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Abstract

Single image calibration is the problem of predicting

the camera parameters from one image. This problem is

of importance when dealing with images collected in un-

controlled conditions by non-calibrated cameras, such as

crowd-sourced applications. In this work we propose a

method to predict extrinsic (tilt and roll) and intrinsic (fo-

cal length and radial distortion) parameters from a single

image. We propose a parameterization for radial distor-

tion that is better suited for learning than directly predict-

ing the distortion parameters. Moreover, predicting addi-

tional heterogeneous variables exacerbates the problem of

loss balancing. We propose a new loss function based on

point projections to avoid having to balance heterogeneous

loss terms. Our method is, to our knowledge, the first to

jointly estimate the tilt, roll, focal length, and radial distor-

tion parameters from a single image. We thoroughly analyze

the performance of the proposed method and the impact of

the improvements and compare with previous approaches

for single image radial distortion correction.

1. Introduction

Single image calibration deals with the prediction of

camera parameters from a single image. Camera calibration

is the first step in many computer vision tasks e.g. Structure

from Motion, especially in applications where the captur-

ing conditions are not controlled is particularly challenging,

such as those relying on crowdsourced imagery.

The process of image formation is well understood and

has been studied extensively in computer vision [1], allow-

ing for very precise calibration of cameras when there are

enough geometric constraints to fit the camera model. This

is a well established practice that is performed daily on an

industrial scale, but requires a set of images taken for the

purpose of calibration. Geometric based methods can also

be used with images taken outside of the lab, performing
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Figure 1. Our method is able to recover extrinsic (tilt, roll) and

intrinsic (focal length and radial distortion) parameters from sin-

gle images (top row). In the bottom row, we visualize the predicted

parameters by undistorting the input images and overlaying a hori-

zon line, which is a proxy for the tilt and roll angles.

best on images depicting man-made environments present-

ing strong cues such as vanishing points and straight lines

that can be used to recover the camera parameters [2, 3].

However, since geometric-based methods rely on detect-

ing and processing specific cues such as straight lines and

vanishing points, they lack robustness to images taken in

unstructured environments, with low quality equipment or

difficult illumination conditions.

In this work we present a method to recover extrinsic

(tilt, roll) and intrinsic (focal length and radial distortion)

parameters given a single image. We train a convolutional

neural network to perform regression on alternative repre-

sentations of these parameters which are better suited for

prediction from a single image.

We advance with respect to the state of the art with three

main contributions: 1. a single parameter representation for

k1 and k2 based on a large database of real calibrated cam-

eras. 2. a representation of the radial distortion that is in-

dependent from the focal length and more easily learned by

the network. 3. a new loss function based on the projec-

tion of points to alleviate the problem of balancing hetero-
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geneous loss components.

To the best of our knowledge, this work is the first

to jointly estimate the camera orientation and calibration

jointly while including radial distortion.

2. Related Work

Recent works have leveraged the success of convolu-

tional neural networks and proposed using learned methods

to estimate camera parameters. Through training, a CNN

can learn to detect the subtle but relevant cues for the task,

extending the range of scenarios where single image cali-

bration is feasible.

Different components of the problem of learned single

image calibration have been studied in the past: Workman

et al. [4] trained a CNN to perform regression of the field

of view of a pinhole camera, later focusing on detecting the

horizon line on images [5], which is a proxy for the tilt and

roll angles of the camera if the focal length is known.

Rong et al. [6] use a classification approach to calibrate

the single-parameter radial distortion model from Fitzgib-

bon [7]. Hold-Geoffroy et al. [8] first combined extrin-

sic and intrinsic calibration in a single network, predicting

the tilt, roll and focal length of a pinhole camera through

a classification approach. They relied on upright 360 de-

gree imagery to synthetically generate images of arbitrary

size, focal length and rotation, an approach that we borrow

to generate training data. Classic and learned methods can

be combined. In [9], learned methods are used to obtain a

prior distribution on the possible camera parameters, which

are then refined using classic methods, accelerating the ex-

ecution time and robustness with respect to fully geomet-

ric methods. We do not follow such an approach in this

work. However, the prediction produced by our method can

be used as a prior in such pipelines.

