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Abstract

Most existing studies on learning local features focus

on the patch-based descriptions of individual keypoints,

whereas neglecting the spatial relations established from

their keypoint locations. In this paper, we go beyond the lo-

cal detail representation by introducing context awareness

to augment off-the-shelf local feature descriptors. Specifi-

cally, we propose a unified learning framework that lever-

ages and aggregates the cross-modality contextual infor-

mation, including (i) visual context from high-level image

representation, and (ii) geometric context from 2D keypoint

distribution. Moreover, we propose an effective N-pair

loss that eschews the empirical hyper-parameter search

and improves the convergence. The proposed augmenta-

tion scheme is lightweight compared with the raw local fea-

ture description, meanwhile improves remarkably on sev-

eral large-scale benchmarks with diversified scenes, which

demonstrates both strong practicality and generalization

ability in geometric matching applications. [code release]

1. Introduction

Designing powerful local feature descriptor is a funda-

mental problem in applications such as panorama stitch-

ing [21], wide-baseline matching [24, 54, 55], image re-

trieval [27] and structure-from-motion (SfM) [57, 39, 52,

56]. Despite the recent notable achievements, the perfor-

mance of state-of-the-art learned descriptors is observed to

be somewhat saturated on standard benchmarks. As shown

in Fig. 1a, due to repetitive patterns, the matching algorithm

often finds false matches as nearest neighbors that are vi-

sually indistinguishable from groundtruth, unless validated

by geometry. Essentially, such visual ambiguity may not be

easily resolved given only local information. In this spirit,
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Figure 1: (a) Saturated results on standard benchmark [2]

by a recent method [23]. The search of nearest neigh-

bors (NN) returns false matches though visually similar to

groundtruth (GT), indicating the limitation of relying on

only local visual information. (b) 2D keypoints distribute

structurally, on which we human beings are capable of es-

tablishing coarse matches even without color information.

we seek to enhance the local feature description with extra

prior knowledge, which we refer to as introducing context

awareness to augment local feature descriptors.

As a common practice, a multi-scale-like architecture

can help to capture visual context of different levels, which

is referred to as multi-scale domain aggregation by DSP-

SIFT [8] and adopted by recent learned descriptors [50,

19, 43]. Beside of the challenge on selecting proper do-

main sizes, a naı̈ve multi-scale implementation may cost

excessive computation such as doubled inference time and

doubled feature dimensionality [50, 19, 43]. Seeking for

more reasonable accuracy-efficiency trade-offs, we instead

resort to well-studied high-level image representation, e.g.,

the regional representation used by image retrieval stud-
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ies [33, 38] which essentially incorporates rich image con-

text. Thereby, we strive to effectively combine the local

feature description and off-the-shelf visual understandings

so as to go beyond the local detail representation.

In addition, it would be interesting to exploit context in

other modality. In particular, as shown in Fig. 1b, since key-

point is principally designed to be repeatable in the same

underlying scene, its distribution thus reveals comprehen-

sive scene structure that allows we human beings to estab-

lish coarse matches even without color information, which

further enables us to explore geometric context formed by

the spatial relations of keypoints to help to alleviate the vi-

sual ambiguity of local descriptions.

Thus far, we have discussed two context candidates, re-

ferred to as visual context and geometric context that in-

corporate high-level visual representation over the image

and geometric cues from 2D keypoint distribution, respec-

tively. Instead of learning a completely new descriptor, in

the present work, we target to flexibly leverage the above

context awareness to augment off-the-shelf local descrip-

tors without altering their dimensionality, in which process

we consider the key challenges threefold:

• A proper integration of geometric local feature and se-

mantic high-level representation. As keypoint description

requires sub-pixel accuracy, the integration is not sup-

posed to obscure the raw representation of local details.

• The instability of 2D keypoint distribution. Due to image

appearance changes, keypoint distribution often suffers

from substantial variations of sparsity, non-uniformity or

perspective, which raises difficulties on acquiring strong

invariance property of the feature encoder.

• An effective learning scheme. Input signals and features

in different modalities are supposed to be efficiently pro-

cessed and aggregated in a unified framework.

Finally, regarding practicability, the augmentation is not

supposed to introduce excessive computational cost, as the

local feature description is often regarded as part of prepro-

cessing in practical pipelines.

