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Abstract

With the rapid growth of fashion-focused social networks
and online shopping, intelligent fashion recommendation is
now in great needs. Recommending fashion outfits, each
of which is composed of multiple interacted clothing and
accessories, is relatively new to the field. The problem be-
comes even more interesting and challenging when consid-
ering users’ personalized fashion style. Another challenge
in a large-scale fashion outfit recommendation system is the
efficiency issue of item/outfit search and storage. In this pa-
per, we propose to learn binary code for efficient personal-
ized fashion outfits recommendation. Our system consists
of three components, a feature network for content extrac-
tion, a set of type-dependent hashing modules to learn bi-
nary codes, and a matching block that conducts pairwise
matching. The whole framework is trained in an end-to-
end manner. We collect outfit data together with user label
information from a fashion-focused social website for the
personalized recommendation task. Extensive experiments
on our datasets show that the proposed framework outper-
forms the state-of-the-art methods significantly even with a
simple backbone.

1. Introduction

Fashion-focused social networks have become a vibrant
realm where millions of individuals share and post daily
fashion-related activities. A huge amount of fashion outfits
have been created by users in these communities. Mining
desirable fashion outfits from this massive data set is very
challenging but critical to the development of these online
fashion communities. Therefore, there is a great need for
intelligent fashion recommendation techniques. The num-
ber of possible outfits grows exponentially with the number
of items in each garment category. The storage complexity
and the retrieval efficiency of the outfits are essential for the
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Figure 1. Examples of recommended outfits for three users, where
the outfits in red boxes are user-created ones.

deployment of a fashion recommendation system in prac-
tice, which however have not been well addressed before.

Existing related works can be loosely classified into two
types based on the way they evaluate how compatible the
items in an outfit are. The first type of approaches model
pairwise compatibilities between fashion items. Veit et
al. [28] propose to use a Siamese network to learn the dis-
tance between paired items. Hu ef al. [7] learn a functional
factorization and compute the compatibility based on pair-
wise inner product. Vasileva et al. [27] learn type-aware
embedding for fashion items and use a fully-connected
layer as a generalized distance function for compatibility
prediction. The second type of approaches seek to model
high order relations among the items of an outfit. Li et
al. [12] use a recurrent neural network to predict set com-
patibility. Han et al. [3] treat outfits as a sequence of items
and compute the compatibility score through LSTM.

The number of items in a fashion inventory is usually
very large and the number of outfits that can be composed
by these items is orders of magnitude larger. To deploy
a practical fashion recommendation system, efficiency be-
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comes an extremely important problem. The items and out-
fits should be stored in an economical way. The compati-
bility of an outfit should be evaluated not only accurately
but also efficiently. And the most compatible items and
outfits need to be retrieved swiftly. These are issues that
haven’t been well handled by previous works. In this work,
we take them into consideration and explore the hash tech-
nique for fashion recommendation. Learning to hash has
been extensively studies for efficient image retrieval [15].
Some recent works have also combine it with collabora-
tive filtering algorithms to recommend individual items to
users [35, 19, 32, 13]. We incorporate it into the task of sets
composition problem for personalized outfit recommenda-
tion.

We design a neural network for efficient personalized
fashion outfit recommendation. The network captures the
favors of different users and learn the compatibility between
fashion items. It is composed of three components. A fea-
ture network is first used to extract content features. Then a
set of type-dependent hashing modules convert the features
and user taste representations into binary codes. Finally,
the overall preference of a user to an outfit is computed by
a matching block that conducts pairwise weighted hashing
matching. Both visual and textual information are utilized
in our model. Since existing datasets are either two small
or lacking user information, we collect a new dataset which
contains more than 138,000 outfits created by hundreds of
online users. We evaluate our method on this large scale
dataset. Extensive experiments show that it outperforms the
state-of-the-art methods even with a simple backbone and
binary representations.

