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Abstract

In this paper we tackle the problem of scene flow estima-

tion in the context of self-driving. We leverage deep learn-

ing techniques as well as strong priors as in our application

domain the motion of the scene can be composed by the

motion of the robot and the 3D motion of the actors in the

scene. We formulate the problem as energy minimization in

a deep structured model, which can be solved efficiently in

the GPU by unrolling a Gaussian-Newton solver. Our ex-

periments in the challenging KITTI scene flow dataset show

that we outperform the state-of-the-art by a very large mar-

gin, while being 800 times faster.

1. Introduction

Scene flow refers to the problem of estimating a three-

dimenional motion field from a set of two consecutive (in

time) stereo pairs. It was first introduced in [40] to describe

the 3D motion of each point in the scene. Through scene

flow, we can gain insights into the geometry as well as the

overall composition and motion of the scene. It is of par-

ticular importance for robotics systems, such as self-driving

cars, as knowing the 3D motion of other objects in the scene

can not only help the autonomous systems avoid collision

while planing its own future movements, but also improve

the understanding of the scene and predict the intent of oth-

ers. In this work, we focus on estimating the 3D scene flow

in autonomous driving scenarios.

In the world of self-driving, the motion of the scene can

be mostly explained by the motion of the ego-car. The pres-

ence of dynamic objects which typically move rigidly can

also be utilized as strong priors. Previous structure predic-

tion approaches often exploit these facts and fit a piece-wise

rigid representations of motion [41, 44, 27, 3]. While these

methods achieve impressive results on scene flow estima-

tion, they require minutes to process each frame, and thus

cannot be employed in real-world robotics systems.

On the other hand, deep learning based methods have

achieved state-of-the-art performance in real time on a va-
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Figure 1: Performance vs runtime on KITTI SceneFlow

dataset: Our approach is much faster and more accurate.

riety of low level tasks, such as optical flow prediction

[11, 32, 38] and stereo estimation [46, 26, 24]. While they

produce ‘accurate’ results, their output is not structured and

cannot capture the relationships between estimated vari-

ables. For instance, they lack the ability to guarantee that

pixels on a given object produce consistent estimates. While

this phenomenon may have little impact in photography

editing applications, this can cathastrophic in the context

of self-driving cars, where the motion of the full object is

more important than the motion of each individual pixel.

With these problems in mind, we develop a novel deep

rigid instance scene flow (DRISF) model that takes the best

of both worlds. The idea behind is that the motion of the

scene can be composed by estimating the 3D rigid motion

of each actor. The static background can also be modeled as

a rigidly moving object, as its 3D motion can be described

by the ‘ego-car’ motion. The problem is thus reduced to es-

timating the 3D motion of each traffic participant. Towards

this gaol, we first capitalize on deep neural networks to esti-

mate optical flow, disparity and instance segmentation. We

then exploit multiple geometry based energy functions to

encode the structural geometric relationship between these

visual cues. Through optimizing the energy function, we

can effectively reason about the 3D motion of each traffic

participant. As the energy takes the form of weighted sum

of squares, it can be efficiently minimized via Gaussian-

Newton (GN) algorithm [5]. We implement the GN solver
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Figure 2: Overview of our approach: Given two consecutive stereo images, we first estimate the flow, stereo, and seg-

mentation (Sec. 3.1). The visual cues of each instance are then encoded as energy functions (Sec. 3.2) and passed into the

Gaussian-Newton (GN) solver to find the best 3D rigid motion (Sec. 3.3). The GN solver is unrolled as a recurrent network.

as layers in neural networks, thus all operations can be com-

puted efficiently on the GPU in an end-to-end fashion.

We demonstrate the effectiveness of our approach on the

KITTI scene flow dataset [27]. As shown in Fig. 1, our deep

rigid instance scene flow model outperforms all previous

methods by a significant margin in both runtime and accu-

racy. Importantly, it achieves state-of-the-art performance

on almost every entry. Comparing to prior art, DRISF re-

duces the D1 outliers ratio by 43%, the D2 outliers ratio by

32%, and the flow outliers ratio by 24%. Comparing to the

existing best scene flow model [3], our scene flow error is

22% lower and our runtime is 800 times faster.

