to jointly learn

features as well as achieve discriminative warps. This capa-

bility makes our framework more powerful than template-

based matching techniques like Dynamic Time Warping

(DTW) and variants [2, 26].

Key Insight: Given two input sequences X1 and X2

such that they differ only by a warping transform, the

trained TTN would ideally predict γ1 and γ2, correspond-

ing to X1 and X2 respectively such that X1 ◦γ1 = X2 ◦γ2.

However, we note that γ1 and γ2 are not unique because

X1 ◦ γ1 ◦ γ = X2 ◦ γ2 ◦ γ, ∀γ ∈ Γ. We believe this to be

an important and often overlooked fact, and is formally re-

ferred to as invariance to group-action. The non-uniqueness

of the warping functions is not fully exploited in the tempo-

ral alignment literature. The goal in past works in alignment

has been to learn a class-specific template using an iterative

optimization method, which is not unique due to invariance

to group-action. Non-uniqueness here presents an opportu-

nity that can be exploited to develop discriminative warps

for classification problems.

The non-uniqueness of the warping functions can be ad-

vantageous as it expands the expressive capacity for classi-

fication. Minimizing intra-class variations — rate variations

in our case — is only one part of the problem. For classifica-

tion, we would also like to maximize inter-class variations.

For example, if we have four sequences X1, X2, X3 and X4

such that X1, X2 belong to Class A, and X3, X4 belong to

class B, the TTN has the capacity to predict γ1, γ2, γ3 and

γ4 such that

• d(X1 ◦ γ1, X2 ◦ γ2) < d(X1, X2)
• d(X3 ◦ γ3, X4 ◦ γ4) < d(X3, X4)
• d(Xi◦γi, Xj◦γj) > d(Xi, Xj), i ∈ {1, 2} & j ∈ {3, 4},

where d(.) is the Euclidean distance between sequences.

However, we do not explicitly train the networks to achieve

the above. Both the TTN and the classifier are trained so

as to maximize classification performance by minimizing

the cross-entropy loss between the predicted and true distri-

bution over the class labels given the input sequence. The

TTN can be divided into three sub-modules:
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Figure 3. Results on synthetic dataset 1. Rows 1 and 2 show waveforms corresponding to classes 1 and 2 respectively. Columns 1 and

2 show the test inputs and the TTN outputs respectively. It is clear by comparing these columns that the TTN outputs are much better

discriminated after warping. The TTN-predicted warping functions also show that the TTN performs class-dependent warping. Column 3

is a better visualization of column 2 after some post-processing making the mean of the generated warping functions γµ = γId (see text).

Trainable layers: As shown in Figure 1, the input to

the TTN trainable layers is an input sequence. The input is

then passed through a few layers of convolutions and fully-

connected layers. The network outputs a vector of length

T , such that the first element is set to be zero. T is the

length/number of frames in the input sequence. Let us de-

note this vector by v ∈ R
T .

Constraint satisfaction layers: The output v is uncon-

strained, and hence, we need to convert it into a valid warp-

ing function that satisfies Equation (1).

To this end, we first divide v by its norm to get a unit-

vector, followed by squaring each of its entries. This has the

effect of converting the vector into a point on the probability

simplex. Thus, we use the following mappings:

γ̇ =
v

‖v‖
⊙

v

‖v‖
, and γ(t) = T ·

t
∑

i=1

γ̇(i), (4)

where ⊙ is the Hadamard product (element-wise multiplica-

tion). This is treated as the network’s estimate of the deriva-

tive of the warping function, denoted by γ̇. We compute the

cumulative sum and multiply it by the length of the input se-

quence, T , in order to form the warping function γ as shown

in Equation (4).

Differentiable temporal resampling: The warping

function γ is then applied to the input sequence using lin-

ear interpolation. We assume that the sampling rate of the

signal is high enough in relation to the speed of the activity

that simple linear interpolation of the frames is sufficient

to get intermediate skeletons to look realistic (in practice,

20 frames/sec is plenty for most common action recogni-

tion applications). Warping is performed using the equa-

tion Y (tt) = X(ts) = X(γ(tt)), where X and Y are

the input and output sequences respectively, and ts and

tt are the source and target regular grid indices respec-

tively. The frames of Y are to be defined at regular inter-

vals tt = 1, 2, . . . , T . As the ts corresponding to tt may

not be integers, we use linear interpolation to find the val-

ues of X(γ(tt)). This operation is sub-differentiable, as in

the case of STN. Thus, we can write the expressions of the

required gradients as follows (these expressions are adapted

from Jaderberg et al. [11]). If Xj is the input sequence of

the jth joint, Xj
τ is the value at time index τ for channel j,

Y j is the warped sequence output by the TTN module and

i ∈ {1, 2, . . . , T} is the time index, we have

∂Y
j
i

∂X
j
τ

= max(0, 1− |tsi − τ |) and (5)

∂Y
j
i

∂tsi
=

T
∑

τ=1

Xj ·











0, if |tsi − τ | ≥ 1

1, if τ ≥ tsi

−1, if τ < tsi

(6)

5. Experimental results

All networks in this paper are trained and tested using

Tensorflow [1]. Due to space constraints, some training and

testing details and results are provided in the supplement.

