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Abstract

This paper proposes a novel object detection framework

named Grid R-CNN, which adopts a grid guided local-

ization mechanism for accurate object detection. Differ-

ent from the traditional regression based methods, the Grid

R-CNN captures the spatial information explicitly and en-

joys the position sensitive property of fully convolutional

architecture. Instead of using only two independent points,

we design a multi-point supervision formulation to encode

more clues in order to reduce the impact of inaccurate pre-

diction of specific points. To take the full advantage of the

correlation of points in a grid, we propose a two-stage in-

formation fusion strategy to fuse feature maps of neighbor

grid points. The grid guided localization approach is easy

to be extended to different state-of-the-art detection frame-

works. Grid R-CNN leads to high quality object localiza-

tion, and experiments demonstrate that it achieves a 4.1%

AP gain at IoU=0.8 and a 10.0% AP gain at IoU=0.9 on

COCO benchmark compared to Faster R-CNN with Res50

backbone and FPN architecture.

1. Introduction

Object detection task can be decomposed into object

classification and localization. In recent years, many

deep convolutional neural networks (CNN) based detection

frameworks are proposed and achieve state-of-the-art re-

sults [9, 8, 25, 17, 11, 1]. Although these methods improve

the detection performance in many different aspects, their

bounding box localization modules are similar. Typical

bounding box localization module is a regression branch,

which is designed as several fully connected layers and

takes in high-level feature maps to predict the offset of the

candidate box (proposal or predefined anchor).

In this paper we introduce Grid R-CNN, a novel ob-

ject detection framework, where the traditional regression

formulation is replaced by a grid point guided localization

mechanism. And the explicit spatial representations are ef-

ficiently utilized for high quality localization. In contrast

to regression approach where the feature map is collapsed

Figure 1. (a) Traditional offset regression based bounding box lo-

calization. (b) Our proposed grid guided localization in Grid R-

CNN. The bounding box is located by a fully convolutional net-

work.

into a vector by fully connected layers, Grid R-CNN di-

vides the object bounding box region into grids and em-

ploys a fully convolutional network (FCN) [21] to predict

the locations of grid points. Owing to the position sensitive

property of fully convolutional architecture, Grid R-CNN

maintains the explicit spatial information and grid points

locations can be obtained in pixel level. As illustrated in

Figure 1.b, when a certain number of grid points at spec-

ified location are known, the corresponding bounding box

is definitely determined. Guided by the grid points, Grid

R-CNN can determine more accurate object bounding box

than regression method which lacks the guidance of explicit

spatial information.

Since a bounding box has four degrees of freedom, two

independent points (e.g. the top left corner and bottom

right corner) are enough for localization of a certain object.

However the prediction is not easy because the location of

the points are not directly corresponding to the local fea-

tures. For example, the upper right corner point of the cat

in Figure 1.b lies outside of the object body and its neigh-

borhood region in the image only contains background, and
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it may share very similar local features with nearby pixels.

To overcome this problem, we design a multi-point super-

vision formulation. By defining target points in a gird, we

have more clues to reduce the impact of inaccurate predic-

tion of some points. For instance, in a typical 3 × 3 grid

points supervision case, the probably inaccurate y-axis co-

ordinate of the top-right point can be calibrated by that of

top-middle point which just locates on the boundary of the

object. The grid points are effective designs to decrease the

overall deviation.

Furthermore, to take the full advantage of the correlation

of points in a gird, we propose an information fusion ap-

proach. Specifically, we design individual group of feature

maps for each grid point. For one grid point, the feature

maps of the neighbor grid points are collected and fused

into an integrated feature map. The integrated feature map

is utilized for the location prediction of the corresponding

grid point. Thus complementary information from spatial

related grid points is incorporated to make the prediction

more accurate.