When training a convolutional neural network for sin-

gle image calibration, the loss function is an aggregate of

several loss components, one for each parameter. This sce-

nario is usually known as multi-task learning [10]. Works

in multi-task learning deal with the challenges faced when

training a network to perform several tasks with separate

losses. Most of these approaches rely on a weighted sum

of the loss components, differing on the manner in which

the weights are set at training time: Kendall et al. [11] use

Gaussian and softmax likelihoods (for regression and clas-

sification, respectively) to weight the different loss compo-

nents according to a task-dependent uncertainty. In con-

trast to these uncertainty based methods, Chen et al. [12]

determine the value of the weights by adjusting the gradient

magnitudes associated to each loss term.

When possible, domain knowledge can be used instead

of task-agnostic methods in order to balance loss compo-

nents: Yin et al. [13] perform single image calibration of an

8-parameter distortion model of fisheye lenses. They note

the difficulty of balancing loss components of different na-

ture when attempting to directly minimize the parameter er-

rors and propose an alternative based on the photometric

error. In this work, we also explore the problem of balanc-

ing loss components for camera calibration and propose a

faster approach based on projecting points using the cam-

era model instead of deforming the image to calculate the

photometric error.

3. Method

We briefly summarize our method and describe the de-

tails in subsequent sections.

We train a convolutional neural network to predict the

extrinsic and intrinsic camera parameters of a given image.

To achieve this, we use independent regressors that share a

common pretrained network architecture as the feature ex-

tractor, which we fine-tune for the task. Instead of training

these regressors to predict the tilt θ, roll ψ, focal length f ,

and distortion parameters k1 and k2, we use proxy variables

that are directly visible in the image and independent from

each other. To obtain training data for the network, we rely

on a diverse panorama dataset from which we crop and dis-

tort panoramas to synthesize images taken using perspective

projection cameras with arbitrary parameters.

3.1. Camera Model

We consider a camera model with square pixels and cen-

tered principal point that is affected by radial distortion that

can be modeled by a two-parameter polynomial distortion.

The projection model is the following. World points

are transformed to local reference frame of the camera by

applying a rotation R and translation t. Let (X,Y, Z) be

the coordinates of a 3D point expressed in the local refer-

ence frame of the camera. The point is projected to the

plane Z = 1 to obtain the normalized image coordinates

(x, y) = (X/Z, Y/Z). Radial distortion scales the normal-

ized coordinates by a factor d, which is a function of the

radius r and the distortion coefficients k1 and k2:

r =
√

x2 + y2

d = 1 + k1r
2 + k2r

4 (1)

(xd, yd) = (d x, d y). (2)

Finally, the focal length f scales the normalized and dis-

torted image coordinates to pixels: (ud, vd) = (f xd, f yd).
In this work, we do not attempt to recover the position

of the images nor the full rotation matrix, as that would re-

quire the network to memorize the appearance of the en-

vironment, turning our problem of single image calibration

into a different problem, so-called place recognition.

Instead, we rely on the horizon line as a reference frame,

leaving two free parameters: the tilt θ and roll ψ angles

of the camera with respect to the horizon. This allows a
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Figure 2. We use an alternative representation for the camera pa-

rameters that is based on image cues: The network is trained to

predict the distorted offset ρ and vertical field of view Fv instead

of the tilt θ and focal length f . The undistorted offset τ is where

the horizon would be if there was no radial distortion.

network to be trained using images from a set of locations to

generalize well to other places, as long as there is sufficient

visual diversity.

Thus, the parameters to be recovered by the network are

the tilt and roll angles (θ, ψ), the focal length f and distor-

tion parameters k1 and k2.

3.2. Parameterization

As revealed by previous work [4, 5, 8], an adequate pa-

rameterization of the variables to predict can greatly bene-

fit convergence and final performance of the network. For

the case of camera calibration, parameters such as the fo-

cal length or the tilt angles are difficult to interpret from the

image content. Instead, they can be better represented by

proxy parameters that are directly observable in the image.

We begin by following already existing parameterizations

and propose new ones required to deal with the case of ra-

dially distorted images. We refer the reader to Figure 2 to

complement the text in this section.

