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Abstract

Large intra-class variation is the result of changes in

multiple object characteristics. Images, however, only show

the superposition of different variable factors such as ap-

pearance or shape. Therefore, learning to disentangle and

represent these different characteristics poses a great chal-

lenge, especially in the unsupervised case. Moreover, large

object articulation calls for a flexible part-based model.

We present an unsupervised approach for disentangling ap-

pearance and shape by learning parts consistently over all

instances of a category. Our model for learning an ob-

ject representation is trained by simultaneously exploiting

invariance and equivariance constraints between synthet-

ically transformed images. Since no part annotation or

prior information on an object class is required, the ap-

proach is applicable to arbitrary classes. We evaluate our

approach on a wide range of object categories and diverse

tasks including pose prediction, disentangled image synthe-

sis, and video-to-video translation. The approach outper-

forms the state-of-the-art on unsupervised keypoint predic-

tion and compares favorably even against supervised ap-

proaches on the task of shape and appearance transfer.

1. Introduction

A grand goal of computer vision is to automatically,

without supervision information, learn about the character-

istics of an object in the world. Typically, images show

the interplay of multiple such factors of variation. We

want to disentangle [9, 2, 5, 17, 10] the effects of these

different characteristics and imagine, i.e., synthesize, new

images where they are altered individually. For instance,

after observing a number of different unlabeled instances

of an object category, we want to learn their variations in

shape (such as pose relative to the viewer and body articu-

lation) and appearance, e.g., texture and color differences in

fur/clothing or skin color. Disentangling shape and appear-

ance is particularly challenging because object deformation

typically leads to complicated “recoloring” of image pixels

1https://compvis.github.io/unsupervised-disentangling/

Figure 1: Our unsupervised learning of a disentangled part-

based shape and appearance enables numerous tasks rang-

ing from unsupervised pose estimation to image synthesis

and retargeting. For more results visit the project page 1

[40, 12]: moving a limb may change the color of former

background pixels into foreground and vice versa.

To address the disentangling problem for shape and ap-

pearance, several supervised methods have been proposed

lately [29, 28, 7, 12, 41, 1]. By conditioning generative

models on a pre-specified shape representation, they are

able to successfully explain away appearance. However,

they are limited to object categories, for which pose labels

are readily available such as human bodies and faces, but

they cannot be applied to the vast amounts of unlabelled

data of arbitrary object classes.

For unsupervised learning, instead of taking a known

shape to capture all non-shape factors, both shape and ap-

pearance need to be learned simultaneously. Recently some

unsupervised approaches have been proposed to disentan-

gle these factors [40, 52]. However, these works have only

shown results for rather rigid objects, like human faces or

require several instances of the same person [8].

Object variation can be global, such as difference in
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viewpoint, but it is oftentimes local (animal tilting its head,

person with/without jacket), thus calling for a local, disen-

tangled object representation. The traditional answer are

compositions of rigid parts [15, 14, 13]. In the context

of recent unsupervised shape learning an instantiation of

this are landmarks [45, 58, 21]. In this paper, we propose

the first approach to learn a part-based disentangled rep-

resentation of shape and appearance for articulated object

classes without supervision and from scratch. In the spirit

of analysis-by-synthesis [54], we learn the factors by a gen-

erative process. We formulate explicit equivariance and in-

variance constraints an object representation should fulfill

and incorporate them in a fully differentiable autoencoding

framework.

Our approach yields significant improvements upon the

state-of-the-art in unsupervised object shape learning, eval-

uated on the task of landmark regression. We compare to

competitors on a wide range of diverse datasets both for

rigid and articulated objects, with particularly large gains

for strong articulations. Furthermore, our disentangled rep-

resentation of shape and appearance competes favorably

even against state-of-the-art supervised results. We also

show disentangling results on the task of video-to-video

translation, where fine-grained articulation is smoothly and

consistently translated on a frame-to-frame level. Lastly,

since our representation captures appearance locally, it is

also possible to transfer appearance on the level of indi-

vidual object parts. An overview of the scope of possible

applications is given in Fig. 1.