We showcase the effectiveness of our Grid R-CNN

framework on the object detection track of the challenging

COCO benchmark [19]. Our approach outperforms tradi-

tional regression based state-of-the-art methods by a signif-

icant margin. For example, we surpass Faster R-CNN [25]

with a backbone of ResNet-50 [14] and FPN [17] archi-

tecture by 2.2% AP. Further comparison on different IoU

threshold criteria shows that our approach has overwhelm-

ing strength in high quality object localization, with a 4.1%

AP gain at IoU=0.8 and 10.0% AP gain at IoU=0.9.

The main contributions of our work are listed as follows:

1. We propose a novel localization framework called Grid

R-CNN which substitute traditional regression net-

work by fully convolutional network that preserves

spatial information efficiently. To our best knowledge,

Grid R-CNN is the first proposed region based (two-

stage) detection framework that locate object by pre-

dicting grid points on pixel level.

2. We design a multi-point supervision form that predicts

points in grid to reduce the impact of some inaccurate

points. We further propose a feature map level infor-

mation fusion mechanism that enables the spatially re-

lated grid points to obtain incorporated features so that

their locations can be well calibrated.

3. We perform extensive experiments and prove that Grid

R-CNN framework is widely applicable across differ-

ent detection frameworks and network architectures

with consistent gains. The Grid R-CNN performs even

better in more strict localization criterion (e.g. IoU

threshold = 0.75). Thus we are confident that our grid

guided localization mechanism is a better alternative

for regression based localization methods.

2. Related Works

Since our new approach is based on two stage object de-

tector, here we briefly review some related works. Two-

stage object detector was developed from the R-CNN ar-

chitecture [9], a region-based deep learning framework that

classify and locate every RoI (Region of Interest) gener-

ated by some low-level computer vision algorithms [30, 34].

Then SPP-Net [12] and Fast-RCNN [8] introduced a new

way to save redundant computation by extracting every re-

gion feature from the shared feature generated by entire im-

age. Although SPP-Net and Fast-RCNN significantly im-

prove the performance of object detection, the part of RoIs

generating still cannot be trained end-to-end. Later, Faster-

RCNN [25] was proposed to solve this problem by utilizing

a light region proposal network(RPN) to generate a sparse

set of RoIs. This makes the whole detection pipeline an end-

to-end trainable network and further improve the accuracy

and speed of the detector. In addition, some single-stage

frameworks [20, 18, 24, 16] are also proposed to balance

the performance and efficiency of the model.

Recently, many works extend Faster R-CNN architecture

in many aspects to achieve better performance. R-FCN [3]

proposed to use region-based fully convolution network to

replace the original fully connected network. FPN [17] pro-

posed a top-down architecture with lateral connections for

building high-level semantic feature maps for variant scales.

Mask R-CNN [11] extended Faster R-CNN by adding a

branch for predicting an pixel-wise object mask. Differ-

ent from Mask R-CNN, our method replaces the regression

branch with a new grid branch to locate objects more ac-

curately. Also, our method needs no extra annotation other

than bounding box.

LocNet [7] proposed a boundary-based method for ac-

curate localization in object detection. It relies on condi-

tional probabilities of region boundaries while our method

is based on grid points prediction. In addition, LocNet is

used for proposal generation(like RPN) and Grid R-CNN is

used for bounding box prediction.

CornerNet [15] is a single-stage object detector which

uses paired key-points to locate the objects. It’s a bottom-

up detector that detects all the possible bounding box (cor-

ner point) location through a hourglass [22] network. In the

meanwhile, an embedding network was designed to map the

paired keypoints as close as possible. With above embed-

ding mechanism, detected corners can be group as pairs and

locate the bounding boxes.