2. Related Work

Optical flow: Optical flow is traditionally posed as an en-

ergy minimization task. It dates back to Horn and Schunck

[17] where they define the energy as a combination of a

data term and a smoothness term, and adopt variational in-

ference to solve it. Since then, a variety of improvements

have been proposed [6, 4, 30]. Recently, deep learning has

replaced the variational approaches. Employing deep fea-

tures for matching [1, 43] improved performance by a large

margin. However, as the matching results are not dense,

post-processing steps are required [35]. This not only re-

duces the speed, but also limits the overall performance.

Pioneered by Flownet [11], various end-to-end deep re-

gression based methods have been proposed [21]. Flownet2

[20] stacks multiple networks to iteratively refine the esti-

mated flow and introduces a differentiable warping opera-

tion to compensate for large displacements. As the result-

ing network is very large, SpyNet [32] propose to use spatial

pyramid network to handle large motions. They reduce the

model size greatly, yet at the cost of degrading performance.

Lite-Flownet [19] and PWC-Net [38, 37] extend this idea

and incorporate the traditional pyramid processing and cost

volume concepts into the network. Comparing to previous

approach, the resulting model is smaller and faster. In this

work, we adapt the latest PWC-Net as our flow module.

Stereo: Traditional stereo methods [16, 22] follow three

steps: compute patch-wise feature, construct cost volumes,

and final post-processing. The representation of the patch

plays an important role. Modern approaches leverage CNNs

to predict whether two patches are a match [45, 46]. While

they showed great performance in challenging benchmarks,

they are computationally expensive. To speed up the match-

ing process, Luo et al. [24] propose a siamese matching

network which exploits a correlation layer [9] to extract

marginal distributions over all possible disparities. While

the usage of the correlation layer significantly improves effi-

ciency, they still require post-processing techniques [15, 47]

to smooth their estimation, which largely limits their speed.

In light of this, networks that directly regress sub-pixel dis-

parities from the given stereo image pair have been pro-

posed. DispNet [26] exploits a 1D correlation layer to ap-

proximate the stereo cost volumes and rely on later layers

for implicit aggregation. Kendall et al. [23] incorporate

3D conv for further regularization and propose a differen-

tiable soft argmin to enable sub-pixel disparity from cost

volumes. PSM-Net [8] later extend [23] by incorporating

stacked hourglass [29] and Pyramid spatial pooling [48, 14].

In this work, we exploit PSM-Net as our stereo module.

Scene flow: Scene flow [40] characterizes the 3D motion

of a point. Similar to optical flow estimation, the task is

traditionally formulated as a variational inference problem

[39, 31, 18, 2]. However, the performance is rather lim-

ited in real world scenarios due to errors caused by large

motions. To improve the robustness, slanted-plane based

methods [44, 27, 41, 25] propose to decompose the scene

into small rigidly moving planes and solve the discrete-

continuous optimization problem. Behl et al. [3] build upon

[27], and incorporate recognition cues. With the help of

fine-grained instance and geometric feature, they are able to

establish correspondences across various challenging sce-

narios. Similar to our work, Ren et al. [34] exploit multiple
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Figure 3: Qualitative results on val set: Our model can estimate the background motion very accurately. It is also able to

estimate the 3D motion of foreground objects in most scenarios. It fails in challenging cases as show in last column.

visual cues for scene flow estimation. They encode the fea-

tures via a cascade of conditional random fields and itera-

tively refine them. While these methods have achieved im-

pressive performance, they are computationally expensive

for practical usage. Most methods require minutes to com-

pute one scene flow. This is largely due to the complicated

optimization task. In contrast, our deep structured motion

estimation model is able to compute scene flow in less than

a second, which is two to three orders of magnitude faster.