2. Related Work

Disentangling shape and appearance. Factorizing an

object representation into shape and appearance is a pop-

ular ansatz for representation learning. Recently, a lot of

progress has been made in this direction by conditioning

generative models on shape information [12, 29, 7, 28, 41,

1]. While most of them explain the object holistically, only

few also introduce a factorization into parts [41, 1]. In con-

trast to these shape-supervised approaches, we learn both

shape and appearance without any supervision.

For unsupervised disentangling, several generative

frameworks have been proposed [17, 5, 24, 8, 40, 52].

However, these works use holistic models and show results

on rather rigid objects and simple datasets, while we explic-

itly tackle strong articulation with a part-based formulation.

Part-based representation learning. Describing an

object as an assembly of parts is a classical paradigm

for learning an object representation in computer vision

[38, 32, 6, 11]. What constitutes a part, is the defining ques-

tion in this scheme. Defining parts by visual and semantic

features or by geometric shape and its behavior under view-

point changes and object articulation in general leads to a

different partition of the object. Recently, part learning has

been mostly employed for discriminative tasks, such as in

[13, 33, 42, 30, 53, 22]. To solve a discriminative task, parts

will encode their semantic connection to the object and can

ignore the spatial arrangement and articulation. In contrast,

our method is driven by an image modelling task. Hence,

parts have to encode both spatial structure and visual ap-

pearance accurately.

Landmark learning. There is an extensive literature on

landmarks as compact representations of object structure.

Most approaches, however, make use of manual landmark

annotations as supervision signal [50, 36, 55, 60, 61, 59, 47,

34, 18, 46, 35, 49, 31, 25, 3].

To tackle the problem without supervision, Thewlis et

al. [45] proposed enforcing equivariance of landmark loca-

tions under artificial transformations of images. The equiv-

ariance idea had been formulated in earlier work [23] and

has since been extended to learn a dense object-centric co-

ordinate frame [44]. However, enforcing only equivariance

encourages consistent landmarks at discriminable object lo-

cations, but disregards an explanatory coverage of the ob-

ject.

Zhang et al. [58] addresses this issue: the equivariance

task is supplemented by a reconstruction task in an autoen-

coder framework, which gives visual meaning to the land-

marks. However, in contrast to our work, he does not disen-

tangle shape and appearance of the object. Furthermore, his

approach relies on a separation constraint in order to avoid

the collapse of landmarks. This constraint results in an ar-

tificial, rather grid-like layout of landmarks, that does not

scale to complex articulations.

Jakab et al. [21] proposes conditioning the generation on

a landmark representation from another image. A global

feature representation of one image is combined with the

landmark positions of another image to reconstruct the lat-

ter. Instead of considering landmarks which only form a

representation for spatial object structure, we factorize an

object into local parts, each with its own shape and appear-

ance description. Thus, parts are learned which meaning-

fully capture the variance of an object class in shape as well

as in appearance.

Additionally, and in contrast to all these works ([45, 58,

21]) we take the extend of parts into account, when formu-

lating our equivariance constraint. Furthermore, we explic-

itly address the goal of disentangling shape and appearance

on a part-based level by introducing invariance constraints.

3. Approach

Let x : Λ → R be an image portraying an object and

background clutter. Λ ⊂ N
2 is the space of image coordi-

nates. Now consider an image x′ : Λ → R showing another

instance of the same object category. Despite drastic differ-

ences of their image pixels, you can recognize both to be
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Figure 2: Two-stream autoencoding architecture for unsupervised learning of object shape and appearance.

related. What renders both images similar although no two

pixels are identical? What are the characteristic, salient dif-

ferences? And how can we obtain a representation φ that

maps images to vectors φ(x) which retain both, these simi-

larities and also the characteristic differences?

3.1. Partbased Representation

Numerous causes may have led x to be changed into x′

(change in articulation, viewpoint, object color or clothing,

lighting conditions, etc.). But we can approximate and sum-

marize their effects as a combination of a change in appear-

ance and a change in shape. The effect of a change in object

shape on an image x can be expressed in terms of a spatial

image transformation s : Λ → Λ acting on the underlying

image coordinates, such that the image x◦s depicts the ob-

ject with altered shape. Similarly, we denote the effect of

a change in object appearance on an image x as an image

transformation a such that the image a(x) depicts the object

with altered appearance.