2. Related Work
2.1. Fashion recommendation

Fashion analysis [17], such as clothing recognition [20],
latent embedding [24, 5, 10], parsing [2, 31, 14], re-
trieval [18, 14] and recommendation [16, 8, 21, 28, 6] have
attracted many attentions in recent years. Among the plenty
of works that studied fashion related problems, we focus on
those that related to the recommendation task in the follow-
ing.

Liu et al. [16] introduce a latent SVM based model for
occasion-oriented clothing recommendation. McAuley el
al. [21] propose a parametric distance transformation to
learn the item compatibility. Veit ef al. [28] utilize Siamese
network to learn embedding for fashion items. These works
do not consider the composition of multiple items in an out-
fit and only focus on the matching between two items. Some
methods seek to directly model the high-order relationships
between items. Li ef al. [12] apply multi-modality fusion
and RNN-based multi-instance pooling models to classify
the outfit quality. Han ef al. train a bidirectional LSTM as

a scorer to predict the compatibility of an outfit. Vasileva et
al. [27] learn type-aware mapping for different kinds of
items and utilize metric layers to learn the compatibility.
As for personalized composition problem. Hu et al. [7]
make an initial exploration. A functional tensor factoriza-
tion method is proposed to model the user-item and item-
item interactions in multiple latent spaces. Nevertheless,
they use hand-crafted features and do not jointly optimize
the representation of images. Hsiao el. al [6] propose a sub-
set selection model for selecting a minimal set of garments
that maximize the compatibility and versatility, which in-
troduce a new recommendation topic. However, those men-
tioned models do not consider the efficiency of the system.

2.2. Learning to hash

Learning to hash is the task of learning a compact bi-
nary code for the input item. It aims to maintain the near-
est neighbor relation of the original space in the hamming
space. Hashing methods have become a promising and pop-
ular technique for efficient similarity search, which also re-
duce the storage cost of data. The basic idea in learning to
hash is similarity preserving [29], i.e., minimizing the gap
between the similarity computed in hash-coded space and
the similarity in the original space. Most existing hashing
methods first introduce some relaxations to their problems
by learning real-valued embedding and then take the sign of
the values to obtain binary codes [15, 36, 11], which how-
ever often suffer from quantization loss. Recently, Cao et
al. [1] proposed a method to learn hash codes by continua-
tion with convergence guarantees.

There have been some works reported that apply hashing
technique to the recommendation problem [35, 13]. Zhou et
al. [35] learn binary code that preserves the preference of
users to items in collaborative filtering. Lian et al. [13] pro-
pose a discrete content-aware matrix factorization model.
However, these methods cannot be applied directly to the
outfit composition problem since they only recommend sin-
gle items while an outfit contains multiple interacted items.
In this work, we model outfit compatibility through pair-
wise interactions and employ the weighted hashing tech-
nique [34, 30, 33] for matching users and items.

3. The Proposed Approach
3.1. Problem formulation

Suppose there are N fashion categories (e.g. top, bot-
tom and shoes). The number of items in the n-th cate-
gory is donated by L,, and the number of users is U. Let
X = {xgn)

gory, where xE") is the i-th item in it. Then an outfit with N
items, with each from one category, can be represented as:

x(LT;)} donate all items in the n-th cate-

yeeey

0; = {2, .. ™y, (1)
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Figure 2. Overall network architecture. All convolutional networks share the same weights. For each type of items, a type-dependent
encoder is used to learn binary codes. The matching block is responsible for computing the final preference the user has for the outfit.

where © = (i1, ...,4y) is the index tuple.

The fashion taste can be very different for different users,
i.e. the fashion style preference is personal (see Fig. 1).
The personalized fashion preference of a certain user can
be implicitly represented by outfits the user created or rated
in the past. We use 7, o, to indicate the preference of user
u to outfit O;. The higher the score, the more the user likes
that outfit. Our task is to predict r, o, for any user and outfit
pair so that the most preferable outfits can be recommended
to users.