3. Deep Rigid Instance Scene Flow

In this paper we are interested in estimating scene flow

in the context of self-driving cars. We build our model on

the intuition that in this scenario the motion of the scene can

be formed by estimating the 3D motion of each actor. The

static background can be also modeled as a rigidly moving

object, as its 3D motion can be described by the ‘ego-car’

motion. Towards this goal, we proposed a novel deep struc-

tured model that exploits optical flow, stereo, as well as in-

stance segmentation as visual cues. We start by describing

how we employ deep learning to effectively estimate the ge-

ometric and semantic features. We then formulate the scene

flow task as an energy minimization problem and discuss

each energy term in details. Finally, we describe how to

perform efficient inference and learning.

3.1. Visual Cues

We exploit three types of visual cues: instance segmen-

tation, optical flow and stereo.

Instance Segmentation: We utilize Mask R-CNN [13] as

our instance segmentation network, as it produces state-of-

the-art results in autonomous driving benchmarks such as

KITTI [12] and Cityscapes [10]. Mask R-CNN is a proposal

based two stage network built upon Faster R-CNN [33]. For

each object proposal, it predicts the object class, regresses

its 2D box, and infers the bg/fg segmentation mask.

Stereo: We exploit the pyramid stereo matching network

(PSM-Net) [8] to compute our stereo estimates. It consists

of three main modules: fully convolutional feature module,

spatial pyramid pooling [14, 48] and 3D cost volume pro-

cessing. The feature module computes a high-dimensional

feature map in a fully convolutional manner; the spatial

pyramid pooling aggregates context in different scales and

locations to construct the cost volume; the 3D cost volume

module then performs implicit cost volume aggregation and

regularizes it using stacked hourglass networks. Compared

to previous disparity regression networks, PSM-Net learns

to refine and produce sharp disparity images that respect

object boundaries better. This is of crucial importance as

over-smoothed results often deteriorates motion estimation.

Optical Flow: Our flow module is akin to PWC-Net [38],

which is a state-of-the-art flow network designed based on

three classical principles (similar to stereo networks): pyra-

midal feature processing, warping, and cost volume reason-

ing. Pyramidal feature processing encode visual features

with large context; the progressive warping reduces the cost

of building cost-volume through a coarse-to-fine scheme.

Cost volume reasoning further boost performance by sharp-

ening the boundaries. We implement PWC-net with one

modification: during the warping operation, we use the fea-

ture of the nearest boundary pixel to pad if the sampling

point falls outside the image, rather than 0. Empirically we

found this to improve performance.
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Dispairty 1 Dispairty 2 Optical Flow Scene Flow

Methods Runtime bg fg all bg fg all bg fg all bg fg all

CSF [25] 1.3 mins 4.57 13.04 5.98 7.92 20.76 10.06 10.40 25.78 12.96 12.21 33.21 15.71

OSF [27] 50 mins 4.54 12.03 5.79 5.45 19.41 7.77 5.62 18.92 7.83 7.01 26.34 10.23

SSF [34] 5 mins 3.55 8.75 4.42 4.94 17.48 7.02 5.63 14.71 7.14 7.18 24.58 10.07

OSF-TC* [28] 50 mins 4.11 9.64 5.03 5.18 15.12 6.84 5.76 13.31 7.02 7.08 20.03 9.23

PRSM* [42] 5 mins 3.02 10.52 4.27 5.13 15.11 6.79 5.33 13.40 6.68 6.61 20.79 8.97

ISF [3] 10 mins 4.12 6.17 4.46 4.88 11.34 5.95 5.40 10.29 6.22 6.58 15.63 8.08

Our DRISF 0.75 sec 2.16 4.49 2.55 2.90 9.73 4.04 3.59 10.40 4.73 4.39 15.94 6.31

Table 1: Comparison against top 6 published approaches: Our method acheives state-of-the-art performance on almost

every entry while being two to three orders of magnitude faster. (*: Method uses more than two temporally adjacent images.)

3.2. Energy Formulation

We now describe the energy formulation of our deep

structured model. Let L0,R0,L1,R1 be the input stereo

pairs captured from two consecutive time steps. Let D0,D1

be the estimated stereo, and FL,FR be the inferred flow.