Note that many of the image changes are local in nature,

affecting only part of the image. For instance, animals may

only move an individual body part. Similarly, only part of

their appearance may vary, e.g., by switching a shirt but not

the pants. This motivates a part-based factorization of the

representation, φ(x) := (φ1(x), φ2(x), . . . )
⊤, so that local

changes in appearance and shape stay local and do not alter

the overall representation. Nevertheless, global changes can

also be accounted for by representing them as as a compo-

sition of changes in the individual part representations φi.

3.2. Invariance and Equivariance

Let us now carefully observe differences between im-

ages x and x′ to derive constraints for the representation

φ that is to be learned. i) Changes in the appearance of

an object (e.g. in its color or texture), should not impact

its shape. ii) Similarly, changes in shape (e.g. through ar-

ticulation), should not alter the appearance. Therefore, the

representation needs to separate appearance and shape of

the object, so that both can vary individually, i.e. the rep-

resentation of a part is disentangled into two components

φi(x) = (αi(x), σi(x)). Part appearance is modeled as an

n-dimensional feature vector αi(x) ∈ R
n. Whereas part

shape is modeled as a part activation map σi(x) : Λ → R
+.

We visualize these maps as colored images (cf. Fig. 2, Fig.

3), where each color denotes a single part activation map.

The invariance of our representation under changes in

object appearance and shape can be summarized by the in-

variance constraints i) αi(x◦s) = αi(x) and ii) σi(a(x)) =
σi(x). In addition, changes in shape should obviously be

captured by the shape representation. Thus, for spatial

transformations s we obtain the equivariance constraint iii)

σi(x◦s) = σi(x)◦s. The equivariance constraint simply

states that the part activation maps have to consistently track

the object part they represent (cf. σi(a(x)) and σi(x◦s) in

Fig. 2).
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3.3. Objective Function for Learning

Learning of the representation φ is driven by integrat-

ing invariance and equivariance constraints from the previ-

ous section into a reconstruction task. The invariance con-

straints i) and ii) imply

φi(x) = [αi(x), σi(x)]
!
= [αi(x◦s), σi(a(x))]. (1)

Let D([φi(x)]i=1,...,) be a reconstruction of the orig-

inal image x from the encoded part representations

φ1(x), φ2(x), ... using a decoder D. We seek to reconstruct

x and, simultaneously, demand the representation to obey

the invariance constraints summarized in (1),

Lrec =
∥

∥

∥
x−D

(

[

αi(x◦s), σi(a(x))
]

i=1,...

)∥

∥

∥

1
. (2)

Moreover, the representation of part shape σi(x) should be

equivariant under deformations. However, simply minimiz-

ing equivariance on the scale of pixels, i.e.

∑

i

∑

u∈Λ

∥

∥

∥
σi(x◦s)[u]− σi(x)[s(u)]

∥

∥

∥
, (3)

is unstable in practice and favors to the trivial solution of

uniform part activations. Therefore, we establish an equiv-

ariance loss

Lequiv =
∑

i

λµ‖µ[σi(x◦s)]− µ[σi(a(x))◦s]‖2

+ λΣ‖Σ[σi(x◦s)]− Σ[σi(a(x))◦s]‖1 ,

(4)

where µ[σi(x)] and Σ[σi(x)] denote the mean and covari-

ance over coordinates of σi(x)/
∑

u∈Λ
σi(x)[u]. Note that

we have employed invariance ii) so that we can use the same

shape encoding σi(a(x)) as in (2). The overall training ob-

jective of our model is to minimize the reconstruction and

equivariance loss,

L = Lrec + Lequiv. (5)

Note that object parts a priori unknown, but in order to

reconstruct the object, the representations φi automatically

learn to structure it into meaningful parts which capture the

variance in shape and appearance. In particular, we do not

need to introduce artificial prior assumptions about the rela-

tions between parts, such as the separation constraints em-

ployed in [58, 45]. Instead, the local modelling of the part

representation (cf. sec. 3.4) as disentangled components of

shape and appearance drives our representation to meaning-

fully structure the object and learn natural relations between

parts.