Without loss of generality, let’s assume that an outfit is
composed of IV items from N categories Then the total
number of possible user-outfit pairs is U x Li X --- X Ly,
which is an extremely large number in practice. There-
fore, we need to compute r, o, in a more feasible way so
that some efficient search technique can be applied. In this
work, we explore the binary embedding technique, i.e. we
seek to represent users and fashion items with binary codes,
from which the preference scores are computed.

3.2. Overall framework

We propose a fashion hashing network (FHN) to predict
the preference of users to different outfit compositions. The
overall architecture is shown in Fig. 2. It consists of three
types of components, a feature network for feature extrac-
tion, several type-dependent hashing modules to learn bi-
nary codes, and a matching block to predict the preference
score. For input, each user is represented by a one-hot vec-
tor, indicating the index of the user. We use a convolutional
network to extract visual features for images. The feature
networks for different item categories share the same pa-
rameters. The specific structure of this feature network is

optional to us. Note that textual information can also be in-
corporated which we will discuss later. Items from different
categories and the users are considered as different types.
Each hashing module consists of some fully-connected lay-
ers with a sign function for binarization. The last compo-
nent is a matching block to compute the preference score
given the binary codes. There are two terms contributing to
the final score. One only considers item compatibilities and
the other takes users’ taste into consideration. The detailed
formulation is discussed in the following subsections.

3.3. The matching block

The compatibility among the items of an outfit and the
fitness to a user are multiway relationships. Although many
efforts have been made to the model high order relation-
ships in various applications, the most successful way to
handle them is still to decompose it into pairwise relation-
ships, which is easier to learn and has been proven to be a
good approximation. Considering the efficiency of comput-
ing the preference scores and retrieving compatible outfits
for recommendation, we also build our model based on pair-
wise interaction relations.

Let b;, b; € {—1,+1} be the binary codes of two ob-
jects, which can be a fashion item or a user, their compati-
bility is measured by

m;; = b;rAb], (2)

where A is a weighting matrix which we constrain it to be
diagonal, i.e. A = diag(A1,...,Ap). A is introduced to
better capture the relationship between objects while main-
taining the computational efficiency of binary codes. And
the score for outfit O; with respect to user u is computed by
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ruo; = a i+l 3)
where )
reo, = 5 2 b TAMBY, @
@ _ 1 ()T A (3) (M)
reos = ;;bin ADB™. (5)

In the above formulations, A(*) and A(® are the weight-
ing matrices for user-item and item-item pairs respectively.
The Eq. (4) models user’s preference to the fashion items
and Eq. (5) measures the compatibility between pairs of
fashion items. They are normalized by the number of pairs
involved, i.e. z; and z5. The scalar « is used to balance the
contributions of the two terms. Although o can be absorbed
into A, we keep it in Eq. (3) for later discussion of not
using weighted hashing, i.e, A A® are set to identity
matrix 1.

3.4. Learn to hash

Directly optimizing an objective function with the binary
constraint on bl(:), bg“) is challenging. It is common to re-
lax the problem by using continuous variables to replace
them during optimization. The binary codes are obtained
by taking the sign of the continuous variables, i.e.,

b\") = sign(h{"),b(") = sign(h{"), ©)

where sign(z) = 1if x > 0 and —1 otherwise.

Many hashing methods learn the hash code by mini-
mizing the quantization error after binarization. Recently,
Cao et al. [1] propose a HashNet method which approx-
imates the sign operation through activation in the neu-
ral network. This method avoids explicitly tackling the
quantization error. Following this work, we rewrite Eq. (4)
and Eq. (5) as follows:

u i sz A(u ut7 (7)
b ‘L Zl ’V'L)

Z Z bz:rj,)TA(Z)bzm t (8)

where

b, = tanh(B:h("), b.") = tanh(8h("),  (9)

and f; is a scalar that increases with the iteration ¢ during
optimization. When f; is large, Eq. (9) is a close approxi-
mation of Eq. (6) (see the diagram in Fig. 2). So b t and

bilt) converge to the binary codes bgn) and bEL 2 When the
optimization ends.