Although contextual information has been widely ex-

plored in semantic-based tasks, the challenges faced by lo-

cal feature learning are substantially different, posing many

non-trivial technical and systematic issues to overcome. In

this paper, we propose a unified augmentation scheme that

effectively leverages and aggregates cross-modality con-

text, of which the contributions are summarized threefold:

1) a novel visual context encoder that integrates high-level

visual understandings from regional image representation,

a technique often used by image retrieval [33, 38]. 2) A

novel geometric context encoder that consumes unordered

points and exploits geometric cues from 2D keypoint distri-

bution, while being robust to complex variations. 3) A novel

N-pair loss that requires no manual hyper-parameter search

and has better convergence properties. To our best knowl-

edge, it is the first work that emphasizes the importance of

context awareness, and in particular addresses the usability

of spatial relations of keypoints in local feature learning.

The proposed augmentation is extensively evaluated

and achieves state-of-the-art results on several large-scale

benchmarks, including patch-level homography dataset,

image-level wild outdoor/indoor scenes and application-

level 3D reconstruction image sets, while being lightweight

compared with raw local description, demonstrating both

strong generalization ability and practicability.

2. Related Work

Learned local descriptors. Initially, local descriptors are

jointly learned with a new comparison metric [9, 50],

which is later simplified as direct comparison in Euclidean

space [40, 48, 3, 19, 1]. More recently, efforts are spent on

efficient training data sampling [43, 25, 11], effective regu-

larizations [43, 53], and geometric shape estimation of input

patches [26, 7]. However, most of above methods take indi-

vidual image patches as input, whereas in the present work,

we aim to take advantage of contextual cues beyond the lo-

cal detail and incorporate features in multiple modalities.

Context awareness. Although widely introduced in com-

puter vision tasks, context awareness has received little at-

tention in learning 2D local descriptors. In terms of vi-

sual context, the central-surround (CS) structure [50, 19,

43] leverages multi-scale information by additionally feed-

ing the central part of patches to boost the performance,

whereas sacrificing computational efficiency due to the dou-

bled extraction time and feature dimensionality. To incor-

porate semantics, one previous practice [18] designs a new

comparison metric and describes features from histogram

of semantic labels. In contrast to geometric matching, a

family of studies has focused on finding semantic corre-

spondences [45, 34] across different objects of the same

category. Beside of visual information, a recent study [49]

explores to encode motion context for identifying outliers

from keypoint matches, i.e., 4-d coordinate pairs, while we

aim to exploit geometric context from single image with-

out any reference. Overall, encoding proper context is non-

trivial and still unclear in 2D local feature learning.

Point feature learning. In the present work, one of our

goals is to explore geometric features from keypoint dis-

tribution, we thus resort to PointNet [31] and its vari-

ants [32, 5, 49] to consume unordered points. Although

great success has been witnessed in learning tasks on 3D

points, there are only few studies exploiting the potential

outcome of 2D keypoint sets. In essence, keypoint structure

is not intuitively meaningful and robust, as being highly de-

pendent on the performance of interest point detectors and

strongly affected by image variations. However, in descrip-
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Figure 2: The proposed augmentation framework consumes a single image as input, from which 2D keypoints, local and

regional features are extracted and encoded as geometric and visual context to improve the raw local feature description.

tor learning, we consider the keypoint location as an impor-

tant cue that bridges each individual local feature that has

potentials to alleviate the local visual ambiguity.

Loss formulation. Recent local descriptors are often

evolved with advanced variants of N-pair losses. Initially,

L2-Net [43] adopts a log-likelihood formulation, which is

later extended by HardNet [25] with a subtractive hinge

loss. Furthermore, GeoDesc [23] applies an adaptive mar-

gin to improve the convergence in terms of different hard

negative mining strategies, while AffNet [7] approaches the

same issue by fixing the distance to hardest negative sample

during training. Meanwhile, on the other hand, DOAP [11]

extends the N-pair loss to a list-wise ranking loss, while [17]

points out and studies the scale effects in N-pair losses while

introducing additional manual tuning of hyper-parameters.

Principally, a good loss is supposed to encourage similar

patches to be close while dissimilar ones to be distant in the

descriptor space. In this spirit, we aim to further resolve the

scale effects in [17] in an self-adaptive manner, without the

need of complex heuristics or manual tuning.