5.1. Synthetic datasets

(1) Demonstrating discriminative properties of TTN:

We consider a two-class classification problem where the

two classes are one-dimensional time series signals of

length 100. Let us denote each sequence in the dataset

by X ∈ R
100. All the signals are Gaussian functions

with varying amplitude. Signals in class 1 are centered at

t = 0.55 while signals in class 2 are centered at t = 0.45.

Further, we corrupt the function with additive Gaussian
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Figure 4. Results on synthetic dataset 2. Rows 1 and 2 show waveforms corresponding to classes 1 and 2 respectively. Columns 1, 2 and

3 show the clean waveforms, test inputs (after random warping) and the TTN outputs respectively. It is clear by comparing these columns

that the TTN outputs are much more closely clustered especially for class 2, showing that the TTN outputs are robust to rate-variations.

Column 4 is a better visualization of column 3 after some post-processing making the mean of the generated warping functions γµ = γId.

noise (N (0, 0.2)). Samples of these functions are shown

in Figure 3. We generate 8000 training and 2000 test se-

quences evenly balanced between classes 1 and 2. We use

a simple classifier with a one-layer fully connected layer.

The TTN is a 2-layer network with 1 convolutional layer

producing 1 feature map with a filter of size 8, and 1 fully-

connected layer. We train the networks for 103 iterations

using Adam optimizer with an initial learning rate of 10−4

for the classifier. The weights of the TTN are updated at

one-tenth the learning rate of the classifier. Figure 3 shows

the test signals, corresponding outputs of the TTN, as well

as the TTN-generated warping functions for every test in-

put. It is clear from the figures that the TTNs predict class-

specific warping functions in order to separate the peaks in

the signals which makes them more discriminative. Note

that this behavior arises automatically by minimizing the

cross-entropy loss. In order to visualize the TTN outputs

better, we perform post-processing by warping the TTN

outputs with γ−1

µ , where γµ =
∑N

i=1
γi, where N is the size

of the test set. This experiment clearly shows that TTNs are

effective at increasing inter-class variations, as desired.

(2) Demonstrating rate-invariance of TTN: Here, we

construct a dataset such that rate variations in the signals are

the major nuisance parameter. In this scenario, intuitively,

minimizing classification error should lead to the following:

different signals belonging to the same class, but differing

only by a γ should come closer to each other after passing

through a trained TTN module. In class 1, we have sig-

nals which are N-waves with random warping applied and

additive Gaussian noise added to them. Signals in class 2

are similar except that they are Gaussian functions. As be-

fore, we generated 8000 training sequences and 2000 test

sequences evenly balanced between classes 1 and 2. These

are shown before (Column 1) and after random warping

(Column 2) in Figure 4. The TTN, classifier, training and

testing protocols are the same as in dataset (1) above. From

column 3 in Figure 4, it is clear the TTN leads to reduction

in intra-class rate variations.

5.2. ICL First­Person Hand Action dataset
In this section, we conduct experiments on a recently re-

leased real-world dataset of hand actions [7]. The dataset

contains 3D hand pose sequences with 21 joint locations per

frame of 45 daily hand action categories interacting with

26 objects, such as “pour juice”, “put tea bag” and “read

paper”. These sequences are performed by 6 subjects and

are acquired using an accurate mocap system. For our ex-

periments, we use the training/test splits suggested by the

authors of the dataset [7], with subjects 1,3,4 used for train-

ing and the rest for testing. The training set contains 600

sequences and the test set contains 575 sequences. As the

sequences are of varying lengths, we uniformly sample the

sequences such that all sequences contain 50 samples. If

the sequences are shorter than 50 samples, we use zero-

padding. As there are 21 joints per frame, each input se-

quence is of dimension 50 × 63 (21 × 3 = 63). We nor-

malize the sequences such that the wrist position of the first

frame is at the origin. We conduct our experiments with two

different types of classifiers widely used for action recogni-

tion: (1) Temporal Convolutional Network (TCN) and (2)

2-layer LSTM, showing that the proposed TTN framework

can yield better results for both the classifier architectures.