3.4. Unsupervised Learning of Partbased Shape
and Appearance

Subsequently, we discuss the network architecture in

Fig. 2 for unsupervised learning of an appearance and shape

representation using the reconstruction (2) and equivariance

loss (4). Learning considers image pairs x◦s and a(x). The

leading design principle of our architecture is to model the

local interplay between part shape and part appearance. In

a fully differentiable procedure equivariance of part activa-

tion maps is used to extract part appearances from x◦s and

assign them to corresponding image regions in x.

Part Shape. In a shape stream (cf. Fig. 2), an hourglass

network [31] Eσ learns to localize parts i by means of part

activation maps σi(a(x)) ∈ R
h×w. The hourglass model

nicely suits this task, since it preserves pixel-wise locality

and integrates information from multiple scales [31]. Multi-

scale context is essential to learn the relations between parts

and consistently assign them to an object.

Part Appearance. Let us now localize the parts by

detecting σi(x◦s) in a spatially transformed image x◦s
using the same network Eσ (cf. Fig. 2 Appearance

Stream). To learn representations of part appearance

αi(x◦s), we first stack all normalized part activations

σi(x◦s)/
∑

u∈Λ
σi(x◦s)[u] and an image encoding, i.e., the

output of the first convolution filters of the network Eσ ap-

plied to x◦s. A second hourglass network Eα takes this

stack as input and maps it onto a localized image appear-

ance encoding fx◦s ∈ R
h×w×n. To obtain local part ap-

pearances, we average pool these features at all locations

where part i has positive activation

αi(x◦s) =

∑

u∈Λ
fx◦s[u]σi(x◦s)[u]

∑

u∈Λ
σi(x◦s)[u]

. (6)

Reconstructing the Original Image. Next we recon-

struct x from part appearances αi(x◦s) and part activations

σi(a(x)) using a U-Net [37] (cf. Fig. 2). The encoder

of the U-Net is simply a set of fixed downsampling layers.

Only its decoder is learned. We approximate part activa-

tions σi(a(x)) by their first two moments,

σ̃i(a(x))[u] =
1

1 + (u− µi)TΣ
−1
i (u− µi)

, (7)

where µi and Σi denote the mean and covariance of the nor-

malized part activation maps σi(a(x))/
∑

u∈Λ
σi(a(x))[u].

Thus, extra information present in part activations is ne-

glected, forcing the shape encoder Eσ to concentrate on an

unambiguous part localization (or else reconstruction loss

would increase). The second input to the decoder D in

Eq. 2 are part appearances αi(x◦s). Note that αi(x◦s) are

feature vectors devoid of localization. We exploit the fact

that the corresponding part activations σ̃i(a(x)) designate

the regions of parts i in image x (cf. Fig 2) to project the

part appearances onto a localized appearance encoding fx:

fx[u] =
∑

i

αi(x◦s) · σ̃i(a(x))[u]

1 +
∑

j σ̃j(a(x))[u]
. (8)
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Table 1: Difficulties of datasets: articulation, intra-class

variance, background clutter and viewpoint variation.

Dataset Articul. Var. Backgr. Viewp.

CelebA

Cat Head X

CUB-200-2011 X X

Human3.6M X X

BBC Pose X X

Dogs Run X X X

Penn Action X X X X

To reconstruct x, the U-Net can then exploit the local cor-

respondence between fx, σ̃i(a(x)) and x.

3.5. Implementation Details

For appearance transformation a we apply changes in

brightness, contrast, and hue. For image datasets, s are thin

plate spline (TPS) transformations. On video datasets, in

addition to applying synthetic TPS transformations we ran-

domly sample another frame from the same video sequence

which acts as x◦s. Selecting the number of parts is un-

critical, since our model is robust for different numbers of

parts, Tab. 2. For image synthesis in Sect. 4.3 we train

the decoder D with an adversarial loss [20]. We refer to the

supplementary for further details on the architecture and the

experimental setup.

