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Abstract

To bridge source and target domains for domain adap-

tation, there are three important types of information in-

cluding data structure, domain label, and class label. Most

existing domain adaptation approaches exploit only one or

two types of the above information and cannot make them

complement and enhance each other. Different from exist-

ing methods, we propose an end-to-end Graph Convolution-

al Adversarial Network (GCAN) for unsupervised domain

adaptation by jointly modeling data structure, domain la-

bel, and class label in a unified deep model. The proposed

GCAN model enjoys several merits. First, to the best of our

knowledge, this is the first work to model the three kinds

of information jointly in a deep model for unsupervised do-

main adaptation. Second, the proposed model has designed

three effective alignment mechanisms including structure-

aware alignment, domain alignment, and class centroid

alignment, which can learn domain-invariant and semantic

representations effectively to reduce the domain discrepan-

cy for domain adaptation. Extensive experimental results

on five standard benchmarks demonstrate that the proposed

GCAN algorithm performs favorably against state-of-the-

art unsupervised domain adaptation methods.

1. Introduction

Deep learning approaches can learn discriminative rep-

resentations and have significantly improved the state of the

arts for a wide variety of machine-learning tasks and com-

puter vision applications [4, 10, 19, 33, 34, 43, 48, 83, 85,

87, 88, 3]. Unfortunately, the impressive performance gains

come only when massive amounts of labeled data are avail-

able for deep model training. In practice, manual labeling

of such sufficient training data is often prohibitive or im-

possible to collect, especially for a target task short of la-

Data Structure

Domain Label

Class Label

Figure 1. Illustration of our motivation. The data structure, domain

label and class label are three important types of information to

bridge source and target domains for domain adaptation.

beled data. Therefore, there is a strong motivation to build

effective learners that can leverage rich labeled data from

a different source domain [61]. However, due to the phe-

nomenon known as dataset bias or domain shift, predictive

models trained on one large scale dataset do not generalize

well to new datasets and tasks [61]. As a result, this learning

paradigm suffers from the shift in data distributions across

different domains, which poses a huge obstacle for adapting

predictive models to the target task [69, 61].

Learning a discriminative classifier or other predictors

in the presence of the shift between training and test dis-

tributions is known as transfer learning or domain adapta-

tion [61]. The main technical difficulty of domain adap-

tation is how to formally reduce the distribution discrep-

ancy across different domains, usually labeled source da-

ta and unlabeled target data. To address this issue, a

variety of domain adaptation approaches have been pro-

posed [15, 61, 76]. Generally, these methods can be cat-

egorized into three major categories including instance-
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based domain adaptation [14, 37, 11, 13, 39, 7, 8, 12],

parameter-based domain adaptation [20, 62], feature-based

domain adaptation [53, 14, 37, 40, 61, 32]. Among exist-

ing methods, Maximum Mean Discrepancy (MMD) [32]

is one of the most widely used strategies to measure the

distribution difference between source and target domain-

s [50, 38, 57, 45]. Later on, numerous domain adapta-

tion approaches have been proposed by designing a re-

vised class-wise MMD, such as, class-wise MMD [38, 79],

multi-kernel MMD [74, 49]. Recently, numerous adversar-

ial adaptation methods [1, 23, 47, 82, 41, 73] have been

proposed, which is analogous to generative adversarial net-

works [30]. A domain classifier is trained to tell whether

the sample comes from source domain or target domain.

The feature extractor is trained to minimize the classifica-

tion loss and maximize the domain confusion loss. Domain-

invariant yet discriminative features are seemingly obtain-

able through the principled lens of adversarial training.

In the above mentioned methods, three types of informa-

tion play crucial roles in bridging the labeled source and un-

labeled target domains, namely data structure, domain label,

and class label, as shown in Figure 1. Data structure gen-

erally reflects the inherent properties of dataset including

marginal or conditional data distributions [51], data statis-

tics information [86], geometric data structure [66, 78] and

so on. Domain label is used in adversarial domain adap-

tation methods [1, 23, 73, 7, 8, 12], and can help train a

domain classifier to model the global distribution of source

and target domains. Class labels, specifically target pseudo

labels, are usually adopted to enforce the semantic align-

ment [18, 77], which can guarantee that samples from d-

ifferent domains with the same class label will be mapped

nearby in the feature space. In summary, the three types of

information help reduce the domain discrepancy in different

aspects, and they can complement and enhance each other

for domain adaptation. It naturally comes into minds that

how to effectively leverage data structure, domain label,

and class label jointly in a unified network for unsupervised

domain adaptation. As we know, most previous methods

only exploit one or two kinds of information into consider-

ation. In [77], the deep adversarial adaptation method only

enforces the alignment of global domain statistics, and the

crucial semantic class label information for each category

may be lost. Even with perfect confusion alignment, there is

no guarantee that samples from different domains with the

same class label will be mapped nearby in the feature space.