It’s worth noting that our approach is quite different from

CornerNet. CornerNet is a bottom-up method, which means

it directly generate keypoints from the entire image without

defining instance. The key step of the CornerNet is to recog-

nize keypoints and grouping them correctly. In contrast to

that, our approach is a top-down two-stage detector which

defines instance at first stage. What we focus on is how to
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Figure 2. Overview of the pipeline of Grid R-CNN. Region proposals are obtained from RPN and used for RoI feature extraction from the

output feature maps of a CNN backbone. The RoI features are then used to perform classification and localization. In contrast to previous

works with a box offset regression branch, we adopt a grid guided mechanism for high quality localization. The grid prediction branch

adopts a FCN to output a probability heatmap from which we can locate the grid points in the bounding box aligned with the object. With

the grid points, we finally determine the accurate object bounding box by a feature map level information fusion approach.

locate the grid points accurately. Furthermore, we designed

feature fusion module to exploit the features of related grid

points and calibrate for more accurate grid points localiza-

tion than two corner points only.

3. Grid R-CNN

An overview of Grid R-CNN framework is shown in Fig-

ure 2. Based on region proposals, features for each RoI are

extracted individually from the feature maps obtained by a

CNN backbone. The RoI features are then used to perform

classification and localization for the corresponding propos-

als. In contrast to previous works, e.g. Faster R-CNN, we

use a grid guided mechanism for localization instead of off-

set regression. The grid prediction branch adopts a fully

convolutional network [21]. It outputs a fine spatial layout

(probability heatmap) from which we can locate the grid

points of the bounding box aligned with the object. With the

grid points, we finally determine the accurate object bound-

ing box by a feature map level information fusion approach.

3.1. Grid Guided Localization

Most previous methods [9, 8, 25, 17, 11, 1] use several

fully connected layers as a regressor to predict the box off-

set for object localization. Whereas we adopt a fully convo-

lutional network to predict the locations of predefined grid

points and then utilize them to determine the accurate object

bounding box.

We design an N × N grid form of target points aligned

in the bounding box of object. An example of 3× 3 case is

shown in Figure 1.b, the gird points here are the four cor-

ner points, midpoints of four edges and the center point

respectively. Features of each proposal are extracted by

RoIAlign [11] operation with a fixed spatial size of 14×14,

followed by eight 3×3 dilated(for large receptive field) con-

volutional layers. After that, two 2× group deconvolution

layers are adopted to achieve a resolution of 56× 56.

The grid prediction branch outputs N×N heatmaps with

56 × 56 resolution, and a pixel-wise sigmoid function is

applied on each heatmap to obtain the probability map. And

each heatmap has a corresponding supervision map, where

5 pixels in a cross shape are labeled as positive locations of

the target grid point. Binary cross-entropy loss is utilized

for optimization.

During inference, on each heatmap we select the pixel

with highest confidence and calculate the corresponding lo-

cation on the original image as the grid point. Formally,

a point (Hx, Hy) in heatmap will be mapped to the point

(Ix, Iy) in origin image by the following equation:

Ix = Px +
Hx

wo

wp

Iy = Py +
Hy

ho

hp

(1)

where (Px, Py) is the position of upper left corner of the

proposal in input image, wp and hp are width and height of

proposal, wo and ho are width and height of output heatmap.

Then we determine the four boundaries of the box of ob-

ject with the predicted grid points. Specifically, we denote

the four boundary coordinates as B = (xl, yu, xr, yb) rep-

resenting the left, upper, right and bottom edge respectively.

Let gj represent the j-th grid point with coordinate (xj , yj)
and predicted probability pj ,. Then we define Ei as the set

of indices of grid points that are located on the i-th edge,

i.e., j ∈ Ei if gj lies on the i-th edge of the bounding box.

We have the following equation to calculate B with the set

of g:

xl =
1

N

∑

j∈E1

xjpj , yu =
1

N

∑

j∈E2

yjpj

xr =
1

N

∑

j∈E3

xjpj , yb =
1

N

∑

j∈E4

yjpj

(2)
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Figure 3. An illustration of the 3 × 3 case of grid points feature

fusion mechanism acting on the top left grid point. The arrows

represent the spatial information transfer direction. (a) First order

feature fusion, feature of the point can be enhanced by fusing fea-

tures from its adjacent points. (b) The second order feature fusion

design in Grid R-CNN.