We start by defining the horizon line as done in [5]: “The

image location of the horizon line is defined as the projec-

tion of the line at infinity for any plane which is orthogonal

to the local gravity vector.”. This definition also holds true

for cameras with radial distortion, however, the projection

of the horizon line in the image will not necessarily remain

a straight line.1

The focal length f is related to the vertical and horizontal

fields of view through the image size of height h and width

w. The field of view is directly related to the image content

and is thus more suitable for the task. We use the vertical

1If there is radial distortion, the horizon line (and any other straight

lines) will only be projected as a straight line in the image if it passes

through the center of the image.
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Figure 3. A distribution of k1 and k2 recovered from a large set

of SfM reconstructions reveals that, for many real cameras, these

parameters lie close to a one-dimensional manifold. We rely on

this to simplify our camera model such that k2 is a function of k1.

field of view, defined as

Fv = 2arctan
h

2f
, (3)

as a proxy for the focal length. During deployment of the

network, the image height h is known and the focal length

can be recovered from the predicted Fv .

The roll angle ψ of the camera is directly represented in

the image as the angle of the horizon line, not requiring any

alternative parameterization.

A good proxy for the tilt angle θ is the distance ρ from

the center of the image to the horizon line. Previous work

used such a parameterization for pinhole cameras with no

distortion [5], however, the presence of radial distortion

complicates this relationship slightly. We first define the

undistorted offset τ as the distance from the image center to

the horizon line when there is no radial distortion. It can be

expressed as a function of the tilt angle and the focal length:

τ = f tan(θ). (4)

The distorted offset ρ is related with τ by the radial distor-

tion scaling as expressed in Equation 2.

3.2.1 Distortion coefficients in real cameras

We simplify the radial distortion model by expressing k2 as

a function of k1. This decision was initially motivated by a

practical consideration: independently sampling k1 and k2
often results in unrealistically distorted images. For images

from real lenses, the distortion coefficients seem to lie in a

manifold. We confirm this by studying the distribution of

k1 and k2 on a large collection of camera calibrations.

We use Structure from Motion (SfM) with self-

calibration to perform reconstructions on image sequences

taken with real cameras to estimate their parameters. We
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f = 0.8, k1 = −0.13 f = 3.2, k1 = −2.05

Figure 4. The apparent radial distortion k̂1 represents the distortion

effect independently of the focal length f . In these images we

fix k2 = 0 and vary k1 and f while keeping a constant value of

k̂1 = −0.2. Note that the curvature of the lines remains constant

after zooming in.

downloaded a collection of 1000 street-level imagery se-

quences of 100 geotagged images each from Mapillary.2

These sequences were captured by a diverse set of over 300

cameras, including most popular consumer-grade smart-

phones and action cameras that have been in the market

for the last 4 years. Sequences were selected such that the

SfM reconstructions would constrain the camera parame-

ters: they present loop closures or trajectories that are not a

straight line (as reported by the GPS geotag). The camera

parameters of each sequence are recovered as part of the re-

construction through bundle adjustment [14]. Since SfM is

sensitive to the initial calibration parameters, we repeat the

reconstructions initializing with the newly estimated cam-

era parameters until convergence.

The resulting set of radial distortion coefficients is shown

in Figure 3, confirming our initial observation. We obtain an

analytic expression as a model of this distribution by fitting

a second degree polynomial

k2 = 0.019k1 + 0.805k21. (5)

We observe two main groups of lenses: Fisheye lenses,

exhibiting strong radial distortion, with k1 < 0 and positive

k2 increasing in a quadratic manner with the magnitude of

k1, and conventional lenses, with both k1 and k2 close to 0.

3.2.2 Apparent distortion

Inferring the value of k1 from an image is not trivial. A

human observer would probably make a guess based on

the bending of straight lines. Nevertheless, both the focal

length and the radial distortion coefficients determine such

bending. Radial distortion is more noticeable towards the

boundaries of the image but, as the focal length increases,

we gradually see a smaller crop of the center of the image.

2Mapillary is a crowdsourced street-level imagery platform.

As with the focal length and the tilt, we propose to use

an alternative parameterization to express k1 in terms of a

visible magnitude, i.e. the distortion that is observed in the

image. We will then train the network to predict an apparent

distortion coefficient that we denote as k̂1.

As stated in Section 3.1, the camera model projects

points (X,Y, Z) in the camera reference frame to 2D nor-

malized camera coordinates (x, y) = (X/Z, Y/Z).

In the absence of radial distortion, pixels are obtained

from the undistorted normalized coordinates as (u, v) =
(f x, f y). When there is radial distortion, the radius of the

normalized coordinates is first distorted before being con-

verted to pixels (ud, vd) = (f d x, f d y). In other words,

since the distortion is applied to the normalized image coor-

dinates, the visual effect not only depends on the distortion

parameters, but also also on the focal length.