Therefore, some semantic transfer methods [77, 55, 58, 72]

have been proposed and can propagate the class label in-

formation into the deep adversarial adaptation network to

address the above limitations. For traditional data structure

related methods [54, 86, 81, 78], they can reduce the distri-

butional divergence between domains while preserving data

properties in original spaces. However, it is difficult to mod-

el and integrate the data structure information into existing

deep networks effectively.

To deal with the above limitations, we propose an end-

to-end Graph Convolutional Adversarial Network (GCAN)

for unsupervised domain adaptation by jointly modeling da-

ta structure, domain label, and class label in a unified deep

model. To align domain distributions robustly, we design

three effective alignment mechanisms including structure-

aware alignment, domain alignment, and class centroid

alignment, which play important roles in reducing the do-

main discrepancy for domain adaptation. In the structure-

aware alignment, data structures of source and target do-

mains are exploited so that the structure discrepancy can be

minimized to reduce domain shift. To model data structures

under the deep network, we use the CNN features of sam-

ples to construct a dense-connected instance graph based

on the similarity of structural characteristics of samples.

Each node corresponds to CNN features of a sample, which

is extracted by a standard convolutional network, e.g., the

AlexNet. Then, the Graph Convolution Network (GCN) is

applied on the instance graph, which allows the structure in-

formation to be propagated along the weighted graph edge

which can be learned from a designed network. In the do-

main alignment, global domain statistics from different do-

mains are excavated to match each other. The divergence

of domain statistics measured by the adversarial similarity

loss is used to guide the feature extractor to learn domain-

invariant representations. In the class centroid alignment,

we constrain class centroids from different domains to move

closer with iteration increasing so that the learned repre-

sentations can be encoded with the class label information.

Thereby, samples with the same category label can be em-

bedded nearby in the feature space. Our model conducts a

class alignment loss to achieve the idea and a moving cen-

troid strategy is applied to suppress the influence of false

pseudo-labels. By modeling the three alignment mecha-

nisms, the deep network can generate domain-invariant and

discriminative semantic representations.

The major contributions of this work can be summa-

rized as follows. (1) We propose an end-to-end Graph Con-

volutional Adversarial Network for unsupervised domain

adaptation by modeling data structure, domain label, and

class label jointly in a unified network. To the best of our

knowledge, this is the first work to model the three kinds

of information jointly in a deep model for unsupervised do-

main adaptation. (2) The proposed alignment mechanism-

s (structure-aware alignment, domain alignment, and class

centroid alignment) can learn domain-invariant and seman-

tic representations effectively to reduce the domain discrep-

ancy for domain adaptation. (3) Extensive experimental re-

sults on five standard benchmarks demonstrate that the pro-

posed GCAN algorithm performs favorably against state-

of-the-art unsupervised domain adaptation methods.
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2. Related Work

In this section, we briefly overview methods that are re-

lated to domain adaptation and graph neural networks.

Domain Adaptation. A large number of domain adap-

tation methods have been proposed over the recent years.

Generally, they can be mainly categorized into three group-

s: (1) Instance-based domain adaptation aims to identify

the training samples that are most relevant to the target

domain by instance reweighting and importance sampling.

The reweighted source instances are then used for training

a target domain model. Here, training on the reweight-

ed source samples guarantees classifiers with transferabil-

ity [11, 13, 39, 7, 8, 12]. (2) Parameter-based domain adap-

tation assumes that models of the source and target domain

share the same prior parameters. It is designed to transfer

knowledge by shared or regularized parameters of source

and target domain models, or through combining multiple

reweighted source models to form an improved target mod-

el [20, 62]. (3) Feature-based domain adaptation is de-

signed to map different domains into a common shared s-

pace and make their feature distributions as close as pos-

sible [14, 37, 40, 61, 32]. In addition, [76] categorizes

feature-based domain adaptation methods into two groups:

asymmetric feature-based methods and symmetric feature-

based methods. Asymmetric feature-based methods trans-

form the features of one domain to more closely match an-

other domain [40, 37] while symmetric feature-based meth-

ods [54, 86, 18, 54] map different domains to a common

latent space where the feature distributions are close.