3. Local Descriptor Augmentation

Overview. As illustrated in Fig. 2, the proposed framework

consists of two main modules: preparation (left) and aug-

mentation (right). The preparation module provides input

signals in different modalities (raw local feature, high-level

visual feature and keypoint location), which are then fed to

the augmentation module and aggregated into compact fea-

ture descriptions. At test time, the augmentation needs to

be performed once per image, resulting in K feature vec-

tors for K corresponding keypoints.

3.1. Preparation

Patch sampler. This module takes images and their key-

points as input, producing 32×32 gray-scale patches. Akin

to [48, 23], image patches are sampled by a spatial trans-

former [16], whose parameters are derived from keypoint

attributes (coordinates, orientation and scale) from the SIFT

detector. As a result, the sampled patch has the same sup-

port region size with the SIFT descriptor.

Local feature extractor. This module takes image patches

as input, producing 128-d feature descriptions as output.

We borrow the lightweight 7-layer convolutional networks

as used in several recent works [43, 25, 23].

Regional feature extractor. In contrast to aggregating fea-

tures of different domain sizes [50, 19, 43], in the present

work, we fix the sampling scale of patches, and exploit con-

textual cues by inspiration of well-studied regional repre-

sentation in image retrieval tasks [44, 33, 28]. Without the

loss of generality, we reuse features from an off-the-shelf

deep image retrieval model of ResNet-50 [12]. As in [44],

feature maps are extracted from the last bottleneck block,

across which each response is regarded as a regional fea-

ture vector effectively corresponding to a particular region

in the image. As a result, we derive regional features of
H
32 × W

32 × 2048, where H and W denote the original im-

age height and width. The aggregation of regional and local

features will be later discussed in Sec. 3.3.

3.2. Geometric context encoder

This module takes K unordered points as input, and out-

puts 128-d corresponding feature vectors. Each input point

is represented as 2D keypoint coordinate, and can be asso-

ciated with other attributes.

2D point processing. At first glance, 2D keypoints are in-

appropriate to serve as robust contextual cues, as its pres-

ence is heavily dependent on image appearance and thus

affected by various image variations. As a result, keypoint

distribution depicting the same scene may suffer from sig-

nificant density or structure variations, as examples shown

in Fig. 1b. Hence, acquiring strong invariance property is
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the key challenge when designing the context encoder.

Initially, we attempt to approach the goal by Point-

Net [31] and its variants [32, 5]. Although having shown

great success on processing 3D point clouds, those preva-

lent PointNet methods fails to achieve consistent improve-

ment in terms of 2D points processing (Sec. 4.4.1). Instead,

we resort to [49], in which context normalization (CN) is

equipped in PointNet and consumes putative matches (4-d

coordinate pairs) for outlier rejection in image matching. In

this work, we aim to further explore the usability of CN for

modeling 2D point distribution in single image.

Formally, CN is a non-parametric operation that sim-

ply normalizes feature maps according to their distribution,

written as ôl
i =

(ol

i
−µ

l)
σl , where ol

i is the output of i-th point

in layer l, and µl,σl are mean and standard deviation of

the output in layer l. To equip the operation, we borrow

the residual architecture in [49], where each residual unit is

built with perceptrons followed by context and batch nor-

malization, as illustrated in Fig. 3a.

However, the above design leads to a non-negative out-

put from the residual branch that may impact the represen-

tational ability as investigated in [13] and witnessed in our

experiments (Sec. 4.4.1). Following the teachings of [13],

we re-arrange the operations in each residual unit with pre-

activation, which is compatible with CN as presented in

Fig. 3b. We then construct four such units for the encoder,

as shown in Fig. 2. We will show that this simple revision

plays an important role to ease the optimization.
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Figure 3: Different designs of residual unit with context

normalization, where re-arranging with pre-activation im-

proves by a considerable margin than its counterpart.

Intuitively, the non-parametric CN suffices to model the

keypoint distribution in our task, while high-level abstrac-

tions (e.g., in PointNet++ [32]) may not be necessary.