4. Experiments

In this section we evaluate our unsupervised approach

for learning disentangled representation of appearance and

shape. Sect. 4.2 evaluates and visualizes the shape repre-

sentation on the task of unsupervised landmark discovery.

Sect. 4.3 investigates the disentangling of our representa-

tion. On the task of conditional image generation, we com-

pare our unsupervised shape/appearance disentanglement

performance against a state-of-the-art disentangling method

that utilizes groundtruth shape annotations. Moreover, on

the task of frame-to-frame video translation we show the ro-

bustness of our representation across multiple frames. Ad-

ditionally, we evaluate the ability of our method to disen-

tangle parts and their local appearance and shape using a

part-wise appearance transfer.

4.1. Datasets

CelebA [27] contains ca. 200k celebrity faces of 10k

identities. We resize all images to 128 × 128 and exclude

the training and test set of the MAFL subset, following [45].

As [45, 58], we train the regression (to 5 ground truth land-

marks) on the MAFL training set (19k images) and test on

the MAFL test set (1k images).

Cat Head [56] has nearly 9k images of cat heads. We

(a)

(b)

Figure 3: Learned shape representation on Penn Action. For

visualization, 13 of 16 part activation maps are plotted in

one image. (a) Different instances, showing intra-class con-

sistency and (b) video sequence, showing consistency and

smoothness under motion, although each frame is processed

individually.

use the train-test split of [58] for training (7,747 images)

and testing (1,257 images). We regress 5 of the 7 (same

as [58]) annotated landmarks. The images are cropped by

bounding boxes constructed around the mean of the ground

truth landmark coordinates and resized to 128× 128.

CUB-200-2011 [48] comprises ca. 12k images of birds

in the wild from 200 bird species. We excluded bird species

of seabirds, roughly cropped using the provided landmarks

as bounding box information and resized to 128× 128. We

aligned the parity with the information about the visibility

of the eye landmark. For comparing with [58] we used their

published code.

BBC Pose [4] contains videos of sign-language signers

with varied appearance in front of a changing background.

Like [21] we loosely crop around the signers. The test set

includes 1000 frames and the test set signers did not ap-

pear in the train set. For evaluation, as [21], we utilized the

provided evaluation script, which measures the PCK around

d = 6 pixels in the original image resolution.

Human3.6M [19] features human activity videos. We

adopt the training and evaluation procedure of [58]. For

proper comparison to [58] we also removed the background

using the off-the-shelf unsupervised background subtrac-

tion method provided in the dataset.

Penn Action [57] contains 2326 video sequences of 15

different sports categories. For this experiment we use 6 cat-

egories (tennis serve, tennis forehand, baseball pitch, base-

ball swing, jumping jacks, golf swing). We roughly cropped
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Figure 4: Unsupervised discovery of landmarks on diverse

object classes such as human or cat faces and birds and for

highly articulated human bodies and running dogs.

Table 2: Error of unsupervised methods for landmark pre-

diction on the Cat Head, MAFL (subset of CelebA), and

CUB-200-2011 testing sets. The error is in % of inter-ocular

distance for Cat Head and MAFL and in % of edge length

of the image for CUB-200-2011.

Dataset Cat Head MAFL CUB

# Landmarks 10 20 10 10

Thewlis [45] 26.76 26.94 6.32 -

Jakab [21] - - 4.69 -

Zhang [58] 15.35 14.84 3.46 5.36

Ours 9.88 9.30 3.24 3.91

the images around the person, using the provided bounding

boxes, then resized to 128× 128.

Dogs Run is made from dog videos from YouTube to-

taling in 1250 images under similar conditions as in Penn

Action. The dogs are running in one direction in front of

varying backgrounds. The 17 different dog breeds exhibit

widely varying appearances.

Deep Fashion [26] consists of ca. 53k in-shop clothes

images in high-resolution of 256 × 256. We selected the

images which are showing a full body (all keypoints visible,

measured by [3]) and used the provided train-test split. For

comparison with Esser et al. [12] we used their published

code.

Figure 5: Comparing discovered keypoints against [58] on

CUB-200-2011. We improve on object coverage and land-

mark consistency. Note our flexible part placement com-

pared to a rather rigid placement of [58] due to their part

separation bias.

