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Abstract

Most existing studies on learning local features focus

on the patch-based descriptions of individual keypoints,

whereas neglecting the spatial relations established from

their keypoint locations. In this paper, we go beyond the lo-

cal detail representation by introducing context awareness

to augment off-the-shelf local feature descriptors. Specifi-

cally, we propose a unified learning framework that lever-

ages and aggregates the cross-modality contextual infor-

mation, including (i) visual context from high-level image

representation, and (ii) geometric context from 2D keypoint

distribution. Moreover, we propose an effective N-pair

loss that eschews the empirical hyper-parameter search

and improves the convergence. The proposed augmenta-

tion scheme is lightweight compared with the raw local fea-

ture description, meanwhile improves remarkably on sev-

eral large-scale benchmarks with diversified scenes, which

demonstrates both strong practicality and generalization

ability in geometric matching applications. [code release]

1. Introduction

Designing powerful local feature descriptor is a funda-

mental problem in applications such as panorama stitch-

ing [21], wide-baseline matching [24, 54, 55], image re-

trieval [27] and structure-from-motion (SfM) [57, 39, 52,

56]. Despite the recent notable achievements, the perfor-

mance of state-of-the-art learned descriptors is observed to

be somewhat saturated on standard benchmarks. As shown

in Fig. 1a, due to repetitive patterns, the matching algorithm

often finds false matches as nearest neighbors that are vi-

sually indistinguishable from groundtruth, unless validated

by geometry. Essentially, such visual ambiguity may not be

easily resolved given only local information. In this spirit,
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Figure 1: (a) Saturated results on standard benchmark [2]

by a recent method [23]. The search of nearest neigh-

bors (NN) returns false matches though visually similar to

groundtruth (GT), indicating the limitation of relying on

only local visual information. (b) 2D keypoints distribute

structurally, on which we human beings are capable of es-

tablishing coarse matches even without color information.

we seek to enhance the local feature description with extra

prior knowledge, which we refer to as introducing context

awareness to augment local feature descriptors.

As a common practice, a multi-scale-like architecture

can help to capture visual context of different levels, which

is referred to as multi-scale domain aggregation by DSP-

SIFT [8] and adopted by recent learned descriptors [50,

19, 43]. Beside of the challenge on selecting proper do-

main sizes, a naı̈ve multi-scale implementation may cost

excessive computation such as doubled inference time and

doubled feature dimensionality [50, 19, 43]. Seeking for

more reasonable accuracy-efficiency trade-offs, we instead

resort to well-studied high-level image representation, e.g.,

the regional representation used by image retrieval stud-
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ies [33, 38] which essentially incorporates rich image con-

text. Thereby, we strive to effectively combine the local

feature description and off-the-shelf visual understandings

so as to go beyond the local detail representation.

In addition, it would be interesting to exploit context in

other modality. In particular, as shown in Fig. 1b, since key-

point is principally designed to be repeatable in the same

underlying scene, its distribution thus reveals comprehen-

sive scene structure that allows we human beings to estab-

lish coarse matches even without color information, which

further enables us to explore geometric context formed by

the spatial relations of keypoints to help to alleviate the vi-

sual ambiguity of local descriptions.

Thus far, we have discussed two context candidates, re-

ferred to as visual context and geometric context that in-

corporate high-level visual representation over the image

and geometric cues from 2D keypoint distribution, respec-

tively. Instead of learning a completely new descriptor, in

the present work, we target to flexibly leverage the above

context awareness to augment off-the-shelf local descrip-

tors without altering their dimensionality, in which process

we consider the key challenges threefold:

• A proper integration of geometric local feature and se-

mantic high-level representation. As keypoint description

requires sub-pixel accuracy, the integration is not sup-

posed to obscure the raw representation of local details.

• The instability of 2D keypoint distribution. Due to image

appearance changes, keypoint distribution often suffers

from substantial variations of sparsity, non-uniformity or

perspective, which raises difficulties on acquiring strong

invariance property of the feature encoder.

• An effective learning scheme. Input signals and features

in different modalities are supposed to be efficiently pro-

cessed and aggregated in a unified framework.

Finally, regarding practicability, the augmentation is not

supposed to introduce excessive computational cost, as the

local feature description is often regarded as part of prepro-

cessing in practical pipelines.

Although contextual information has been widely ex-

plored in semantic-based tasks, the challenges faced by lo-

cal feature learning are substantially different, posing many

non-trivial technical and systematic issues to overcome. In

this paper, we propose a unified augmentation scheme that

effectively leverages and aggregates cross-modality con-

text, of which the contributions are summarized threefold:

1) a novel visual context encoder that integrates high-level

visual understandings from regional image representation,

a technique often used by image retrieval [33, 38]. 2) A

novel geometric context encoder that consumes unordered

points and exploits geometric cues from 2D keypoint distri-

bution, while being robust to complex variations. 3) A novel

N-pair loss that requires no manual hyper-parameter search

and has better convergence properties. To our best knowl-

edge, it is the first work that emphasizes the importance of

context awareness, and in particular addresses the usability

of spatial relations of keypoints in local feature learning.