Taking the upper boundary yu as an example, it is the prob-

ability weighted average of y axis coordinates of the three

upper grid points.

3.2. Grid Points Feature Fusion

The grid points have inner spatial correlation, and their

locations can be calibrated by each other to reduce overall

deviation. Thus a spatial information fusion module is de-

signed.

An intuitive implementation is a coordinate level aver-

age, but the rich information in the feature maps are dis-

carded. A further idea is to extract the local features corre-

sponding to the grid points on each feature map for a fusion

operation. However this also discards potential effective in-

formation in different feature maps. Taking the 3 × 3 gird

as an example, for the calibration of top left point, the fea-

tures in the top left region of other neighbor points’ feature

maps (e.g. the top middle point) may provide effective in-

formation but not used. Therefore we design a feature map

level information fusion mechanism to take full advantage

of feature maps of each grid point.

To distinguish the feature maps of different points, we

use N × N group of filters to extract the features for them

individually (from the last feature map) and give them in-

termediate supervision of their corresponding grid points.

Thus each feature map has specified relationship with a cer-

tain grid point and we denote the feature map corresponding

to the i-th point as Fi.

For each grid point, the points that have a L1 distance

of 1 (unit grid length) will contribute to the fusion, which

are called source points. We define the set of source points

w.r.t the i-th grid point as Si. For the j-th source point in Si,

Fj will be processed by three consecutive 5×5 convolution

layers for information transfer and this process is denoted as

a function Tj→i. The processed features of all source points

are then fused with Fi to obtain an fusion feature map F ′

i .

An illustration of the top left grid point in 3 × 3 case is in

Figure 4. Illustration of the extended region mapping strategy. The

small white box is the original region of the RoI and we extend the

representation region of the feature map to the dashed white box

for higher coverage rate of the grid points in the the ground truth

box which is in green.

Figure 3.a. We adopt a simple sum operation for the fusion

in implementation and the information fusion is formulated

as the following equation:

F ′

i = Fi +
∑

j∈Si

Tj→i(Fj) (3)

Based on F ′

i for each grid point, a second order of fu-

sion is then performed with new conv layers T+

j→i that don’t

share parameters with those in first order of fusion. And the

second order fused feature map F ′′

i is utilized to output the

final heatmap for the grid point location prediction. The

second order fusion enables an information transfer in the

range of 2 (L1 distance). Taking the upper left grid point in

3 × 3 grids as an example (shown in Figure 3.b), it synthe-

sizes the information from five other grid points for reliable

calibration.

3.3. Extended Region Mapping

Grid prediction module outputs heatmaps with a fixed

spatial size representing the confidence distribution of the

locations of grid points. Since the fully convolutional net-

work architecture is adopted and spatial information is pre-

served all along, an output heatmap naturally corresponds

to the spatial region of the input proposal in original image.

However, a region proposal may not cover the entire object,

which means some of the ground truth grid points may lie

outside of the region of proposal and can’t be labeled on the

supervision map or predicted during inference.

During training, the lack of some grid points labels leads

to inefficient utilization of training samples. While in in-

ference stage, by simply choosing the maximum pixel on

the heatmap, we may obtain a completely incorrect location

for the grid points whose ground truth location is outside

the corresponding region. In many cases over half of the

grid points are not covered, e.g. in Figure 4 the proposal

(the small white box) is smaller than ground truth bounding
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box and 7 of the 9 grid points cannot be covered by output

heatmap.

A natural idea is to enlarge the proposal area. This ap-

proach can make sure that most of the grid points will be in-

cluded in proposal area, but it will also introduce redundant

features of background or even other objects. Experiments

show that simply enlarging the proposal area brings no gain

but harms the accuracy of small objects detection.