Denote S0
L

as the instance segmentation computed on the

left image L0. Assume all cameras are pre-calibrated with

known intrinsics. We parametrize the 3D rigid motion with

ξ ∈ se(3), the Lie-algebra associated with SE(3). We

use this parametrization as it is a minimal representation

for 3D motion. For each instance i ∈ S0
L

, we aim to find

the rigid 3D motion that minimizes the weighted combina-

tion of photometric error, rigid fitting and flow consistency,

where the weights are denoted as λ·,i. For simplicity, let

I = {L0,R0,L1,R1,D0,D1,FL,FR} be input images

and visual cues. We denote the set of pixels belonging to

instance i as Pi = {p|S0
L
(p) = i}. Note that background

can be considered as an ‘instance’ since all the pixels in it

undergo the same rigid transform. We obtain the 3D motion

of each instance by minimizing

min
ξ

{λphoto,iEphoto,i(ξ; I) + λrigid,iErigid,i(ξ; I) (1)

+ λflow,iEflow,i(ξ; I)}

The three energy terms are complementary. They capture

the geometry and appearance agreement between the obser-

vations and inferred rigid motion. Next, we describe the

energy terms in more details.

Photometric Error: This energy encodes the fact that

correspondences should have similar appearance across all

images. In particular, for each pixel p ∈ Pi in the reference

image, we compare its photometric value with that of the

corresponding pixel in the target image:

Ephoto,i(ξ; I) =
∑

p∈Pi

αpρ(L
0(p)− L1(p′)) (2)

where αp ∈ {0, 1} is an indicator function representing

which pixel is an outlier. We refer the reader to section 3.3

for a discussion on how to estimate αp. p is a pixel in the

reference image and p′ stands for the projected image co-

ordinate on another image, given by inverse depth warping

followed by a rigid transform ξ. Specifically,

p′ = πK(ξ ◦ π−1
K

(p,D(p))) (3)

where πK(·) : R3 → R
2 is the perspective projection func-

tion given known intrinsic K and π−1
K

(·, ·) : R2 × R → R
3

is the inverse projection that convert a pixel and its asso-

ciated disparity into a 3D point; ξ ◦ x transforms a 3D

point xrigidly with transformation exp(ξ)x. ρ is a robust

error function that improves the overall robustness by reduc-

ing the influence of outliers on the non-linear least squares

problems. Following Sun et al. [36], we adopt the general-

ized Charbonnier function ρ(x) = (x2 + ǫ2)α as our robust

function and set α = 0.45 and ǫ = 10−5. Similar to [36],

we observe the slightly non-convex penalty improves the

performance in practice.

Rigid Fitting: This term encourages the estimated 3D

rigid motion to be similar to the point-wise 3D motion ob-

tained from the stereo and flow networks. Formally, given

correspondences {(p, q = p+ FL(p))|p ∈ Pi} defined by

the output of optical flow network and the disparity maps

D0,D1, the energy measures rigid fitting error of ξ:

Erigid,i(ξ; I) =
∑

(p,q)

αpρ(ξ◦π
−1
K

(
p,D0(p)

)
−π−1

K

(
q,D1(q)

)
),

where q = p+ FL(p) and π−1
K

denotes the inverse projec-

tion function, and ρ is the same robust error function.

Flow Consistency: This term encourages the projection

of the 3D rigid motion to be close to the original flow es-

timation. This is achieved by measuring the difference be-

tween our optical flow net, and the structured rigid flow,

which is computed by warping each pixel using D0 and the

rigid motion ξ.

Eflow,i(ξ; I) =
∑

p∈Pi

ρ( (p′ − p)
︸ ︷︷ ︸

2D Rigid flow

− FL(p)
︸ ︷︷ ︸

optical flow

) (4)

where p′ is the rigid warping function defined in Eq. (3),

and ρ is the same robust error function.