The proposed augmentation is extensively evaluated

and achieves state-of-the-art results on several large-scale

benchmarks, including patch-level homography dataset,

image-level wild outdoor/indoor scenes and application-

level 3D reconstruction image sets, while being lightweight

compared with raw local description, demonstrating both

strong generalization ability and practicability.

2. Related Work

Learned local descriptors. Initially, local descriptors are

jointly learned with a new comparison metric [9, 50],

which is later simplified as direct comparison in Euclidean

space [40, 48, 3, 19, 1]. More recently, efforts are spent on

efficient training data sampling [43, 25, 11], effective regu-

larizations [43, 53], and geometric shape estimation of input

patches [26, 7]. However, most of above methods take indi-

vidual image patches as input, whereas in the present work,

we aim to take advantage of contextual cues beyond the lo-

cal detail and incorporate features in multiple modalities.

Context awareness. Although widely introduced in com-

puter vision tasks, context awareness has received little at-

tention in learning 2D local descriptors. In terms of vi-

sual context, the central-surround (CS) structure [50, 19,

43] leverages multi-scale information by additionally feed-

ing the central part of patches to boost the performance,

whereas sacrificing computational efficiency due to the dou-

bled extraction time and feature dimensionality. To incor-

porate semantics, one previous practice [18] designs a new

comparison metric and describes features from histogram

of semantic labels. In contrast to geometric matching, a

family of studies has focused on finding semantic corre-

spondences [45, 34] across different objects of the same

category. Beside of visual information, a recent study [49]

explores to encode motion context for identifying outliers

from keypoint matches, i.e., 4-d coordinate pairs, while we

aim to exploit geometric context from single image with-

out any reference. Overall, encoding proper context is non-

trivial and still unclear in 2D local feature learning.

Point feature learning. In the present work, one of our

goals is to explore geometric features from keypoint dis-

tribution, we thus resort to PointNet [31] and its vari-

ants [32, 5, 49] to consume unordered points. Although

great success has been witnessed in learning tasks on 3D

points, there are only few studies exploiting the potential

outcome of 2D keypoint sets. In essence, keypoint structure

is not intuitively meaningful and robust, as being highly de-

pendent on the performance of interest point detectors and

strongly affected by image variations. However, in descrip-
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Figure 2: The proposed augmentation framework consumes a single image as input, from which 2D keypoints, local and

regional features are extracted and encoded as geometric and visual context to improve the raw local feature description.

tor learning, we consider the keypoint location as an impor-

tant cue that bridges each individual local feature that has

potentials to alleviate the local visual ambiguity.

Loss formulation. Recent local descriptors are often

evolved with advanced variants of N-pair losses. Initially,

L2-Net [43] adopts a log-likelihood formulation, which is

later extended by HardNet [25] with a subtractive hinge

loss. Furthermore, GeoDesc [23] applies an adaptive mar-

gin to improve the convergence in terms of different hard

negative mining strategies, while AffNet [7] approaches the

same issue by fixing the distance to hardest negative sample

during training. Meanwhile, on the other hand, DOAP [11]

extends the N-pair loss to a list-wise ranking loss, while [17]

points out and studies the scale effects in N-pair losses while

introducing additional manual tuning of hyper-parameters.

Principally, a good loss is supposed to encourage similar

patches to be close while dissimilar ones to be distant in the

descriptor space. In this spirit, we aim to further resolve the

scale effects in [17] in an self-adaptive manner, without the

need of complex heuristics or manual tuning.

3. Local Descriptor Augmentation

Overview. As illustrated in Fig. 2, the proposed framework

consists of two main modules: preparation (left) and aug-

mentation (right). The preparation module provides input

signals in different modalities (raw local feature, high-level

visual feature and keypoint location), which are then fed to

the augmentation module and aggregated into compact fea-

ture descriptions. At test time, the augmentation needs to

be performed once per image, resulting in K feature vec-

tors for K corresponding keypoints.

3.1. Preparation

Patch sampler. This module takes images and their key-

points as input, producing 32×32 gray-scale patches. Akin

to [48, 23], image patches are sampled by a spatial trans-

former [16], whose parameters are derived from keypoint

attributes (coordinates, orientation and scale) from the SIFT

detector. As a result, the sampled patch has the same sup-

port region size with the SIFT descriptor.

Local feature extractor. This module takes image patches

as input, producing 128-d feature descriptions as output.

We borrow the lightweight 7-layer convolutional networks

as used in several recent works [43, 25, 23].

Regional feature extractor. In contrast to aggregating fea-

tures of different domain sizes [50, 19, 43], in the present

work, we fix the sampling scale of patches, and exploit con-

textual cues by inspiration of well-studied regional repre-

sentation in image retrieval tasks [44, 33, 28]. Without the

loss of generality, we reuse features from an off-the-shelf

deep image retrieval model of ResNet-50 [12]. As in [44],

feature maps are extracted from the last bottleneck block,

across which each response is regarded as a regional fea-

ture vector effectively corresponding to a particular region

in the image. As a result, we derive regional features of
H
32 × W

32 × 2048, where H and W denote the original im-

age height and width. The aggregation of regional and local

features will be later discussed in Sec. 3.3.