The TTN module consists of 3 fully connected layers

with tanh nonlinearity and hidden states of dimensions 16

and 16. The final FC layer produces a vector of length 50

(equal to the input sequence length), with the first element

set to zero (see Section 4).
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The TCN architecture contains 1 temporal convolutional

layer with 16, 32 or 64 feature maps, and 1 FC layer. We

refer to these networks as TCN-16, TCN-32 and TCN-64

respectively. We ran the algorithm 5 times with different

initializations of the TTN and report the mean and standard

deviation in Table 1.

The LSTM architecture is similar to the one proposed

in [7] containing two layers of LSTMs with a state dimen-

sion of 1024 and a dropout probability of 0.2. We use mo-

mentum optimizer with a momentum of 0.9 for training.

The results obtained are shown in Table 1. In addition to

our experiments, we have reported results given in [7] for

other important algorithms used for 3D pose-based action

recognition including JOULE-pose [10], Moving Pose [40],

Hierarchical Recurrent Neural Networks (HBRNN) [5],

Transition Forests (TF) [6], and Lie Groups [37] and the

Gram Matrix method [42], the last two of which also used

DTW for sequence alignment, as well as non-Euclidean

features to help improve performance. Among the base-

line neural networks, TCN-32 led to the best results for this

dataset, and addition of more layers did not yield better per-

formance. We observe that addition of the TTN consistently

improves performance over the baseline networks by 3.8

percentage points (TCN-16), 1.0 point (TCN-32), and 2.2

points (TCN-64). In the case of the LSTM classifier, we

observe an improvement of 2.25 points using TTN + LSTM

over just the LSTM. For the TCN-32 model, we performed

K-means clustering (with #clusters = #classes and av-

eraged over 100 runs) on the features at the output of the

conv. layer of the classifier for the test set, learned with

and without TTN. Then, we computed cluster purity (CP),

homogeneity (H) and completeness (C). Without the TTN,

CP = 0.519, H = 0.656, C = 0.705. Adding the TTN

module, we get improved scores of CP = 0.530, H =
0.664, C = 0.709.

Introducing distortions in the data: As datasets are

usually collected in lab settings, there are relatively “clean”

and do not contain many rate variations. Now, we introduce

artificial rate variations in the data in order to better illus-

trate the usefulness of the TTN module. Here, we set the

sequence length to 100 such that the original sequences of

length 50 range from t = 25 to 75, and the rest of the val-

ues are set to zero. Now, we apply random “affine warps”

to the training and test data. By an affine warp, we mean

a warping function of the form γ(t) = at + b, t = 25 to

75, which is a linear time-scaling with an offset. We use

a ∈ [0.75, 1.25] and b ∈ 0, 1, . . . , 49.

We observe that the induced distortion leads to a huge

drop in performance of TCN-32 from 81.74% to 70.43%.

With the TTN, the performance drop is much lower — from

82.75% to 78.26% and TTN+TCN-32 performs about 8 per-

centage points higher than TCN-32. Furthermore, from

Figure 6, which shows the inputs, generated warping func-

Method Accuracy (%)

Moving Pose [40] 56.34

JOULE-pose [10] 74.60

HBRNN [5] 77.40

TF [6] 80.69

Lie Group [37] 82.69

Gram Matrix [42] 85.39

2-layer LSTM 76.17

2-layer LSTM + TTN 78.43

TCN-16 76.28 ± 0.29

TCN-16 + TTN 80.14 ± 0.33

TCN-64 79.10 ± 0.76

TCN-64 + TTN 81.32 ± 0.36

TCN-32 81.74 ± 0.27

TCN-32 + TTN 82.75 ± 0.31

TCN-32 (affine warp) 70.43

TCN-32 + TTN (affine warp) 78.26
Table 1. Action recognition results on the ICL hand action dataset

showing that LSTM+TTN and TCN+TTN frameworks consis-

tently outperform LSTM and TCN baselines.

Figure 5. t-SNE plots for the test set features for the affine-warped

ICL dataset with and without TTN. When the TTN is employed,

we see a better separation of the clusters. This is also reflected in

the accuracy scores.

tions and the TTN outputs, it can be readily observed that

the TTN performs alignment of the sequences which then

makes the classification problem much easier. This exper-

iment shows that addition of the TTN enhances the inter-

pretability of the network, and also delivers superior per-

formance when there are larger rate variations in the data.