3.3. Inference

Uncertain Pixel Removal: Due to viewpoint change,

flow/stereo prediction errors, etc, the visual cues of some
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Figure 4: Qualitative comparison on test sest: Our method can effecitvely handle occlusion and texture-less regions. It is

more robust to the illumination change as well as large displacement. Please refer to the supp. material for more results.

pixels are not reliable. For instance, pixels in one image

may be occluded in another image due to viewpoint change.

This motivates us to assign αp to each pixel p as an indi-

cation of outlier or not. Towards this goal, we first exclude

pixels which are likely to be occluded in the next frame.

Specifically, pixels are labeled as occluded if the warped 3D

disparity of the second frame significantly differs from the

disparity of the first frame. The intuition is that the disparity

of a pixel cannot change drastically in real world due to the

speed limit. We empirically set threshold to 30. Next, we

employ the RANSAC scheme to fit a rigid motion for each

instance. We only keep the inlier points and prune out the

rest. Despite simple, we found this strategy very effective.

Initialization: Due to the highly non-convex structure of

the energy model, a good initialization is critical to achieve

good performance. As previous step already prune out most

unreliable points, we directly exploit the rigid motion ob-

tained by RANSAC as our robust initial guess.

Gaussian Newton Solver: The energy function is non-

convex but differentiable w.r.t. ξ defined over continuous

space. In order to handle the robust function, we adopt an

iterative reweighted least square algorithm [7]. For each

iteration, we can rewrite the original energy minimization

problem of each instance i as a weighted sum of squares:

ξ(n+1) = argmin
ξ

Etotal,i(ξ) = argmin
ξ

∑

Eng

wi(ξ
(n))r2i (ξ

(n)),

where r denotes the residual function, w reweights each

sample based on the robust function ρ, and Eng refers to

summing over the energy terms. We employ Gaussian-

Newton algorithm to minimize the function. Thus we have

ξ(n+1) = ξ(n) ◦ (JT
WJ)(−1)

J
T
Wr(ξ(n)) (5)

where ◦ is a pose composition operator and J =
δr(ǫ◦ξ(n))

δǫ
|ǫ=0. In practice, we unroll the inference steps as

a recurrent neural network and define its computation graph

as in Eq. (5). The full pipeline including the matrix inverse

is differentiable. Please refer to the supp. material for the

derivation of the Jacobian matrix of each term and more de-

tails on the Gaussian-Newton solver.

Final Scene Flow Prediction: Given the final rigid mo-

tion estimation for each instance ξ∗i , we are able to com-

pute the dense instance-wise rigid scene flow. Our scene

flow consists of three component, namely the first frame’s

stereo D0, warped stereo to second frame Dwarp as well as

the instance-wise rigid flow estimation F rigid. Specifically,

for each point p we have:

D0(p) = D0(p) (6)

Dwarp(p) = zK(ξ∗
S0
L
(p) ◦ π

−1
K

(p,D0(p)))

F rigid(p) = p′ − p = πK(ξ ◦ π−1
K

(
p,D0(p)

)
)− p

where zK(·) computes the disparity of the 3D point; π−1
K

is

the inverse projection function; and ξ ◦ x transforms a 3D

point x using the rigid motion ξ.

3.4. Learning

The whole deep structured network can be trained end-

to-end. In practice, we train our instance segmentation,
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Figure 5: 3D rigid motion analysis: Over 80% of the estimated 3D rigid motion has an error less than 1m and 1.3◦. Large

errors often happen at farther distances where the vehicles are small and less points are observable.

Figure 6: Odometry from background motion: On aver-

age, our ego-car drifts 0.9cm and 0.024◦ every 1m of drive.

flow estimation, and stereo estimation module respectively

through back-propagation. To be more specific, Mask R-

CNN model is pre-trained on Cityscapes and fine-tuned on

KITTI. The loss function includes ROI classification loss,

box regression loss as well as the mask segmentation loss.