Instead, we seek to represent the distortion effect as a

relationship between the distorted (ud, vd) and undistorted

pixels (u, v). Let us begin by expressing the radius of a

point r in normalized coordinates and its equivalent in pixel

units rpx :

r = rpx/f. (6)

The same relationship holds when there is distortion:

r(d) = r(d)px /f. (7)

The undistorted and distorted points in normalized camera

coordinates are related by Eq. 2 and can be expressed as

r(d) = r
(
1 + k1r

2 + k2r
4
)
, (8)

in which we substitute r and r(d) from Eqs. 6 and 7 to obtain

the relationship between the radii in pixel units, obtaining

the apparent distortion coefficients k̂1and k̂2:

r(d)px = rpx

(

1 +

k̂1
︷︸︸︷

k1
f2

r2px +

k̂2
︷︸︸︷

k2
f4

r4px

)

(9)

k̂1 = k1/f
2 (10)

Observe that for a fixed value of k1, k̂1 decreases as

f increases and vice-versa, representing the effect of ra-

dial distortion independently from f as shown in Figure 4.

Given a prediction of k̂1 and f , both recoverable from the

network outputs, k1 and k2 can be retrieved through equa-

tions 5 and 10.

In summary, we represent a camera’s intrinsic and ex-

trinsic parameters with Ω = (ψ, ρ, Fv, k̂1), where ψ is the

roll angle, ρ is the distorted offset, Fv is the vertical field of

view and k̂1 is the apparent radial distortion.
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Figure 5. An illustration of the projections used for the bearing

loss simplified by reducing it to two parameters: tilt θ (represented

by the orientation of the cameras) and focal length f . Two cam-

eras are used to project a regular grid of points x1 . . .xn onto

the unit sphere. The points p1 . . .pn, shown in green, are pro-

jected using the ground truth camera parameters Ω = (θ, f).
The points p′

1 . . .p
′

n are projected using the predicted parameters

Ω
′ = (θ′, f ′) and are shown in red. We obtain gradients for the

predicted camera parameters Ω
′ through backpropagation of the

mean squared distance between points p′

1 . . .p
′

n and p1 . . .pn.

3.3. Bearing Loss

When a single architecture is trained to predict parame-

ters with different magnitudes, special care must be taken

to weigh the loss components such that the estimation of

certain parameters do not dominate the learning process.

We notice that for the case of camera calibration, instead

of optimizing the camera parameters separately, a single

metric based on the projection of points with the estimated

and ground truth camera parameters can be used. Let us

begin with the observation that a camera model is essen-

tially a simplified bidirectional mapping from pixel coor-

dinates in the image plane to bearings (direction vectors)

in 3D [15, 16]. The camera intrinsic and extrinsic param-

eters determine the direction of one such bearing for each

pixel in the image. The proposed loss measures errors on

these direction vectors instead of individual parameter er-

rors, achieving the goal of representing all the parameter

errors as a single metric.

Given an image taken with known camera parameters

Ω = (ψ, ρ, Fv, k̂1) and a prediction of such parameters

given by the network Ω
′ = (ψ′, ρ′, F ′

v, k̂
′

1), the bearing loss

is calculated as follows.

First, a regular grid of points x1 . . .xn is projected from

the image plane onto the unit sphere using the ground

truth parameters Ω obtaining the ground truth bearings

p1 . . .pn.3

3In order to project the points, the original parameter set ψ, θ, f, k1, k2
required by the camera model is recovered from the proxy parameters Ω

using equations 2, 3, 4, 5.

Then, the parameters Ω
′ predicted by the network are

used to project the same grid points onto the unit sphere,

obtaining the set of predicted bearings p′

1 . . .p
′

n. We define

the bearing loss as the mean squared deviation between the

two sets of bearings:

L(Ω′,Ω) =
1

n

n∑

i=1

(p′

i − pi)
2. (11)

This process is illustrated in Figure 3.3.

To optimize this loss, the mapping from pixels to bear-

ings must be differentiable. This includes the radial undis-

tortion step, which does not have a closed-form solution.

Although there are several solutions for r in r(d) = r(1 +
k1r

2+k2r
4), the correct solution is that where r is closest to

r(d), which can be reliably found by performing fixed point

iteration4 of the function rn+1 = r(d)/(1+k1r
2
n+k2r

4
n) ini-

tialized at r0 = r(d). This process is differentiable and can

be used during training to backpropagate gradients through

the bearing loss.