To address this problem, we modify the relationship of

output heatmaps and regions in the original image by a ex-

tended region mapping approach. Specifically, when the

proposals are obtained, the RoI features are still extracted

from the same region on the feature map without enlarging

proposal area. While we re-define the representation area

of the output heatmap as a twice larger corresponding re-

gion in the image, so that all grid points are covered in most

cases as shown in Figure 4 (the dashed box).

The extended region mapping is formulated as a modifi-

cation of Equation 1:

I
′

x = Px +
4Hx − wo

2wo

wp

I
′

y = Py +
4Hy − ho

2ho

hp

(4)

After the new mapping, all the target grid points of the pos-

itive proposals (which have an overlap larger than 0.5 with

ground truth box) will be covered by the corresponding re-

gion of the heatmap.

3.4. Implementation Details

Network Configuration: We adopt the depth 50 or 101

ResNets [14] w/o FPN [17] constructed on top as backbone

of the model. RPN [25] is used to propose candidate re-

gions. By convention, we set the shorter edge of the input

image to 800 pixels in COCO dataset [19] and 600 pix-

els in Pascal VOC dataset [5]. In RPN, 256 anchors are

sampled per image with 1:1 ratio of positive to negative an-

chors. The RPN anchors span 5 scales and 3 aspect ratios,

and the IoU threshold of positive and negative anchors are

0.7 and 0.3 respectively. In classification branch, RoIs that

have an overlap with ground truth greater than 0.5 are re-

garded as positive samples. We sample 128 RoIs per image

in Faster R-CNN [25] based model and 512 RoIs per image

in FPN [17] based model, with the 1:3 ratio of positive to

negative. RoIAlign [11] is adopted in all experiments, and

the pooling size is 7 in category classification branch and 14

in grid branch. The grid prediction branch samples at most

96 RoIs per image and only positive RoIs are sampled for

training.

Optimization: We use SGD to optimize the training loss

with 0.9 momentum and 0.0001 weight decay. The back-

bone parameter are initialized by image classification task

on ImageNet dataset [26], other new parameters are initial-

ized by He (MSRA) initialization [13]. No data augmen-

tations except standard horizontal flipping are used. Our

model is trained on 32 Nvidia TITAN Xp GPUs with one

image on each for 20 epochs with an initial learning rate

of 0.02, which decreases by 10 in the 13 and 18 epochs.

We also use learning rate warming up and Synchronized

BatchNorm machanism [10, 23](only used in Grid branch)

to make multi-GPU training more stable.

Inference: During the inference stage, the RPN gener-

ates 300/1000 (Faster R-CNN/FPN) RoIs per image. Then

the features of these RoIs will be processed by RoIAl-

gin [11] layer and the classification branch to generate cate-

gory score, followed by non-maximum suppression (NMS)

with 0.5 IOU threshold. After that we select top 125 high-

est scoring RoIs and put their RoIAlign features into grid

branch for further location prediction. Finally, NMS with

0.5 IoU threshold will be applied to remove duplicate de-

tection boxes.

4. Experiments

We perform experiments on two object detection

datasets, Pascal VOC [5] and COCO [19]. On Pascal VOC

dataset, we train our model on VOC07+12 trainval set and

evaluate on VOC2007 test set. On COCO [19] dataset

which contains 80 object categories, we train our model on

the union of 80k train images and 35k subset of val images

and test on a 5k subset of val (minival) and 20k test-dev.

4.1. Ablation Study

Multi-point Supervision: Table 1 shows how grid point

selection affects the accuracy of detection. We perform ex-

periments of variant grid formulations. The experiment of

2 points uses the supervision of upper left and bottom right

corner of the ground truth box. In 4-point grid we add su-

pervision of two other corner grid points. 9-point grid is

a typical 3x3 grid formulation that has been described in

section 3.1. All experiments in Table 1 are trained with-

out feature fusion to avoid the extra gain from using more

points for feature fusion. It can be observed that as the num-

ber of supervised grid points increases, the accuracy of the

detection also increases.

method AP AP.5 AP.75

regression 37.4 59.3 40.3

2 points 38.3 57.3 40.5

4-point grid 38.5 57.5 40.8

9-point grid 38.9 58.2 41.2

Table 1. Comparison of different grid points strategies in Grid R-

CNN. Experiments show that more grid points bring performance

gains.