3.5. Objective function

Besides images, the fashion items are usually also de-
picted by some textual descriptions when exhibited online.
These textual descriptions provide semantic information for
the images, which would be very helpful for compatibility
modeling. We therefore also use features extracted from
textual content in out model.

We use the same way to convert textual features into
binary codes and compute the corresponding preference
scores. Suppose binary codes from different modalities
are donated by bi Z)L bgfnl) , where v and f indicate vi-
sual and textual respectively. The overall score with multi-
modality information is computed by adding the scores of
each modality:

ru,0: ({67 1 65) + 10, ({657 1,600).  (10)

The scores of each modality is computed by Eq. (3) and the
same binary codes of users are used for different modalities.

We use ranking loss to learn the parameters of our model,
i.e. the network is trained so that given a pair of outfits, it
can predict which one is preferable to a user. The training
set contains a set of outfit pairs:

P= {(uvi7j)‘7ﬂu,(9¢ > ru,(’)j}a (11)

where (u, 1, ) indicates that user u prefers outfit O; over
O;. We adapt the BPR [23] optimization criterion to max-
imize the posterior probability of model parameters. The
objective can be expressed as:

Z log (1 + exp(—(ry,o0;
(u,2,5)EP

—1u,0;))) (12)

IBpRr =

Following previous work [3], we also add constraints
to make the embeddings of visual and textual information
more consistent to each other. For simplicity, suppose v, f
are binary codes for items from the two modalities. Their
similarity is donated by s(v, f) = vT7f. We require that
v and f that correspond to the same item should be more
similar than those for different items. This is achieved by
minimizing the following loss:

éVSE :Zmax{() c— S
Zmax{() c—

where (v, f) are for the same item. (v, f,.) are for different
items and so is (vg, f).
Overall, the objective of the proposed method is:

(v, f) + s(vr, £},

Hgn E(lppr + MvsEg), (14)
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Polyvore-630
Splits | #Outfits ‘ #ltems | #Outfits | #Items
Train | 127,326 | 159,729 | 10,712 | 20,230
Test 23,054 | 45,505 1,944 4,437
Polyvore-519 Polyvore-32

Splits | #Outfits | #Items | #Outfit | #Items

Train | 83,416 | 146,475 | 5,133 14,594
Test 14,654 | 39,085 898 2,797

Polyvore-53

Table 1. Statistics of our Polyvore datasets.

where O are parameters for the network and X is a weighting
parameter. © consists of {©,,,,0,,0;,0,} where O,,,
are parameters of the feature network and ©,,0¢,0,, are
parameters of the encoders for the two modalities and for
the users respectively. The optimization problem is solved
with continuous relaxation as discussed in Sec. 3.4.

3.6. Implementation details

The structure of the feature network is optional for us.
In our experiments, we simply use AlexNet [9] as the back-
bone. To handle images with arbitrarily sizes, we replace all
fully-connected layers in AlexNet with convolutional layers
and an average pooling layer is added to get a fixed feature
dimension of 4096. The dimension for textual feature is
2400. The type-dependent hashing modules for items con-
sist of two fully-connected layers. The encoder for users
contains one fully-connected layer. Our methods are imple-
mented in PyTorch [22].

4. Polyvore Dataset
4.1. Polyvore-U

Since existing datasets [7, 3, 27] are either too small or
lacking the user information, they cannot be used for our
personalized fashion outfit recommendation problem. We
collect a new dataset from the Polyvore website. We let
each outfit contain items from three categories, i.e. top,
bottom, and shoes. We created 4 versions of the datasets
denoted by Polyvore-U, where U is the number of users.
Two datasets i.e. Polvvore-630 and Polyvore-53, contain
outfits with a fixed number of items, i.e., each outfit has
one and only one item from each category. In the other
two datasets, Polvvore-519 and Polyvore-32, the number
of items in each outfit is varying, i.e., some outfits may
have two tops. The two larger datasets, Polvvore-630 and
Polvvore-519 are used for most experiments. Polyvore-53
and Polyvore-32 are reserved to test the user generalization
ability of our models. The statistic of our data sets is shown
in Table 1.