PSM-Net is pre-trained on Scene Flow [26] and fine-tuned

on KITTI with L1 regression loss. PWC-Net is pre-trained

on FlyingChairs [11] and FlyingThings [26] then fine-tuned

over KITTI, with weighted L1 regression loss.

4. Experiments

In this section we first describe the experimental setup.

Next we evaluate our model based on pixel-level scene flow

metric and instance-level rigid motion metric. Finally we

comprehensively study the characteristic of our model.

4.1. Dataset and Implementation Details

Data: We validate our approach on the KITTI scene flow

dataset [27]. The dataset consists of 200 sets of training

images and 200 sets of test images, captured on real world

driving scenarios. Following [8], we divide the training data

into train, val splits based on the 4:1 ratio.

Implementation details: For foreground objects, we use

all energy terms. The weights are set to 1. For background,

we only use photometric term (see ablation study). We run

RANSAC 5 times and use the one with lowest mean en-

ergy as initialization. We unroll the GN solver for 50 steps.

The solver terminates early if the energy reaches plateau. In

practice, best energy are often reached within 10 iterations.

4.2. Scene Flow Estimation

Comparison to the state-of-the-art: We compare our

approach against the leading methods on the benchmark1:

ISF [3], PRSM [42], OSF+TC [28], SSF [34], OSF [27],

and CSF [25]. Note that in addition to the standard two ad-

jacent frames, PRSM and OSF+TC rely on extra temporal

frames. As shown in Tab. 1, our approach (DRISF) out-

performs all previous methods by a significant margin in

both runtime and outliers ratio. It achieves state-of-the-art

performance on almost every entry. DRISF reduces the D1

outliers ratio by 43%, the D2 outliers ratio by 32%, and the

flow outliers ratio by 24%. Comparing to ISF model [3],

our scene flow error is 22% lower and our runtime is 800

times faster. Fig. 1 compares the performance and runtime

of all methods.

Qualitative results: To better understand the pros and

cons of our approach, we visualize a few scene flow results

on test set in Fig. 4. Scene flow estimation is challenging

in these scenarios due to large vehicle motions, texture-less

regions, occlusion, and illumination variation. For the left-

most image, prior methods fail to estimate the vehicle’s mo-

tion and adjacent area due to the sun reflection and occlu-

sion. The saturated, high intensity pixels hinder photomet-

ric based approaches [27] from matching accurately. With

the help of detection and segmentation, ISF [3] is able to im-

prove the foreground estimation. Yet it still fails at the oc-

cluded background. In comparison, our approach is robust

to illumination changes and is able to handle the occlusion

by effectively separating the vehicle from the background.

It can also accurately estimate the motion of the small car

far away, as well as those of the traffic sticks aside. As we

only train our Mask R-CNN on vehicles, it fails to segment

the train and hence the failure of our model. For the middle

image, the texture-less car has a large displacement and is

occluded in the second frame. While previous approaches

failed substantially, our method is able to produce accurate

motion estimation through the inferred flow and disparity of

1As the validation performance of our PWC-Net (fine-tuned on 160

images) performs slightly worse than the official one (fine-tuned on all 200

images), we use their weights instead when submitting to the benchmark.

All other settings remain intact. We thank Deqing Sun for his help.
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Employed energy Background outliers (%)

Epho Eflow Erigid D1 D2 Fl SF

X 1.92 2.69 3.71 4.30

X X 1.92 2.56 4.72 5.28

X X X 1.92 2.56 4.63 5.21

Employed energy Foreground outliers (%)

Epho Eflow Erigid D1 D2 Fl SF

X 1.70 4.25 7.57 9.00

X X 1.70 4.58 6.98 8.67

X X X 1.70 4.56 6.73 8.39

Table 2: Contributions of each energy: As foreground objects sometimes are texture-less and have large displacement,

simple photometric term is not enough. In contrast, background is full of disriminative cues. Simple photometric error would

suffice. Adding extra terms will introduce noises and hurt the performance. Please refer to the supp. material for full table.