Matchability predictor. In 3D point cloud processing,

low-level color and normal [31] information or complex

geometric attributes [5] are often incorporated to enhance

the representation. Similarly, associating 2D coordinate in-

put with other meaningful attributes would be promising

to boost the performance. However, due to the substantial

variations, e.g. perspective change, it is non-trivial to define

appropriate intermediate attributes on 2D points.

Although this issue has been merely discussed, we draw

inspiration from [10], which poses a problem named match-

ability prediction that targets to decide whether a keypoint

descriptor is matchable before the matching stage. In prac-

tice, the matchability serves as learned attenuation to diver-

sify the keypoints, so that the feature encoder can implicitly

focus on the points that are more robust, i.e., matchable, in

order to improve the invariance property.

In the present work, we approach the matchability pre-

diction with deep learning techniques instead of a random

forest in [10], and constrain the prediction to be consis-

tent between images. Inspired by learning-based keypoint

detection methods [35, 51], we resort to an unsupervised

learning scheme that aims to appropriately rank points by

their matchability. Formally, given K correspondences

(pn1 , p
n
2 ), n ∈ [1,K] from an image pair, we first extract

their local features (fn
1 ,f

n
2 ), then construct feature quadru-

ples as (f i
1,f

j
1 ,f

i
2,f

j
2 ), satisfying i, j ∈ [1,K], i 6= j and

holding that:







H(f i
1) > H(f j

1 ) & H(f i
2) > H(f j

2 )
or

H(f i
1) < H(f j

1 ) & H(f i
2) < H(f j

2 )

, (1)

where H(:) absorbs the raw local feature into a single real-

valued matchability, implemented as standard multi-layer

perceptrons (MLPs). Here, Cond. 1 aims to preserve a rank-

ing of each keypoint, hence improves the repeatability of

prediction. The condition can be re-written as:

R(f i
1,f

j
1 ,f

i
2,f

j
2 ) =

(H(f i
1)−H(f j

1 ))(H(f i
2)−H(f j

2 )) > 0,
(2)

the final objective can be obtained with a hinge loss:

Lquad =
1

K(K − 1)

∑

i,j,i 6=j

max(0, 1−R(f i
1,f

j
1 ,f

i
2,f

j
2 )).

(3)

In the proposed framework, the matchability is learned

as an auxiliary task, which is then activated by tanh and

associated with keypoint coordinates as the network input,

as in Fig. 2. Beside of Eq. 3, the gradient from final aug-

mented features will flow through the matchability predic-

tor, allowing a joint optimization of the entire encoder. The

visualization of predicted matchability is shown in Fig. 4.

1.0

0.5

0.0

-0.5

-1.0

Figure 4: Visualization of matchability responding to the

entire image (best viewed in color).
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3.3. Visual context encoder

This module consumes regional features of H
32 × W

32 ×

2048 in Sec. 3.1, K local features and their location, and

produces K augmented features. To integrate visual infor-

mation in different levels, a valid option as in [5] is to con-

catenate the global representation of entire image on raw

local features. In our framework, the global feature can be

derived by applying Maximum Activations of Convolutions

(MAC) aggregation [33], which simply max-pools over all

dimensions of regional features. However, such compact

representation is shown to obscure the raw local description,

due to the lack of spatial distinctions (Sec. 4.4.1). Hence,

we stick to the regional representation, where the key issue

is to handle the regional features and keypoints of different

numbers ( H32 × W
32 and K).

To achieve the goal, we associate regional features to a

regular sampling grid on the image, then interpolate H
32×

W
32

grid points at coordinates of the K keypoints. For interpo-

lation, we use inverse distance weighted average based on k

nearest neighbors (in default we use k = 3), formulated as:

f(p̂i) =

∑k

j=1 w(pj)f(pj)
∑k

j=1 w(pj)
, and w(pj) =

1

d(p̂i, pj)
, (4)

where f(:) is the regional feature located at a certain grid

point. p̂i, i ∈ [1, N ] and pj , j ∈ [1, H
32 × W

32 ] indicate the

interpolated and original grid point. Next, the dimensional-

ity is reduced by applying point-wise MLPs, where we also

insert CN after each perceptron in order to capture global

context. Finally, raw local features are concatenated and

further mapped by MLPs, forming the final 128-d features.

The above process is illustrated in Fig. 2.