As before, we performed K-means clustering. Without the

TTN, CP = 0.327, H = 0.487, C = 0.545. Adding the

TTN module, we get improved scores of CP = 0.476, H =
0.611, C = 0.677. We also ran t-SNE [22] to visualize the

features in 2D. More pure and separated clusters are seen

with the addition of TTN, as shown in the Figure 5.

5.3. NTU RGB­D dataset
In this section, we conduct experiments on a large-

scale dataset of human actions known as the NTU RGB-D

dataset [27] which contains about 56000 sequences of 3D

skeleton positions acquired by a Microsoft Kinect. 25 joint

locations are provided for each skeleton. The dataset con-

tains actions belonging to 60 human activities performed by

45 subjects, with some actions containing two actors. The
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Figure 6. Visualizations of results of TCN-32 + TTN on ICL ac-

tion dataset with induced rate variations. In the left column are

waveforms corresponding to joint 1 of all test sequences. In the

right column, 4 of those sequences are shown for clarity. We see

clearly that the generated warping functions undo the affine-warp

distortion in the test data, and the TTN outputs are nearly perfectly

aligned leading to much better classification results.

data are acquired using a Microsoft Kinect. We sample 50

frames per sequence uniformly. We conduct two sets of ex-

periments for this dataset – Cross Subject (CS) and Cross

View (CV) – as per the protocol suggested by the authors

in [27] using the same training and testing splits.

We construct a TTN module with 2 temporal convolu-

tional layers and 3 FC layers with ReLU non-linearity. We

use a filter size of 8 and 16 output feature maps in each

conv layer. The FC layers produce hidden representations

of sizes 16, 16 and 50 respectively.

We use the Temporal Convolution Network (TCN) de-

scribed in [17]. The network consists of 10 convolutional

layers with batch normalization and ReLU non-linearity.

While training, the TTN parameters are updated at one-

tenth the learning rate of the TCN.

The results obtained for this dataset are shown in Table 2.

For cross-subject experiments, we observe that the addi-

tion of the TTN module results in a performance improve-

ment of about 1 percentage point over the baseline TCN.

We also found that using 2 parallel TTNs and concatenat-

ing the TTN outputs results in further improvement with

a final performance of 77.80%. The addition of the TTN

module leads to less improvement in the case of cross-view

experiment. This can be explained by the fact that there is

Method CS (%) CV (%)

Lie Groups [37] 50.08 52.76

FTP Dynamic Skeletons [10] 60.23 65.22

HBRNN [5] 59.07 63.97

2-layer part-LSTM [27] 62.93 70.27

STA-LSTM [28] 73.40 81.20

VA-LSTM [41] 79.40 87.60

STA-GCN [39] 81.50 88.30

TCN [17] 76.54 83.98

TCN + TTN 77.55 84.25
Table 2. Action recognition results on the NTU RGB-D dataset

showing that TCN+TTN frameworks outperforms the TCN.

likely less rate variation in the case of cross-view protocol

compared to cross-subject. The ablation studies for TTN

and TCN are provided in the supplement. As is the case

of the ICL dataset, we performed K-means clustering (with

#clusters = #classes and averaged over 100 runs) on the

features obtained at the penultimate layer of the TCN, and

computed the same clustering metrics. Without the TTN,

CP = 0.466, H = 0.575, C = 0.597. Adding the TTN

module, we get improved scores of CP = 0.493, H =
0.596, C = 0.621. The corresponding t-SNE plots are pro-

vided in the supplement showing improved clusters with the

addition of the TTN module.

6. Discussion and future work

In this work, we have proposed the Temporal Trans-

former Network (TTN) which can be readily integrated into

classification pipelines. TTN has the ability to generate

rate-invariant as well as discriminative warping functions

for general time-series classification. We have shown im-

proved classification results using different types of classi-

fiers – TCNs and LSTMs – on challenging 3D action recog-

nition datasets acquired using different modalities – Kinect

and mocap. We have demonstrated the rate-invariant and

discriminative properties of the TTN.

In the future, we would like to apply the ideas presented

in this paper to video action recognition. However, it is

not immediately clear how to perform temporal warping

for videos as the currently widely used features for video

frames may not be well suited for interpolation. One pos-

sible solution is to jointly train the image-level features and

the action classification pipeline along with the TTN mod-

ule. Temporal transformers can also be applied in general

time-series classification which includes recognition from

wearables, speech, EEG data, etc. Unsupervised pattern

discovery with inbuilt warp-invariant metrics will be an-

other interesting direction for further research.
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