Methods D1-all D2-all Fl-all SF-all

PSM + PWC 1.89 (47.0) 11.0 (50.8)

Deep+RANSAC 1.89 2.75 7.65 8.26

Our Full DRISF 1.89 2.89 4.10 4.84

Table 3: Improvement over original flow/stereo estima-

tion on validation set: The numbers in parenthis are ob-

tained by simply warping the disparity output with optical

flow, without interpolation, occlusion handling, etc.

Module Stereo Optical Flow Segmentation

Inference time 409 ms / pair 30 ms / pair 251 ms / pair

Module RANSAC GN Solver Total

Inference time 93 ms / instance 244 ms / instance 746 ms / pair

Table 4: Runtime analysis. Modules within each building

block can be executed in parallel (see text for more details).

the remaining non-occluded part. The middle failure mode

is again due to the inaccurate segmentation.

4.3. 3D Rigid Motion Estimation

We now evaluate how good our DRISF model is at esti-

mating the 3D rigid motion. Towards this goal, we exploit

the ground truth optical flow, disparity, and instance seg-

mentation provided in the KITTI scene flow dataset to fit a

least square rigid motion for each object instance in order

to create the ground truth rigid motion.

Curating KITTI scene flow: During fitting, we dis-

cover two critical issues with KITTI: first, there are mis-

alignments between GT flow/disparity and GT segmen-

tation. Second, the scale fitting of the same 3D CAD

model employed to compute ground truth changes some-

times across frames. The first issue is due to the fact that

the GT are collected via different means and thus not con-

sistent. While the GT flow and GT disparity are obtained

from the fitted 3D CAD models, the GT segmentation are

based on human annotation. To address this, we first use

the GT segmentation mask to define each object instance.

We then fit a rigid motion using the GT flow and GT dispar-

ity of each instance via least squares. Since some boundary

pixels may be mis-labeled by the annotators, for each pixel

around the boundary we search if there are other instances

in the surrounding area, and if there are, we transform the

pixel with their rigid motion. If their rigid motion better

explains the pixel’s 3D movement, i.e. the 3D distance is

closer, then we assign the pixel to that instance. At the end,

we perform the least square fitting again with the new pixel

assignment. Unfortunately, even after re-labeling, there are

still a few vehicle instances where the rigid motion cannot

be explained. After careful diagnose, we notice that this is

because the scale of the CAD model changes across frames.

To verify our hypothesis, we compute the eigen decompo-

sition for the same instance across frames. Ideally if the

scale of the instance does not change much, the eigen value

should be roughly the same. Yet we discover a few exam-

ples where the largest eigen value changes by 7%. We sim-

ply prune those instances as the GT is not accurate.

3D Motion evaluation: Most scene flow methods are

pixel-based or adopted a piece-wise rigid setting. It is un-

clear how to aggregate their estimation into instance-based

motion model without affecting their performance. In light

of this, we exploit the motion initialization of our GN Solver

as baseline. We take the output of the deep nets and ap-

ply RANSAC to find the best rigid motion. We denote

it as Deep+RANSAC. As shown in Tab. 3, this baseline

is very competitive. Its performance is comparable to, or

even better than prior state-of-the-art. We evaluate our mo-

tion model based on translation error and angular error. As

shown in Fig. 5, over 80% of the vehicles have translation

error less than 1m and angular error less than 1.3◦. Further-

more, most vehicles with translation error larger than 1m is

at least 20m away. In general, both error slightly increase

with distance. This is expected as the farther the vehicle

is, the less observations we have. The translation error and

angular error are also strongly correlated.

Visual odometry: The odometry of the ‘ego-car’ can be

computed by estimating the background movement. As a

proof-of-concept, we compute the per frame odometry er-

ror on the validation images. On average our motion model

drifts 0.09m and 0.24◦ every 10m. Fig. 6 shows the de-

tailed odometry error w.r.t. the travel distance. We note that

the current result is without any pose filter, loop closure, etc.

We plan to exploit this direction further in the future.