3.3.1 Disentangling sources of loss errors

The proposed loss solves the task balancing problem by ex-

pressing different errors in terms of a single measure. How-

ever, using several camera parameters to predict the bear-

ings introduces a new problem during learning: the devi-

ation of a point from its ideal projection can be attributed

to more than one parameter. In other words, an error from

one parameter can backpropagate through the bearing loss

to other parameters.

For example, picture a scenario where, for a training

sample, the network predicts all parameters perfectly ex-

cept for an excessively small field of view: The predicted

bearings p′

1 . . .p
′

n are projected onto a smaller area on the

unit sphere than the ground truth bearings p1 . . .pn.

In this case, there is more than one parameter that could

be modified to decrease this distance: both the focal length

and the radial distortion parameters can be changed to de-

crease the loss, but only the value of the focal length should

be modified, as the radial distortion has been perfectly

predicted in this example. In other words, there will be

gradients propagating back through both parameters, even

though one of them is correct, causing the network to devi-

ate from the optimal solution. In practice, this slows down

learning and causes the accuracy to stagnate.

To avoid this problem, we disentangle the bearing loss,

4We implement this by repeatedly iterating and breaking on conver-

gence in PyTorch, but it rarely requires more than 4 steps to converge, so

it could be unrolled to a set number of iterations if using a framework that

relies on fixed computational graphs.
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Parameter Distribution Values

Pan φ Uniform [0, 2π)
Distorted offset ρ Normal µ = 0.046, σ = 0.6
Roll ψ Cauchy x0 = 0, γ ∈ {0.001, 0.1}
Aspect ratio w/h Varying {1/1 9%, 5/4 1%, 4/3 66%,

3/2 20%, 16/9 4%}
Focal length f Uniform [13, 38]
Distortion k1 Uniform [−0.4, 0]
Distortion k2 k2 = 0.019k1 + 0.805k21

Table 1. Distribution of the camera parameters used to generate our

training and validation sets. Units: f - mm, ψ- radians, ρ- fraction

of image height.

evaluating it individually for each parameter ψ, ρ, Fv , k̂1:

Lψ = L((ψGT , ρGT , FGTv , k̂GT1 ),Ω)

Lρ = L((ψGT , ρGT , FGTv , k̂GT1 ),Ω)

LFv
= L((ψGT , ρGT , FGTv , k̂GT1 ),Ω)

L
k̂1

= L((ψGT , ρGT , FGTv , k̂GT1 ),Ω)

L∗ =
Lψ + Lρ + LFv

+ L
k̂1

4
(12)

This modification of the loss function greatly increases

convergence and final accuracy, while maintaining the main

advantage of the bearing loss of expressing all parameter

errors in the same units.

3.4. Dataset

We use the SUN360 panorama dataset [17] to artificially

generate images taken with by cameras with arbitrary pan

φ, tilt θ, roll ψ, focal length f and distortion k1. High reso-

lution images of 9104 × 4452 pixels are used to render the

training and evaluation images as follows:

First, we divide the SUN360 dataset into training, evalu-

ation and test sets of 55681, 1298 and 165 images, respec-

tively. Separating the panorama dataset before generating

the perspective images ensures that no panoramas are used

to generate crops that end up in different datasets.

Then, from each panorama in the training and validation

sets, we generate seven perspective images by randomly

sampling the pan φ, offset ρ, roll ψ, aspect ratio, focal

length f and the distortion coefficient k1 from the proba-

bility distributions found in Table 1, resulting in a dataset of

389, 767 training and 9, 086 validation images.

In a practical scenario, the distribution of the training set

should be designed to mimic that of the images that will

be used when deploying the network. For this paper we

have selected simple distributions that are consistent with

those found in large online image databases: we take the

same distributions as in previous work [8], except for the

inclusion of k1 for radial distortion. Additionally, we have

modified the distribution of f to be uniform in order to avoid

obtaining images with large focal lengths since the effect of

radial distortion in such images is negligible5.

For the test set we followed a different approach,

sampling from the 165 panoramas in the panorama test

set more extensively and evenly by taking 100 crops

from each panorama and using uniform distributions

also for the roll angle ψ ∼ U(−π/2, π/2), distorted

offset ρ ∼ U(−1.2, 1.2) and aspect ratios w/h ∼
U{1/1, 5/4, 4/3, 3/2, 16/9}. This results in 16, 500 im-

ages for our test set.