3.4. Feature aggregation with raw local feature

To aggregate the above two types of contextual features,

similar to the CS structure, one option is to concatenate

them together and forms features of, in our case, 384-d

(128 × 3). However, the increased dimensionality will in-

troduce excessive computational cost in the matching stage

of O(n2) complexity. Instead, as shown in Tab. 2, we pro-

pose to combine different feature streams into a single vec-

tor by element-wise summation and L2-normalization, i.e.,

without altering the feature dimensionality. Beside of the

simplicity, such strategy allows flexible use of the proposed

augmentation. For example, in situations where regional

features are not available, one may aggregate with only ge-

ometric context without the need of retraining the model.

3.5. N­pair loss with softmax temperature

N-pair losses have been primarily used by recent works.

Empirically, the subtractive hinge loss [25, 23, 7] has re-

ported better performance, of which the main idea is to push

similar samples away from dissimilar ones to a certain mar-

gin in the descriptor space. However, setting the appropriate

margin is tricky, which does not always assure convergence

as observed in [23, 7]. More generally, the criteria of mak-

ing a good loss is studied in [17], from which guidelines are

provided on tuning loss parameters on a particular dataset.

In this spirit, we aim to further ease the pain of parameter

search in [17], and obtain an adaptive loss that allows fast

convergence regardless of the learning difficulty.

We use the log-likelihood form of N-pair loss [43] as

a base, which originally does not involve any tunable pa-

rameter. Formally, given L2-normalized feature descriptors

F1 = [f1
1f

2
1 ...f

N
1 ]T ,F2 = [f1

2f
2
2 ...f

N
2 ]T ∈ R

N×128,

the distance matrix D = [dij ]N×N can be obtained by

D =
√

2(1− F1F
T
2 ). By applying both row-wise (r) and

column-wise (c) softmax, we derive the final loss as:

LN -pair = −
1

2
(
∑

i

log srii +
∑

i

log scii),

where [sij ]N×N = softmax(2−D).

(5)

Noted that since input features are L2-normalized, the re-

sulting dij is bounded by [0, 2], which causes convergence

issues due to the scale sensitivity of softmax function [15].

Similarly, we introduce a single trainable parameter α, re-

ferred to as softmax temperature, to amend the inability of

re-scaling the input. The loss now becomes:

[sij ]N×N = softmax(α(2−D)), (6)

where α is initialized to 1 and regularized with the same

weight decay in the network, hence does not require any

manual tuning or complex heuristics. In the experiments in

Sec. 4.4.2, we show this simple technique improves dras-

tically than its original form [43], whose performance we

suspect is hindered due to the above-mentioned scale sensi-

tivity. In the proposed framework, we compute the N-pair

loss on augmented features, and obtain the total loss:

Ltotal = LN -pair + λLquad, (7)

where we choose λ = 1 in the experiment.

4. Experiments

4.1. Implementation

Training details. Although the framework is end-to-end

trainable, we fix the local and regional feature extractors in

Sec. 3.1 during the training, in order to clearly demonstrate

the efficacy of the proposed augmentation scheme. We train

the networks using SGD with a base learning rate of 0.05,

weight decay of 0.0001 and momentum at 0.9. The learn-

ing rate exponentially decays by 0.1 for every 100k steps.

The batch size is set to 2, and each time 1024 keypoints are
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randomly sampled including random numbers of matchable

and noisy keypoints (see Appendix A.1). Input patches are

standardized to have zero mean and unit norm, while in-

put keypoint coordinates are normalized to [−1, 1] regard-

ing the image size.

Training dataset. Although UBC Phototour [4] is used as a

common practice, this dataset consists of only three scenes

with limited diversity of keypoint distribution. In order to

achieve better generalization ability, we resort to large-scale

photo-tourism [46, 33] and aerial datasets (GL3D) [38] as

in [48, 23], and generate groundtruth matches from SfM.

We manually exclude the data that is used in the evaluation.

Data augmentation. We randomly perturb input patches by

affine transformations including rotation (90°), anisotropic

scaling and translation w.r.t. the detection scale. For key-

point augmentation, we perturb the coordinate with random

homography transformation as in [6] (see Appendix A.1).

4.2. Evaluation datasets

Homography dataset. HPatches [2] is a large-scale patch

dataset for evaluating local features regarding illumination

and viewpoint changes. As groundtruth homographies and

raw images are provided, HPatches can also be used to eval-

uate image matching performance, which we accordingly

refer to as HPSequences as in [20], consisting of 116 se-

quences and 580 image pairs.