4.2. Data preparation

We take outfits created by a user as positive outfits for
that user. The negative outfits for him/her come from two
sources. One is random mixtures of items, and the other is
random samples of other users’ positive outfits. The sec-
ond type of negative outfits are more difficult than the first
one. Outfit composition methods that do not consider the
personalization issue usually fail to distinguish them from
positive outfits. For fair comparison, we first only include
the easy negative outfits when comparing the performance
of different methods. We discuss the results with the hard
negative outfits separately in Sec. 5.3. The ratio between
negative and positive outfits is set to 10:1 for each user. The
number of items in a negative outfit is kept consistent to that
in a positive outfit in each dataset. We ensure that this is no
overlap of items between the training and testing sets for
each user.

5. Experiment Results
5.1. Evaluation metric

We conduct experiments on two recommendation tasks.
The first is outfit recommendation, i.e. for each user we rank
the testing outfits in descending order of their compatibility
scores. The ranking performance is evaluated by Area Un-
der the ROC curve (AUC) and Normalized Discounted Cu-
mulative Gain (NDCG). The second is the fill-in-the-blank
(FITB) fashion recommendation experiment. The goal is to
select an item from a set of candidate items (four in our ex-
periments) that is most compatible with the remaining items
of the outfit. The ground truth item is the correct answer and
the performance is measured by accuracy of the answers.
For each experiment, we report the average results over all
users.

5.2. Performance comparison

We compare variant versions of our models with three
state-of-the-art methods:

e SiameseNet [28] utilizes a Siamese CNN to learn a
feature transformation to the latent style space, which
maintains the matching relationship for pairs of items.
The score of an outfit is obtained by averaging the pair-
wise similarities. The embedding size is set to 512.

e Bi-LSTM [3] uses bidirectional LSTM to learn
the compatibility of an outfit by considering the
items as a sequence. Image features are extracted
from Inception-V3 [26] and transformed into represen-
tation with 512 dimension before fed into LSTM.

* CSN [27] maps pairs of items into type-specific em-
bedding spaces. Compatibility is measured by dis-
tances in these spaces. An extra distance metric, i.e.
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Figure 3. Top-10 outfits with the highest scores computed by different methods on Polyvore-630. The outfits in red boxes are positive

outfits and those in black boxes are negative ones.

a weighted inner product, is also learned to replace the
Euclidean distance. We use 512 for embedding size
and their backbone is ResNet-18 [4].

* FHN is our fashion hashing net. We use AlexNet as
backbone and use weighted hashing to compute the
compatibility between items and users. The length of
binary code D is set to 128 for all schemes. We evalu-
ate four different types of weighting schemes:

set AW = A =1

set A) =1, = 1.

set Al =T, = 1.

seta = 1.

- FHN-TO:
- FHN-T1:
- FHN-T2:
- FHN-T3:

We use the two larger datasets Polyvore-630 and
Polyvore-519 for the comparison of different methods. The
results are shown in Table 2. Here, we also evaluate the
contribution of each modality in our model. The textual
features are obtained from the descriptions and tags of the
items using seg2seq [25]. To show the contribution of each
modality, we train FHN-T3 with each modality separately
and show the results in part (b). And all methods in part
(c) employ both visual and textual information. From the
results, we can see that all our full-version methods outper-
form the state-of-the-arts methods under all metrics. Even
with only vision features, our model still works better than
other methods. By comparing results of the two modalities,
we find that the visual information is more helpful than tex-
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Polyvore-630 Polyvore-519
Methods FITB ] AUC | NDCG | FITB | AUC ‘ NDCG
(a) SiameseNet [28] 0.5103 | 0.7703 | 0.6109 | 0.5304 | 0.8026 | 0.6648
Bi-LSTM [3] 0.5515 | 0.8102 | 0.6629 | 0.5232 | 0.7746 | 0.6210
CSN [27] 0.5536 | 0.8187 | 0.6744 | 0.5617 | 0.8215 | 0.6703
(b) FHN-T3 (Textual) | 0.5144 | 0.8441 | 0.7343 | 0.4857 | 0.8188 | 0.6953
FHN-T3 (Visual) | 0.6052 | 0.8942 | 0.8090 | 0.6035 | 0.8845 | 0.7784
(c) FHN-TO 0.6066 | 0.8989 | 0.8213 | 0.5770 | 0.8761 | 0.7821
FHN-T1 0.6159 | 0.9016 | 0.8251 | 0.6062 | 0.8892 | 0.8014
FHN-T2 0.6451 | 0.9027 | 0.8296 | 0.6283 | 0.8975 | 0.8184
FHN-T3 0.6461 | 0.9176 | 0.8541 | 0.6386 | 0.9137 | 0.8448

Table 2. Comparison of different methods on Polyvore-630 and Polyvore-519.

Dataset | SiameseNe | Bi-LSTM \ CSN ‘
Polyvore-630 97.78 94.60 94.76
Polyvore-519 97.11 97.50 96.15

Table 3. Wining rate (%) of FHN-T3 over other methods.

tual in this task. And combining the two modalities leads to
better performance than only using one of them.

Overall, the proposed methods with multi-modality get
6.6% ~ 12.1% improvement in AUC and 19.56% ~
26.65% improvement in NDCG when compared with the
best results of other methods on the two datasets. To visual-
ize the ranking quality, we show top-10 outfits of three users
with the highest scores in Fig. 3. FHN usually has better
ranking results. To show how good FHN is when compared
to other methods, we define the winning rate as the per-
centage of users one method outperforms the other in mean
NDCG. We show the comparisons in Table 3. It shows that
FHN has better ranking results for at least 94% users. The
improvement mainly comes from the personalized model-
ing of users’ fashion preferences. It is also beneficial to use
the BPR optimization criterion which explicitly takes rank-
ing into consideration. FHN-TO uses unweighted hashing
in Eq. (3), which leads to a relatively poor performance as
shown in Table 2. And as expected, adding weighting to
hashing improves the results. Without loss of generality, in
the following, we only consider FHN-T3 and make it the
default setting for analysis.

5.3. Performance on hard outfits

As mentioned in Sec. 4.2, there are two types of nega-
tive outfits. A challenging case is to use the outfits that are
posted by other users as negative outfits for the current user
in evaluation. This setting is different from that of previ-
ous work where all user created outfits are taken as posi-
tive ones. We learn users’ preferences through the first term
in Eq. (3). Note that only 128 extra bits are introduced to
characterize the users. The results are shown in Table 4.

Polyvore-630-H | Polyvore-519-H
Methods AUC [ NDCG | AUC | NDCG
SiameseNet | 0.4993 | 0.2808 | 0.4997 | 0.2731
Bi-LSTM 0.4992 | 0.2817 | 0.4990 | 0.2739
CSN 0.5000 | 0.2790 | 0.4995 | 0.2740
FHN 0.7654 | 0.5552 | 0.7550 | 0.5369
FHN-H 0.8440 | 0.6869 | 0.8361 | 0.6685

Table 4. Results on hard negative outfits. FHN-H utilizes hard
negative outfits during training while FHN does not include hard
negative outfits during training.

FHN indicates results obtained without including hard neg-
ative outfits during training. And FHN-H involves hard neg-
ative outfits in the training set. We can see that the baseline
methods perform poorly in this experiment since they re-
gard all hard negatives as positive ones. Our method works
much better with the same training set. By including hard
negatives during training, the performance can be further
improved.