4. Experiments

We use a densenet-161 [18] pretrained on ImageNet [19]

as a feature extractor and replace the classifier layer with

four regressors, each consisting of a ReLU-activated hidden

layer of 256 units followed by the output unit.

As explained before, images are generated with a vari-

ety of aspect ratios. We experimented with several ways

of feeding such images to the network: resizing, center-

cropping and letterboxing. Previous authors noticed bet-

ter results by square-cropping the images [5]. Like Hold-

Geoffroy et al. [8], we obtained best results by resizing the

images to a square. Even though there is deformation in the

image when its aspect ratio is changed, it appears to be that

keeping all of the image content by not cropping the image

is preferable to any negative effect the warping itself may

produce. All images are thus scaled to 224 × 224 pixels

before feeding them to the network.

We train the network by directly minimizing parameter

errors as well as using the proposed bearing loss. In the first

case, we minimize a sum of weighted Huber losses:

LH = wψL
H
ψ + wρL

H
ρ + wFv

LHFv

+ w
k̂1
LH
k̂1

(13)

For the bearing loss, the predicted and ground truth parame-

ters of each image are used to project bearings as described

in Section 3.3.

In both cases we minimize the losses using an Adam op-

timizer with learning rate 10−4 in batches of 42 images.

Through early stopping we finish training after 8-10 epochs.

We use a step learning rate decay such that the learning rate

is reduced by 30% at the end of each epoch.

4.1. Evaluation of the Loss Functions

We evaluate the bearing loss from Section 3.3 and com-

pare it to the weighted Huber loss (Eq. 13). The Huber loss

with unit weights performs better.

The results are comparable, except for the prediction of

k̂1 which does not perform as well with the bearing loss.

5An additional problem with the choice of a long-tailed distribution to

sample the focal length is that it may produce values for f equivalent to

very low resolution crops.
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Figure 6. Optimal selection of the weights when combining differ-

ent loss components can greatly influence training. In gray, models

trained with one weight in {wψ, wρ, wFv
, wk̂1} set to 100 and the

rest to 1. In red, a model trained with all weights set to 1. In green,

a model trained with the bearing loss. These results indicate that

selecting appropriate weights is important for this task, but that

with the proposed parameterization, selecting unit weights yields

results that are better than the proposed bearing loss.

However, that may not always be the case, for example,

when using a different camera model, as reported by Yin

et al. [13], or when using a different parameterization than

the one we propose here. It just happens that this parameter-

ization is well suited to be trained with unit weights. To il-

lustrate the effect of selecting less optimal weights, we have

trained several networks using the weighted sum of Huber

losses (Eq. 13) with different sets of weights and compare

the resulting validation error curves in Figure 6.

For the rest of the paper, our approach or our network

refer to a network trained by minimizing the proposed pa-

rameters (Fv, k̂1, ρ, ψ) directly using a sum of Huber losses

(Eq. 13) with wψ = wρ = wFv
= w

k̂1
= 1.

4.2. Effect of Distortion Parameterization

We compare the proposed parameterizations for the ra-

dial distortion coefficient and the radially distorted offset

with a naive approach. For this purpose, we train a base-

line network to predict the distortion coefficient and undis-

torted offset (k1, τ), instead of the proposed apparent distor-

tion and distorted offset (k̂1, ρ). The remaining parameters

(ψ, Fv) are as in our network. In both cases, we minimize

the sum of Huber losses from Eq. 13 with unit weights. The

remaining settings for the experiment are as described in

Section 4. After training, we compare the predictions of

both networks on the test set. Figure 7 shows scatter plots

comparing the predictions of k̂1 and k1, as well as those

of the distorted offset ρ and undistorted offset τ , revealing

that the proposed parameterization is easier to learn (more

accurately predicted) than the baseline.

-0.3 -0.1 -2.0 -1.0

k1 k̂1

-0.5 0.6 -0.5 0.6

τ ρ

Figure 7. A comparison of the predictions of two networks: Our

approach (predicting the apparent distortion k̂1 and the distorted

offset ρ) and a baseline predicting the distortion coefficient k1 and

the undistorted offset τ . The horizontal and vertical axes in each

plot represent the ground truth and predicted values, respectively.