4.2. Evaluating Unsupervised Learning of Shape

Fig. 3 visualizes the learned shape representation. To

quantitatively evaluate the shape estimation, we measure

how well groundtruth landmarks (only during testing) are

predicted from it. The part means µ[σi(x)] (cf. (4)) serve

as our landmark estimates and we measure the error when

linearly regressing the human-annotated groundtruth land-

marks from our estimates. For this, we follow the protocol

of Thewlis et al. [45], fixing the network weights after train-

ing the model, extracting unsupervised landmarks and train-

ing a single linear layer without bias. The performance is

quantified on a test set by the mean error and the percentage

of correct landmarks (PCK). We extensively evaluate our

model on a diverse set of datasets, each with specific chal-

lenges. An overview over the challenges implied by each

dataset is given in Tab. 1. On all datasets we outperform the

state-of-the-art by a significant margin.

Diverse Object Classes. On the object classes of hu-

man faces, cat faces, and birds (datasets CelebA, Cat Head,

and CUB-200-2011) our model predicts landmarks consis-

tently across different instances, cf. Fig. 4. Tab. 2 com-

pares against the state-of-the-art. Due to different breeds

and species the Cat Head, CUB-200-2011 exhibit large vari-

ations between instances. Especially on these challenging

datasets we outperform competing methods by a large mar-

gin. Fig. 5 also provides a direct visual comparison to [58]

on CUB-200-2011. It becomes evident that our predicted

landmarks track the object much more closely. In contrast,

[58] have learned a slightly deformable, but still rather rigid

grid. This is due to their separation constraint, which forces

landmarks to be mutually distant. We do not need such a

problematic bias in our approach, since the localized, part-

based representation and reconstruction guides the shape

learning and captures the object and its articulations more

closely.

Articulated Object Pose. Object articulation makes

consistent landmark discovery challenging. Fig. 4 shows

that our model exhibits strong landmark consistency un-

der articulation and covers the full human body meaning-
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Table 3: Performance of landmark prediction on BBC Pose

test set. As upper bound, we also report the performance

of supervised methods. The metric is % of points within 6

pixels of groundtruth location.

BBC Pose Accuracy

supervised Charles [4] 79.9%

Pfister [35] 88.0%

unsupervised Jakab [21] 68.4%

Ours 74.5%

Table 4: Comparing against supervised, semi-supervised

and unsupervised methods for landmark prediction on the

Human3.6M test set. The error is in % of the edge length of

the image. All methods predict 16 landmarks.

Human3.6M Error w.r.t. image size

supervised Newell [31] 2.16

semi-supervised Zhang [58] 4.14

unsupervised Thewlis [45] 7.51

Zhang [58] 4.91

Ours 2.79

fully. Even fine-grained parts such as the arms are tracked

across heavy body articulations, which are frequent in the

Human3.6M and Penn Action datasets. Despite further

complications such as viewpoint variations or blurred limbs

our model can detect landmarks on Penn Action of simi-

lar quality as in the more constrained Human3.6M dataset.

Additionally, complex background clutter as in BBC Pose

and Penn Action, does not hinder finding the object. Ex-

periments on the Dogs Run dataset underlines that even

completely dissimilar dog breeds can be related via seman-

tic parts. Tab. 3 and Tab. 4 summarize the quantitative

evaluations: we outperform other unsupervised and semi-

supervised methods by a large margin on both datasets. On

Human3.6M, our approach achieves a large performance

gain even compared to methods that utilize optical flow su-

pervision. On BBC Pose, we outperform [21] by 6.1%, re-

ducing the performance gap to supervised methods signifi-

cantly.

4.3. Disentangling Shape and Appearance

Disentangled representations of object shape and appear-

ance allow to alter both properties individually to synthesize

new images. The ability to flexibly control the generator al-

lows, for instance, to change the pose of a person or their

clothing. In contrast to previous work [12, 8, 28, 29, 7, 21],

we achieve this ability without requiring supervision and

using a flexible part-based model instead of a holistic rep-

resentation. This allows to explicitly control the parts of

an object that are to be altered. We quantitatively compare

Figure 6: Transferring shape and appearance on Deep Fash-

ion. Without annotation the model estimates shape, 2nd col-

umn. Target appearance is extracted from images in top row

to synthesize images. Note that we trained without image

pairs only using synthetic transformations. All images are

from the test set.

against supervised state-of-the-art disentangled synthesis of

human figures. Also we qualitatively evaluate our model on

unsupervised synthesis of still images, video-to-video trans-

lation, and local editing for appearance transfer.