5.4. Learning hashing codes for cold-start users

Code start is a common problem in recommendation sys-
tems. New users joins constantly in a social network. It will
be un-affordable to retrain the whole network for each new
user. To tackle this problem, we keep the feature network
for items fixed, and only retrain the user representations for
newcomers, which is only a 128 bits binary code in our
method and can be computed very efficiently. We evaluate
a scenario where the system have built a model for 630/529

| | Polyvore-53 | Polyvore-32 |

FITB 0.5998 0.5780
AUC 0.8890 0.8911
NDCG 0.8211 0.7970

Table 5. Results of learning hash codes for new users.
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Polyvore-630 Polyvore-519
Methods FITB | AUC | NDCG | FITB ] AUC | NDCG
FHN w/ Eq. (5) 0.5530 | 0.8180 | 0.6637 | 0.4836 | 0.8289 | 0.6949
FHN d/ Eq. (4) 0.5733 | 0.8333 | 0.7037 | 0.5747 | 0.8334 | 0.7006
FHN w/ Eq. (4) 0.5062 | 0.8463 | 0.7274 | 0.5578 | 0.8243 | 0.6717
FHN d/ Eq. (5) 0.5302 | 0.8571 | 0.7609 | 0.5170 | 0.8519 | 0.7449
FHN-T3 in Table 2 | 0.6461 | 0.9176 | 0.8541 | 0.6386 | 0.9137 | 0.8448

Table 6. The contribution of each term in Eq. (3). FHN w/ Eq. (5) is trained only using Eq. (5) and FHN w/ Eq. (4) is trained only
using Eq. (4). FHN d/ Eq. (4) and FHN d/ Eq. (5) drop the corresponding term of a trained FHN model.
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Figure 4. Comparison of different lengths of codes on Polyvore
datasets.

users in the past, and 53/32 new users come. The results
are reported in Table 5. Compared with the performance
on Polyvoe-630/519, the performance drops are acceptable,
i.e., our method can maintain the performance by only fine-
tuning the new users’ representations even when the size of
the dataset has grown around 7%.

5.5. Performance with different lengths of codes

A hashing code with D bits can distinguish at most 27
objects. Usually, with the increase of code length, the per-

formance will be promoted. Here, we illustrate the influ-
ence of code length on our approach. We evaluate a wide
range of code lengths, i.e. {16,32, 64,128,256}, and show
their performance comparison in Fig. 4. Taking the AUC for
example, the improvement is roughly proportional to the log
of the code length. Too short code gets poor result. For ex-
ample, when D = 16, the maximum number of items it can
represent is 216 = 65, 536, which is smaller than the num-
ber of the items in the datasets we use. Thus, the accuracy
drops significantly with D = 16.

5.6. Ablation analysis

As presented in Eq. (3), we argue that the ranking score
consists of both item-item and user-item compatibilities. To
evaluate the contribution of each term, we do ablation study
by training with only one term. If we only use Eq. (5), it de-
generates to an unpersonalized outfit composition method.
And if only using Eq. (4), it only captures user’s preference
to individual items, and the compatibility between items
would not be modeled. Besides, we also evaluate the per-
formance after dropping one term after a full FHN model
is trained. This is to make sure that no term overtakes the
other in FHN. The results are shown in Table 6. We can
see that all results are worse than the full FHN model. This
demonstrates that every term is indispensable in the model.

6. Conclusion

In this paper, we study how to utilize the hashing tech-
nique for efficient personalized fashion outfit recommenda-
tion. Although there are numerous ways to represent the
compatibility of outfits, this problem needs to be well han-
dled to fit into hashing optimization. We propose a for-
mulation based on weighted pairwise relations. We de-
sign category-dependent hashing mapping for items and
users, and train the whole framework in an end-to-end man-
ner. Meanwhile, we use a simple way to combine multi-
modality information to improve the performance. Through
extensive experiments on a large scale Polyvore dataset, we
show the superiority of the proposed method over the state-
of-the-art methods even with a simple backbone and binary
representation.
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