The diagonal line indicates a perfect prediction. Learning to pre-

dict k̂1 is an easier task than directly predicting k1, as it is inde-

pendent of the focal length f . The distorted offset ρ is also easier

to predict than the undistorted offset τ , since it is directly visible

in the image and is independent of the distortion.

4.3. Error Distributions

There is a lack of consensus when evaluating single im-

age calibration networks: some previous works follow a

classification approach and directly report accuracy values

[5]. Others establish a threshold on the regression errors and

also report accuracy values [8, 4]. Yin et al. [13] report peak

signal-to-noise ratio structural similarity errors. Rong et al.

[6] use a metric based on straight line segment lengths that

is only meaningful for radial distortion correction. Hold-

Geoffroy et al. [8] report error distributions grouped accord-

ing to the ground truth values in a box-percentile chart.

We follow the evaluation procedure from [8] of reporting

the error distributions of the predicted parameters. How-

ever, instead of reporting errors in terms of the alternative

parameterization used to ease learning (roll ψ, distorted off-

set ρ, field of view Fv and apparent radial distortion k̂1),

we report the errors in: roll ψ, tilt θ, focal length f and ra-

dial distortion coefficient k1, since they are more commonly

used than the proposed parameterization and can be easily

compared with other approaches.

These error distributions are shown in Figure 8. The di-

agonal plots show the error distribution of the prediction

of each parameter with respect to its ground truth value.

We also study the error distributions of each parameter with

respect to the ground truth values of the other parameters.

This is shown in the off-diagonal plots, revealing some in-

teresting insights. For example, the plots from the first col-

umn indicate the error distributions of all parameters with

respect with the ground truth value of the tilt angle θ. No-

tice that when θ is small (i.e. when the horizon is close to

the center of the image), the prediction errors for the tilt and

roll angles are small as well, while the errors for the focal

length f and the radial distortion coefficient k1 are relatively

large. This is expected as many lines in the world are ver-

tical and parallel to the image plane when the tilt is zero,
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Figure 8. Errors on the test set of 16,500 images. The horizontal axis represents the ground truth values, while the vertical axis represents

the absolute error of the predictions. We show errors as a function of the ground truth value of the same parameter, as well as as a function

of other parameter’s ground truth values.

providing no information for predicting the focal length.

As stated in Section 3.4, the training set should be gen-

erated to replicate the distribution of images that will be

seen when deploying such a network. We expect the error

distributions to change according to the distribution of the

training data, since the span of these data directly relates to

the difficulty of the problem. For this reason, the absolute

errors seen in Figure 8 are not as relevant as the relation-

ships among them. These errors should be studied for the

specific application domain where a network like this is to

be deployed.

4.4. Comparison with Geometric­based Undistor­
tion

Plumb-line methods are a well-known approach for sin-

gle image undistortion in the wild. These techniques predict

lens distortion based on the detected curvature of lines. We

compare our method to a state of the art plumb-line algo-

rithm by Santana-Cedrés et al. [20]. Since they use a differ-

ent parameterization for the radial distortion, we compare

the photometric mean squared error on images from the test

set undistorted by both methods [21].

We obtain a lower MSE in 89% of the images in the

test set, but notice differences depending on the category

of the source panorama: for outdoor images with few or no

line segments (nature landscapes or open spaces with trees

and monuments), our method performs best in more than

90% of the images. The difference narrows down for indoor

and urban imagery, with our method outperforming [20] in

70-90% of the cases, depending on the category. This is ex-

pected as there are more line segments in images from these

classes that the plumb-line algorithm can rely on.

We attribute the higher accuracy of learned undistortion

to the ability of the model to interpret semantic cues. The

reader is referred to the supplementary material for a de-

tailed discussion.

5. Conclusions

We present a learning-based method that jointly predicts

the extrinsic and intrinsic camera parameters, including ra-

dial distortion. The proposed parameterization is disentan-

gled from the focal length and well suited for prediction.

We also introduce a new loss function to overcome the prob-

lem of loss balancing. Finally, we validate the superior per-

formance of the proposed method against geometric-based

undistortion methods.

In future work, we will explore distortion calibration

with single-parameter distortion models [7, 22]. More im-

portantly, we will apply single image camera calibration in

large-scale structure from motion on crowdsourced images

with diverse camera models, where we see the potential of

learning-based methods to enhance the robustness of the

system.
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