Conditional Image Generation. On Deep Fashion

[27, 26], a benchmark dataset for supervised disentangling

methods, the task is to separate person ID (appearance)

from body pose (shape) and then synthesize new images for

previously unseen persons from the test set in eight differ-

ent poses. We randomly sample the target pose and appear-

ance conditioning from the test set. Fig. 6 shows qualita-

tive results. We quantitatively compare against supervised

state-of-the-art disentangling [12] by evaluating i) invari-

ance of appearance against variation in shape by the re-

identification error and ii) invariance of shape against vari-

ation in appearance by the distance in pose between gener-

ated and pose target image.

i) To evaluate appearance we fine-tune an ImageNet-

pretrained [39] Inception-Net [43] with a re-identification

(ReID) algorithm [51] via a triplet loss [16] to the Deep

Fashion training set. On the generated images we evalu-

ate the standard metrics for ReID, mean average precision

(mAP) and rank-1, -5, and -10 accuracy in Tab. 5. Although

our approach is unsupervised it is competitive compared to

the supervised VU-Net [12].
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Table 5: Mean average precision (mAP) and rank-n accu-

racy for person re-identification on synthesized images af-

ter performing shape/appearance swap. Input images from

Deep Fashion test set. Note [12] is supervised w.r.t. shape.

mAP rank-1 rank-5 rank-10

VU-Net [12] 88.7% 87.5% 98.7% 99.5%

Ours 90.3% 89.4% 98.2% 99.2%

Table 6: Percentage of Correct Keypoints (PCK) for pose

estimation on shape/appearance swapped generations. α is

pixel distance divided by image diagonal. Note that [12]

serves as upper bound, as it uses the groundtruth shape es-

timates.

α 2.5% 5% 7.5% 10%
VU-Net [12] 95.2% 98.4% 98.9% 99.1%

Ours 85.6% 94.2% 96.5% 97.4%

Figure 7: Video-to-video translation on BBC Pose. Top-

row: target appearances, left: target pose. Note that even

fine details in shape are accurately captured. Visit the

project page for the video.

ii) To evaluate shape, we extract keypoints using the pose

estimator [3]. Tab. 6 reports the difference between gen-

erated and pose target in percentage of correct keypoints

(PCK). As would be expected, VU-Net performs better,

since it is trained with exactly the keypoints of [3]. Still our

approach achieves an impressive PCK without supervision

underlining the disentanglement of appearance and shape.

Video-to-Video Translation. To evaluate the robust-

ness of our disentangled representation, we synthesize a

video sequence frame-by-frame without temporal consis-

tency constraints. On BBC Pose [4], one video provides

a sequence of target poses, another video a sequence of

source appearances to then perform retargeting, Fig. 7.

Although there is no temporal coupling, the generated se-

quences are smooth and pose estimation is robust. Sec-

ondly, the training on the natural spatial deformations in

video data enables the model to encapsulate realistic tran-

sitions such as out-of-plane rotation and complex 3D artic-

(a) (b)

(c) (d)

Figure 8: Swapping part appearance on Deep Fashion. Ap-

pearances can be exchanged for parts individually and with-

out altering shape. We show part-wise swaps for (a) head

(b) torso (c) legs, (d) shoes. All images are from the test

set.

ulation of hands and even fingers. Due to the local nature of

the part based representation, the model is robust to varia-

tions in the background and focuses on the object whilst the

background is only roughly reconstructed.

Part Appearance Transfer. The flexible part-based rep-

resentation allows to explicitly control local appearance.

Fig. 8 shows swaps of appearance for shirt, pants, etc. In

contrast to holistic representations [12, 21, 28, 29, 7], we

can guarantee the transfer to be focused on selected object

parts.