Grid Points Feature Fusion: Results in Table 2 shows
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method AP AP.5 AP.75

w/o fusion 38.9 58.2 41.2

bi-directional fusion [2] 39.2 58.2 41.8

first order feature fusion 39.2 58.1 41.9

second order feature fusion 39.6 58.3 42.4

Table 2. Comparison of different feature fusion methods. Bi-

directional feature fusion, first order feature fusion and second

order fusion all demonstrate improvements. Second order fusion

achieves the best performance with an improvement of 0.7% on

AP.

method AP APsmall APlarge

baseline 37.7 22.1 48.0

enlarge proposal area 37.7 20.8 50.9

extended region mapping 38.9 22.1 51.4

Table 3. Comparison of enlarging the proposal directly and ex-

tended region mapping strategy.

the effectiveness of feature fusion. We perform experiments

on several typical feature fusion methods and achieve dif-

ferent levels of improvement on AP performance. The bi-

directional fusion method, as mentioned in [2], models the

information flow as a bi-directional tree. For fair compar-

ison, we directly use the feature maps from the first order

feature fusion stage for grid point location prediction, and

see a same gain of 0.3% AP as bi-directional fusion. And

we also perform experiment of the complete two stage fea-

ture fusion. As can be seen in Table 2, the second order

fusion further improves the AP by 0.4%, with a 0.7% gain

from the non-fusion baseline. Especially, the improvement

of AP0.75 is more significant than that of AP0.5, which in-

dicates that feature fusion mechanism helps to improve the

localization accuracy of the bounding box.

Extended Region Mapping: Table 3 shows the results

of our extended region mapping strategy compared with the

original region representation and the method of directly

enlarging the proposal box. Directly enlarging the region

of proposal box for RoI feature extraction helps to cover

more grid points of big objects but also brings in redundant

information for small objects. Thus we can see that with

this enlargement method there is a increase in APlarge but

a decrease in APsmall, and finally a decline compared with

the baseline. Whereas the extended region mapping strat-

egy improves APlarge performance as well as producing no

negative influences on APsmall, which leads to 1.2% im-

provement on AP.

4.2. Comparison with Stateoftheart Methods

On minival set, we mainly compare Grid R-CNN with

two widely used two-stage detectors, Faster-RCNN and

FPN. We replace the original regression based localization

method by the grid guided localization mechanism in the

method backbone AP

R-FCN ResNet-50 45.6

FPN ResNet-50 51.7

FPN based Grid R-CNN ResNet-50 55.3

Table 4. Comparison with R-FCN and FPN on Pascal VOC

dataset. Note that we evaluate the results with a COCO-style cri-

terion which is the average AP across IoU thresholds range from

0.5 to [0.5:0.95].

two frameworks for fair comparison.

Experiments on Pascal VOC: We train Grid R-CNN

on Pascal VOC dataset for 18 epochs with the learning rate

reduced by 10 at 15 and 17 epochs. The origianl evaluation

criterion of PASCAL VOC is to calculate the mAP at 0.5

IoU threshold. We extend that to the COCO-style criterion

which calculates the average AP across IoU thresholds from

0.5 to 0.95 with an interval of 0.05. We compare Grid R-

CNN with R-FCN [3] and FPN [17]. Results in Table 4

show that our Grid R-CNN significantly improve AP over

FPN and R-FCN by 3.6% and 9.7% respectively.