Wild dataset. Similar to settings in [49], we also eval-

uate on outdoor YFCC100M [42] (1000 pairs) and in-

door SUN3D [47] (539 pairs) datasets. Compared with

HPSequences, the two datasets additionally introduce varia-

tions such as self-occlusions, and in particular, repetitive or

feature-poor patterns in indoor scenes, which is generally

considered challenging for sparse matching.

SfM dataset. Following [37], we evaluate on SfM dataset

such as well-known Fountain and Herzjesu [41], or land-

mark collections [46]. We integrate the proposed frame-

work into SfM pipeline, i.e., COLMAP [36], and use the

keypoints provided in [37] to compute the local features.

4.3. Evaluation protocols

Patch level. For HPatches [2], we follow its evaluation pro-

tocols and use mean average precision (mAP) for three sub-

tasks, including patch verification, matching, and retrieval.

Image level. For HPSequences, we use Recall = # Correct

Matches / # Correspondences defined in [14], to quantify

the image matching performance, where # Correct matches

are matches found by nearest neighbor searching and ver-

ified by groundtruth geometry, e.g., homography, while #

Correspondences are matches that should have been iden-

tified by the given keypoint locations. Following [14], a

match point is determined to be correct if it is within 2.5

pixels from the wrapped keypoint in the reference image.

We use a standard SIFT detector to localize the keypoints,

of which the number is randomly sampled to 2048. For

YFCC100M [42] and SUN3D [47], we follow the same set-

ting in [49] and report the median number of inlier matches

after RANSAC for each dataset.

Reconstruction level. For clarity, we report metrics in [37]

that quantify the completeness of SfM, including the num-

ber of registered images (# Registered), sparse points (#

Sparse Points) and image observations (# Observations).

4.4. Ablation study

4.4.1 Design of context encoder

In this section, we evaluate two splits of HPSequences [2]:

illumination (i) and viewpoint (v), regarding different image

transformations. We report Recall as defined in Sec. 4.3.

If not specified, we use GeoDesc [23] as a baseline model

(baseline (GeoDesc)) to extract raw local features, whose

parameters are fixed during the training of augmentation.

Visual context. We compare four designs, including i) CS

(256-d): the central-surround (CS) structure [50, 19, 43] as

described in Sec. 2, which concatenates local features from

different domain sizes. ii) w/ global feature: the integra-

tion with global features [5], which is originally designed

for improving 3D local descriptors. iii) w/ regional feature:

the proposed integration with interpolated regional features,

and its variant iv) w/ regional feature + CN: with context

normalization to incorporate global visual information.

As shown in Tab. 1 (left columns), the CS structure [50,

19, 43] delivers only marginal improvements despite the

doubled dimensionality. Meanwhile, though being effective

in 3D descriptor learning, the integration with global fea-

tures [5] instead harms the performance, which we ascribe

to the limited representation ability of a single global fea-

ture. Finally, the proposed integration with interpolated re-

gional features shows clear improvements, as it better han-

dles both spatial and visual distinctiveness. Moreover, to

strengthen global context awareness, we show that the per-

formance can be further boosted by equipping context nor-

malization when encoding regional features.

Geometric context. We study five options: i) PointNet-like

architecture, i.e., segmentation networks in [31] without the

final classifier. ii) Pre-activated context normalization (CN)

networks in Sec. 3.2 with 2D xy input, and its variants iii)

with additional raw local feature input or iv) with match-

ability. We also compare the use of pre-activation of the

residual unit in context normalization networks.