5. Conclusion

We have presented an unsupervised approach to learning

the compositional part structure of objects by disentangling

shape from appearance. We incorporate invariance and

equivariance constraints in a generative framework. The

model discovers consistent parts without requiring prior as-

sumptions. Experiments show our approach significantly

improves upon previous unsupervised methods.

This work has been supported in part by DFG grant OM81/1-1 and a

hardware donation from NVIDIA Corporation.
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gios, and I. Kokkinos. Deforming autoencoders: Unsuper-

vised disentangling of shape and appearance. In ECCV,

2018. 1, 2

[41] A. Siarohin, E. Sangineto, S. Lathuilière, and N. Sebe.

Deformable gans for pose-based human image generation.

CVPR, 2018. 1, 2

[42] S. Singh, A. Gupta, and A. A. Efros. Unsupervised discovery

of mid-level discriminative patches. In ECCV, 2012. 2

[43] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In CVPR, 2015. 7

[44] J. Thewlis, H. Bilen, and A. Vedaldi. Unsupervised learning

of object frames by dense equivariant image labelling. In

NIPS, 2017. 2

[45] J. Thewlis, H. Bilen, and A. Vedaldi. Unsupervised learning

of object landmarks by factorized spatial embeddings. In

ICCV, 2017. 2, 4, 5, 6, 7

[46] A. Toshev and C. Szegedy. Deeppose: Human pose estima-

tion via deep neural networks. In CVPR, 2014. 2

[47] N. Ufer and B. Ommer. Deep semantic feature matching.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 6914–6923, 2017. 2

[48] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie.

The caltech-ucsd birds-200-2011 dataset. Technical report,

California Institute of Technology, 2011. 5

[49] S.-E. Wei, V. Ramakrishna, T. Kanade, and Y. Sheikh. Con-

volutional pose machines. In CVPR, 2016. 2

[50] Y. Wu and Q. Ji. Robust facial landmark detection under

significant head poses and occlusion. CVPR, 2015. 2

[51] T. Xiao, S. Li, B. Wang, L. Lin, and X. Wang. Joint detec-

tion and identification feature learning for person search. In

CVPR. IEEE, 2017. 7

[52] X. Xing, R. Gao, T. Han, S.-C. Zhu, and Y. N. Wu.

Deformable generator network: Unsupervised disentan-

glement of appearance and geometry. arXiv preprint

arXiv:1806.06298, 2018. 1, 2

[53] W. Yang, W. Ouyang, H. Li, and X. Wang. End-to-end learn-

ing of deformable mixture of parts and deep convolutional

neural networks for human pose estimation. In CVPR, 2016.

2

[54] I. Yildirim, T. D. Kulkarni, W. Freiwald, and J. B. Tenen-

baum. Efficient analysis-by-synthesis in vision: A compu-

tational framework, behavioral tests, and modeling neuronal

representations. In CogSci, 2015. 2

[55] X. Yu, F. Zhou, and M. Chandraker. Deep deformation net-

work for object landmark localization. In ECCV, 2016. 2

[56] W. Zhang, J. Sun, and X. Tang. Cat head detection - how

to effectively exploit shape and texture features. In ECCV,

2008. 5

[57] W. Zhang, M. Zhu, and K. G. Derpanis. From actemes to

action: A strongly-supervised representation for detailed ac-

tion understanding. In ICCV, 2013. 5

[58] Y. Zhang, Y. Guo, Y. Jin, Y. Luo, Z. He, and H. Lee. Un-

supervised discovery of object landmarks as structural repre-

sentations. In CVPR, 2018. 2, 4, 5, 6, 7

[59] Z. Zhang, P. Luo, C. C. Loy, and X. Tang. Facial landmark

detection by deep multi-task learning. In ECCV, 2014. 2

[60] Z. Zhang, P. Luo, C. C. Loy, and X. Tang. Learning deep

representation for face alignment with auxiliary attributes.

TPAMI, 2016. 2

[61] S. Zhu, C. Li, C. C. Loy, and X. Tang. Face alignment by

coarse-to-fine shape searching. In CVPR, 2015. 2

10964