Experiments on COCO: To further demonstrate the

generalization capacity of our approach, we conduct experi-

ments on challenging COCO dataset. Table 5 shows that our

approach brings consistently and substantially improvement

across multiple backbones and frameworks. Compared with

Faster R-CNN framework, Grid R-CNN improves AP over

baseline by 2.1% with ResNet-50 backbone. The significant

improvements are also shown on FPN framework based on

both ResNet-50 and ResNet-101 backbones. Experiments

in Table 5 demonstrate that Grid R-CNN significantly im-

prove the performance of middle and large objects by about

3 points.

Results on COCO test-dev Set: For complete compari-

son, we also evaluate Grid R-CNN on the COCO test-dev

set. We adopt ResNet-101 and ResNeXt-101 [31] with

FPN [17] constructed on the top. Without bells and whis-

tles, Grid R-CNN based on ResNet-101-FPN and ResNeXt-

101-FPN could achieve 41.5 and 43.2 AP respectively. As

shown in Table 6, Grid R-CNN achieves very competitive

performance comparing with other state-of-the-art detec-

tors. It outperforms Mask R-CNN by a large margin with-

out using any extra annotations. Note that since the tech-

niques such as scaling used in SNIP [28] and cascading in

Cascade R-CNN [1] are not applied in current framework

of Grid R-CNN, there is still room for large improvement

on performance (e.g. combined with scaling and cascading

methods).

4.3. Analysis and Discussion

Accuracy in Different IoU Criteria: In addition to the

overview of mAP, in this part we focus on the localization

quality of the Grid R-CNN. Figure 5 shows the comparison

between FPN based Grid R-CNN and baseline FPN with
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method backbone AP AP.5 AP.75 APS APM APL

Faster R-CNN ResNet-50 33.8 55.4 35.9 17.4 37.9 45.3

Grid R-CNN ResNet-50 35.9 54.0 38.0 18.6 40.2 47.8

Faster R-CNN w FPN ResNet-50 37.4 59.3 40.3 21.8 40.9 47.9

Grid R-CNN w FPN ResNet-50 39.6 58.3 42.4 22.6 43.8 51.5

Faster R-CNN w FPN ResNet-101 39.5 61.2 43.1 22.7 43.7 50.8

Grid R-CNN w FPN ResNet-101 41.3 60.3 44.4 23.4 45.8 54.1

Table 5. Bounding box detection AP on COCO minival. Grid R-CNN outperforms both Faster R-CNN and FPN on ResNet-50 and

ResNet-101 backbone.

method backbone AP AP.5 AP.75 APS APM APL

YOLOv2 [24] DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5

SSD-513 [20] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8

DSSD-513 [6] ResNet-101 33.2 53.3 35.2 13.0 35.4 51.1

RefineDet512 [33] ResNet101 36.4 57.5 39.5 16.6 39.9 51.4

RetinaNet800 [18] ResNet-101 39.1 59.1 42.3 21.8 42.7 50.2

CornerNet [15] Hourglass-104 40.5 56.5 43.1 19.4 42.7 53.9

Faster R-CNN+++ [14] ResNet-101 34.9 55.7 37.4 15.6 38.7 50.9

Faster R-CNN w FPN [17] ResNet-101 36.2 59.1 39.0 18.2 39.0 48.2

Faster R-CNN w TDM [27] Inception-ResNet-v2 [29] 36.8 57.7 39.2 16.2 39.8 52.1

D-FCN [4] Aligned-Inception-ResNet 37.5 58.0 - 19.4 40.1 52.5

Regionlets [32] ResNet-101 39.3 59.8 - 21.7 43.7 50.9

Mask R-CNN [11] ResNeXt-101 39.8 62.3 43.4 22.1 43.2 51.2

Grid R-CNN w FPN (ours) ResNet-101 41.5 60.9 44.5 23.3 44.9 53.1

Grid R-CNN w FPN (ours) ResNeXt-101 43.2 63.0 46.6 25.1 46.5 55.2

Table 6. Comparison with state-of-the-art detectors on COCO test-dev.

the same ResNet-50 backbone across IoU thresholds from

0.5 to 0.9. Grid R-CNN outperforms regression at higher

IoU thresholds (greater than 0.7). The improvements over

baseline at AP0.8 and AP0.9 are 4.1% and 10% respectively,

which means that Grid R-CNN achieves better performance

mainly by improving the localization quality of the bound-

ing box. In addition, the results of AP0.5 indicates that grid

branch may slightly affect the performance of the classifi-

cation branch.