4.4. Analysis

Ablation study: To understand the effectiveness of each

energy term on background and foreground objects, we

evaluate our model with different energy combinations. As

shown in Tab. 2, best performance is achieved for fore-
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Before (PWC) After (DRISF) Before (PSM+Warp) After (DRISF)

Figure 7: Improvement over original flow/stereo: DRISF improves the overall performance. It is especially effective on

texture-less regions (e.g. window of the black car on the left) and occluded areas (right).

ground objects when using all energy terms, while for back-

ground the error is lowest when employing only photomet-

ric term. This can be explained by the fact that vehicles

are often texture-less, and sometimes have large displace-

ments. If we only employ photometric term, it will be very

difficult to establish correspondences and handle drastic ap-

pearances changes. With the help of flow and rigid term, we

can guide the motion and reduce such effect, and deal with

occlusions. In contrast, background is full of discriminative

textures and has relatively small motion, which is ideal for

photometric term. Adding other terms may introduce extra

noise and degrade the performance.

Comparison against original flow/disparity: Through

exploiting the structure between visual cues and occlusion

handling, our model is able to improve the performance

both quantitatively (Tab. 3) and qualitatively (Fig. 7).

The object motion estimation is better, the boundaries are

sharper, and the occlusion error is greatly reduced, sug-

gesting that incorporating prior knowledge, such as pixels

of same instance should have same rigid motion, into the

model is crucial for the task.

Potential improvement To understand the potential gain

we may enjoy when improving each module, we sequen-

tially replace the input to our solver with ground truth, one

by one, and evaluate our model. Replacing D1 and flow

with GT reduce the scene flow error rate by 8% and 21%
respectively, while substituting GT for segmentation does

not improve the results. This suggests that there are still

space for flow and stereo modules to improve.

Runtime analysis We benchmark the runtime of each

component in the model during inference in Tab. 4. The

whole inference pipeline can be decomposed into three se-

quential stages: visual cues extraction, occlusion reason-

ing, and optimization. As modules within the same stage

are independent, they can be executed in parallel. Further-

more, modern self-driving vehicles are equipped with mul-

tiple GPUs. The runtime for each stage is thus the max

over all parallel modules. In practice, we exploit two Nvidia

1080Ti GPUs to extract the visual cues: one for PSM-Net,

and the other for Mask R-CNN and PWC-Net. Currently,

the stereo module takes more than 50% of the overall time.

This is largely due to the 3D CNN cost aggregation and

the stacked hourglass refinement. In the future, we plan to

investigate other faster yet reliable stereo networks. The

runtime of the GN solver depends highly on the number

of steps we unroll and the number of points we consider.

Please refer to the supp. material for detailed analysis.

Limitations: DRISF has two main limitations: first, it

heavily depends on the performance of the segmentation

network. If the segmentation module fails to detect a vehi-

cle, the vehicle will be treated as background and assigned

an inverse ego-car motion. In this case, the 3D motion

might be completely wrong, even if the optical flow net-

work accurately predicts its flow. In the future we plan to

address this by jointly reasoning about instance segmenta-

tion and scene flow. Second, the current energy functions

are highly flow centric. Only the photometric term is in-

dependent of flow. If the optical flow network completely

failed, it would be difficult for the solver to recover the cor-

rect motion. One possible solution is thus adding more

flow-invariant energy terms, such as instance association

between adjacent frames.

5. Conclusion
In this paper we develop a novel deep structured model

for 3D scene flow estimation. We focus on the self-driving

scenario where the motion of the scene can be composed by

estimating the 3D rigid motion of each actor. We first ex-

ploit deep learning to extract visual cues for each instance.

Then we employ multiple geometry based energy functions

to encode the structural geometric relationship between

them. Through optimizing the energy function, we can rea-

son the 3D motion of each traffic participant, and thus scene

flow. All operations, including the Gassian-Newton solver,

are done in GPU. Our method acheives state-of-the-art per-

formance on the KITTI scene flow dataset. It outperforms

all previous methods by a huge margin in both runtime and

accuracy. Comparing to prior art, DRISF is 22% better

while being two to three orders of magnitude faster.
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