3.2. Geometric context encoder

This module takes K unordered points as input, and out-

puts 128-d corresponding feature vectors. Each input point

is represented as 2D keypoint coordinate, and can be asso-

ciated with other attributes.

2D point processing. At first glance, 2D keypoints are in-

appropriate to serve as robust contextual cues, as its pres-

ence is heavily dependent on image appearance and thus

affected by various image variations. As a result, keypoint

distribution depicting the same scene may suffer from sig-

nificant density or structure variations, as examples shown

in Fig. 1b. Hence, acquiring strong invariance property is
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the key challenge when designing the context encoder.

Initially, we attempt to approach the goal by Point-

Net [31] and its variants [32, 5]. Although having shown

great success on processing 3D point clouds, those preva-

lent PointNet methods fails to achieve consistent improve-

ment in terms of 2D points processing (Sec. 4.4.1). Instead,

we resort to [49], in which context normalization (CN) is

equipped in PointNet and consumes putative matches (4-d

coordinate pairs) for outlier rejection in image matching. In

this work, we aim to further explore the usability of CN for

modeling 2D point distribution in single image.

Formally, CN is a non-parametric operation that sim-

ply normalizes feature maps according to their distribution,

written as ôl
i =

(o l
i � � l )
� l , where ol

i is the output of i-th point

in layer l, and � l, � l are mean and standard deviation of

the output in layer l. To equip the operation, we borrow

the residual architecture in [49], where each residual unit is

built with perceptrons followed by context and batch nor-

malization, as illustrated in Fig. 3a.

However, the above design leads to a non-negative out-

put from the residual branch that may impact the represen-

tational ability as investigated in [13] and witnessed in our

experiments (Sec. 4.4.1). Following the teachings of [13],

we re-arrange the operations in each residual unit with pre-

activation, which is compatible with CN as presented in

Fig. 3b. We then construct four such units for the encoder,

as shown in Fig. 2. We will show that this simple revision

plays an important role to ease the optimization.

(a) Original design (b) Re-arrange w/ pre-activation
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Figure 3: Different designs of residual unit with context

normalization, where re-arranging with pre-activation im-

proves by a considerable margin than its counterpart.

Intuitively, the non-parametric CN suffices to model the

keypoint distribution in our task, while high-level abstrac-

tions (e.g., in PointNet++ [32]) may not be necessary.

Matchability predictor. In 3D point cloud processing,

low-level color and normal [31] information or complex

geometric attributes [5] are often incorporated to enhance

the representation. Similarly, associating 2D coordinate in-

put with other meaningful attributes would be promising

to boost the performance. However, due to the substantial

variations, e.g. perspective change, it is non-trivial to define

appropriate intermediate attributes on 2D points.

Although this issue has been merely discussed, we draw

inspiration from [10], which poses a problem named match-

ability prediction that targets to decide whether a keypoint

descriptor is matchable before the matching stage. In prac-

tice, the matchability serves as learned attenuation to diver-

sify the keypoints, so that the feature encoder can implicitly

focus on the points that are more robust, i.e., matchable, in

order to improve the invariance property.

In the present work, we approach the matchability pre-

diction with deep learning techniques instead of a random

forest in [10], and constrain the prediction to be consis-

tent between images. Inspired by learning-based keypoint

detection methods [35, 51], we resort to an unsupervised

learning scheme that aims to appropriately rank points by

their matchability. Formally, given K correspondences

(pn1 , p
n
2 ), n ∈ [1,K] from an image pair, we first extract

their local features (f n
1 , f

n
2 ), then construct feature quadru-

ples as (f i
1, f

j
1 , f

i
2, f

j
2 ), satisfying i, j ∈ [1,K], i 6= j and

holding that:

8
<

:

H(f i
1) > H(f j

1 ) & H(f i
2) > H(f j

2 )
or

H(f i
1) < H(f j

1 ) & H(f i
2) < H(f j

2 )

, (1)

where H(:) absorbs the raw local feature into a single real-

valued matchability, implemented as standard multi-layer

perceptrons (MLPs). Here, Cond. 1 aims to preserve a rank-

ing of each keypoint, hence improves the repeatability of

prediction. The condition can be re-written as:

R(f i
1, f

j
1 , f

i
2, f

j
2 ) =

(H(f i
1)−H(f j

1 ))(H(f i
2)−H(f j

2 )) > 0,
(2)

the final objective can be obtained with a hinge loss:

Lquad =
1

K(K − 1)

X

i,j,i6=j

max(0, 1−R(f i
1, f

j
1 , f

i
2, f

j
2 )).

(3)

In the proposed framework, the matchability is learned

as an auxiliary task, which is then activated by tanh and

associated with keypoint coordinates as the network input,

as in Fig. 2. Beside of Eq. 3, the gradient from final aug-

mented features will flow through the matchability predic-

tor, allowing a joint optimization of the entire encoder. The

visualization of predicted matchability is shown in Fig. 4.

Figure 4: Visualization of matchability responding to the

entire image (best viewed in color).

2530