59.3
54.7

46.3

32.2

9.6

58.3
53.9

46.3

36.3

19.6

0

10

20

30

40

50

60

70

0.5 0.6 0.7 0.8 0.9

m
AP

IoU threshold

Faster R-CNN with FPN

Grid R-CNN with FPN

Figure 5. AP results across IoU thresholds from 0.5 to 0.9 with an

interval of 0.1.

Varying Degrees of Improvement in Different Cate-

gories: We have analyzed the specific improvement of Grid

R-CNN on each category and discovered a meaningful and

interesting phenomenon. As shown in Table 7, the cate-

gories with the most gains usually have a rectangular or bar

like shape (e.g. keyboard, laptop, fork, train, and refrigera-

tor), while the categories suffering declines or having least

gains usually have a round shape without structural edges

(e.g. sports ball, frisbee, bowl, clock and cup). This phe-

nomenon is reasonable since grid points are distributed in

a rectangular shape. Thus the rectangular objects tend to

have more grid points on the body but round objects can

never cover all the grid points (especially the corners) with

its body.

Qualitative Results Comparison: We showcase the il-

lustrations of our high quality object localization results in

this part. As shown in Figure 6, Grid R-CNN (in the 1st

and 3rd row) has an outstanding performance in accurate

localization compared with the widely used Faster R-CNN

(in the 2nd and 4th row). First and second row in figure 6

show that Grid R-CNN outperforms Faster R-CNN in high

quality object detection. Third and 4th row show that Grid

R-CNN performs better in large object detection tasks.
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Figure 6. Qualitative results comparison. The results of Grid R-CNN are listed in the first and third row, while those of Faster R-CNN are

in the second and fourth row.

category cat bear giraffe dog airplane horse zebra toilet keyboard fork teddy bear train laptop refrigerator hot dog

gain 6.0 5.6 5.4 5.3 5.3 5.0 4.8 4.8 4.7 4.6 4.4 4.2 4.0 3.6 3.6

category toaster hair drier sports ball frisbee traffic light backpack kite handbag microwave bowl clock cup carrot dining table boat

gain -1.9 -1.3 -1.0 -0.8 -0.5 -0.4 -0.3 -0.1 -0.1 -0.1 0.1 0.1 0.2 0.3 0.3

Table 7. The top 15 categories with most gains and most declines respectively, in the results of Grid R-CNN compared to Faster R-CNN.

5. Conclusion

In this paper we propose a novel object detection frame-

work, Grid R-CNN, which replaces the traditional box off-

set regression strategy in object detection by a grid guided

mechanism for high quality localization. The grid branch

locates the object by predicting grid points with the po-

sition sensitive merits of FCN and then determining the

bounding box guided by the grid. Further more, we de-

sign a feature fusion module to calibrate the locations of

grid points by transferring the spatial information in fea-

ture map level. Additionally, an extended region mapping

mechanism is proposed to help RoIs get a larger represent-

ing area to cover as many grid points as possible, which

significantly improves the performance. Extensive experi-

ments show that Grid R-CNN brings solid and consistent

improvement and achieves state-of-the-art performance, es-

pecially on strict evaluation metrics such as AP at IoU=0.8

and IoU=0.9. Since the grid guided localization approach is

easy to be extended to other frameworks, we will try to com-

bine the scale selection and cascade techniques with Grid

R-CNN and we believe a further gain can be obtained.
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