As presented in Tab. 1 (middle columns), though widely

used in processing 3D points, PointNet [31] does not per-

form well in our task, while the similar phenomenon is also

observed in [49] when processing 2D correspondences. Be-

sides, it is noticed that input with raw local feature does
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Visual context encoder Geometric context encoder Comparison with other methods

Strategy Recall i/v Network architecture Recall i/v Method Recall i/v

baseline (GeoDesc [23]) 59.46 71.24 baseline (GeoDesc [23]) 59.46 71.24 SIFT [22] 47.36 53.06

CS (256-d) [50, 19, 43] 59.83 71.27 PointNet [31] 59.61 70.96 L2-Net [43] 47.58 53.96

w/ global feature [5] 59.11 71.02 w/ CN (pre.) + xy 61.67 72.63 HardNet [25] 57.63 63.36

w/ regional feature 63.64 73.37 w/ CN (pre.) + xy + raw local feature 60.91 72.99 GeoDesc [23] 59.46 71.24

w/ regional feature + CN 63.98 73.63 w/ CN (orig.) + xy + matchability 59.94 71.25 ContextDesc 66.55 75.52

w/ CN (pre.) + xy + matchability 62.82 73.40 ContextDesc+ 67.14 76.42

Table 1: Comparisons on HPSequences [2] of different designs of visual and geometric context encoder, and the performance

of entire augmentation scheme. ‘i/v’ denotes two evaluations on illumination and viewpoint sequences, respectively.

not help to boost the performance, which we attribute to

the weak relevance between local features as extracted from

different orientations and levels of scale space pyramid. In-

stead, the incorporation with matchability is notably benefi-

cial, as matchability is more comprehensive as a high-level

abstraction of local feature. Finally, the pre-activation is

clearly a preferable alternative than its original design.

Integration with cross-modality context. Finally, we

evaluate the full augmentation with both visual and geo-

metric context (ContextDesc). As shown in Tab. 1 (right

columns), the simple summation aggregation in Sec. 3.4

effectively takes advantage of both context, delivering re-

markable improvements over the state-of the-art.

4.4.2 Efficacy of softmax temperature in N-pair loss

To demonstrate the validity of proposed loss in Sec. 3.5, we

train only the local base model without any context aware-

ness, and compare different losses including: i) the plain

N-pair loss in [43] without scale temperature, and ii) the

scale-aware loss in [17] with its original parameters.

GeoDesc [23] w/ loss in [43] w/ loss in [17] Ours

HPatches, mAP [%]

Verification 91.1 78.3 81.2 90.2

Matching 59.1 23.9 40.5 59.2

Retrieval 74.9 46.8 64.0 76.0

HPSequences, Recall

Seq. i 59.5 32.2 50.0 59.7

Seq. v 71.2 48.5 64.8 72.6

Table 2: Evaluation results on 1) HPatches [2] of three com-

plementary tasks: patch verification, matching and retrieval.

2) HPSequences of two sequence splits.

As shown in Tab. 2, the proposed loss improves the

overall performance over the previous best-performing

GeoDesc [23] under similar training settings, while

GeoDesc requires additional geometric supervision. Be-

sides, the proposed loss clearly shows better convergence

compared with losses in [43] and [17]. Although we sus-

pect that the loss in [17] may perform better with careful

parameter searching, the proposed loss is advantageous due

to its self-adaptivity without the need of complex heuristics

or manual tuning.

Moreover, once replace GeoDesc with the above model

as a base in the augmentation scheme, the final performance

can be further improved by a significant margin, denoted as

ContextDesc+ in Tab. 1 (right columns), which again ad-

dresses the advance of improved base model. We will use

this model to complete the following experiments.

4.5. Generalization

Wild dataset. The evaluation results on two chal-

lenging datasets (outdoor YFCC100M [42] and indoor

SUN3D [47]) are presented in Tab. 3. The proposed cross-

modality context augmentation delivers ∼35% and ∼125%
improvements over the previous state of the art, which ef-

fectively demonstrates the strong generalization ability of

the learned augmented features in practical scenes.

SIFT [22] L2-Net [43] HardNet [25] GeoDesc [23] Ours

median number of inlier matches

indoor 138 153 239 271 365

outdoor 168 173 219 214 482

Table 3: Evaluation results on wild datasets: indoor

SUN3D [47] and outdoor YFCC100M [42] datasets.

SfM dataset. We further demonstrate the improvement in

complex SfM pipeline. As shown in Tab. 4, the integra-

tion of augmented feature generalizes well among differ-

ent scenes even in large-scale SfM tasks, meanwhile con-

sistently boosts the completeness of sparse reconstruction.

Some matching results are presented in Fig. 5, and more

visualizations can be found in the appendix.

# Images # Registered # Sparse Points # Observations

Fountain SIFT [22] 11 11 10,004 44K

GeoDesc [23] 11 16,687 83K

Ours 11 16,965 84K

Herzjesu SIFT 8 8 4,916 19K

GeoDesc 8 8,720 38K

Ours 8 9,429 40K

South Building SIFT 128 128 62,780 353K

GeoDesc 128 170,306 887K

Ours 128 174,359 893K

Roman Forum SIFT 2,364 1,407 242,192 1,805K

GeoDesc 1,566 770,363 5,051K

Ours 1,571 848,319 5,484K

Alamo SIFT 2,915 743 120,713 1,384K

GeoDesc 893 353,329 3,159K

Ours 921 424,348 3,488K

Table 4: Evaluation results on SfM dataset [37].
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Figure 5: Matching results after RANSAC in different challenging scenarios. From top to bottom: SIFT, GeoDesc and ours.

The augmented feature helps to find more inlier matches, and further allows a more accurate recovery of camera geometry.

4.6. Discussions on practicability

Invariance property. We again use Recall and evaluate

on Heinly benchmark [14] to quantify the invariance prop-

erty. As shown in Tab 5, the proposed method improves re-

markably over the previous best-performing descriptor, ex-

cept for some minor underperformance regarding Rotation

change when images are rotated up to 180°, which may be

caused by the inability of being fully rotation-invariant es-

pecially for the regional feature extractor.

SIFT [22] GeoDesc [23] Ours

Recall

JPEG 60.7 66.1 78.6

Blur 41.0 47.7 57.8

Exposure 78.2 86.4 88.2

Day-Night 29.2 39.6 43.3

Scale 81.2 85.8 88.1

Rotation 82.4 87.6 86.3

Scale-Rotation 29.6 33.7 38.0

Planar 48.2 59.1 61.7

Table 5: Evaluation results regrading different transforma-

tions on Heinly benchmark [14].

Computational cost. Towards practicability, we only use

shallow MLPs or non-parametric context normalization in

the augmentation framework, which thus introduces only

insignificant computation overhead. As reported in Tab. 6,

suppose that regional features are readily extracted, e.g.,

from a retrieval model deployed in SfM pipeline for accel-

erating image matching, the full augmentation then requires

only ∼5% time cost compared with the raw local feature de-

scription. Virtually, the proposed framework allows flexible

integration and reuse of other visual components to achieve

system-level efficiency, such as saliency or segmentation

masks, and thus has large rooms for future improvements.

End-to-end training. For ablation purposes, the parame-

ters of base local and regional models are previously fixed

in the training, and we here provide further studies about

the efficacy of an end-to-end training scheme.

In the first setting, we freeze only the regional model and

train from scratch with Eq. 7 on the augmented feature. As

Preparation Augmentation

local feat. regional feat. geo. context vis. context multi-context

Time (ms) 351 49 5 14 18

FLOPs (B) 802.9 123.4 1.7 13.9 15.7

Params (M) 2.4 24.5 <0.1 3.1 3.2

Table 6: The computational cost of proposed framework,

evaluated on 10k keypoints from an 896× 896 image. The

inference time is estimated on an NVIDIA GTX 1080 GPU.

a result, the performance is notably improved from 67.14

to 67.53, and 76.42 to 77.20 for i/v sequences of HPSe-

quences, compared with ContextDesc+ in Tab. 1.

In the second setting, we further end-to-end train with

the regional model, which is additionally optimized by a

standard cross-entropy classification loss as in [28] for sim-

plicity (see Appendix A.1 for details). Although several loss

balancing strategies have been experimented, we did not ob-

serve a consistent improvement for final matching perfor-

mance, which we ascribe to the substantial challenge pos-

ing by multi-task learning. Thus, we currently recommend

a separate training for the regional model, and look forward

to an improved solution in the future.

5. Conclusion

In contrast to current trends, we have addressed the im-

portance of introducing context awareness to augment lo-

cal feature descriptors. The proposed framework takes key-

point location, raw local and high-level regional feature as

input, from which two types of context are encoded: geo-

metric and visual context, while the training adopts a novel

N-pair loss that is self-adaptive and parameter-tuning free.

We have conducted extensive evaluations on diversified and

large-scale datasets, and demonstrate remarkable improve-

ments over the state of the art, meanwhile showing the

strong generalization and practicability in real applications.
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