Recently, deep learning has been regarded as a power-

ful way to learn feature representations for domain adapta-

tion. Among existing methods, Maximum Mean Discrep-

ancy (MMD) [32] is one of the most widely used strategies

to measure the distribution difference between source and

target domains [50, 38, 57, 45]. The MMD is a nonparamet-

ric metric that measures the distribution divergence between

the mean embedding of two distributions in Reproducing

Kernel Hilbert Space (RKHS). The deep domain confusion

(DDC) method [74] utilizes the MMD metric in the last ful-

ly connected layer in addition to the regular classification

loss to learn representations that are both domain invariant

and discriminative. In [49], the deep adaptation network

(DAN) is proposed to enhance the feature transferability

by minimizing a multi-kernel MMD in several task-specific

layers. Currently, most methods use an adversarial objec-

tive to reduce domain discrepancy [5, 22, 47, 49, 53, 59, 73].

In [1, 23], the domain adversarial neural network (DANN)

is proposed to learn domain invariant features by a minimax

game between the domain classifier and the feature extrac-

tor. In order to back-propagate the gradients computed from

the domain classifier, the DANN employs a gradient rever-

sal layer. On the other hand, a general framework [73] is

proposed for adversarial adaptation by choosing adversar-

ial loss type with respect to the domain classifier and the

weight sharing strategy. Our proposed GCAN model can

also be viewed as an adversarial adaptation method. The

difference is that our model can leverage data structure, do-

main label and class label jointly in a unified network for

unsupervised domain adaptation.

Graph Neural Networks (GNN). The GNN is designed

to use deep learning architectures on graph-structured data,

which is in fact natural generalizations of convolutional net-

works to non-Euclidean graphs. The GNN is first proposed

in [31, 64] as a trainable recurrent message passing whose

fixed points could be adjusted discriminatively. In [46, 70],

the GNN model is relaxed by untying the recurrent layer

weights and using several nonlinear updates through gating

mechanisms. In [6, 35], the models are designed to learn

smooth spectral multipliers of the graph Laplacian, albeit

with high computational cost. In [16, 42], the computa-

tional bottleneck is resolved by learning polynomials of the

graph Laplacian, thus avoiding the computation of eigen-

vectors and completing the connection with GNNs.

Among above graph neural networks, the Graph Con-

volutional Network (GCN) has been applied to many ap-

plications [80, 65, 44, 84, 24, 25, 26]. The principle of

constructing GCNs on graph generally follows two stream-

s: (1) the spectral perspective, where the locality of the

graph convolution is considered in the form of spectral anal-

ysis [21, 35, 42]. (2) the spatial perspective, where the con-

volution filters are applied directly on the graph nodes and

their neighbors [60]. Our works is based on the spectral per-

spective line [42]. The proposed model exploits the GCN

to operate on a dense-connected instance graph so that da-

ta structure information can be jointly complemented with

domain label and class label information in a unified deep

network.

3. Our Approach

In this section, we provide details of the proposed model

for unsupervised domain adaptation.

3.1. Notations and Definitions
We give some notations and definitions following [15,

61, 76]. In unsupervised domain adaptation, we are given

ns labeled samples
{(

x
(i)
S , y

(i)
S

)}ns

i=1
from the source do-

main DS , where x
(i)
S ∈ XS and y

(i)
S ∈ YS . XS and YS

are defined as the source data space and source label space,

respectively. Additionally, we are also given nt unlabeled

target samples
{(

x
(i)
T

)}nt

i=1
, where x

(i)
T ∈ XT , and the XT

represents target data space. The XS and XT are assumed

to be different but related (referred as covariate shift in the

literature [67]). The target task is assumed to be the same

with the source task, which means the source label space

YS is shared with the target label space YT . Our ultimate

goal is to develop a deep neural network f : XT → YT that
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Figure 2. The architecture of the proposed Graph Convolutional Adversarial Network (GCAN). Our GCAN consists of three alignment

mechanisms including structure-aware alignment, domain alignment, and class centroid alignment. In the structure-aware alignment, the

Data Structure Analyzer network generates structure scores encoded with source data structure information while the CNN features are

extracted by CNNs. Then, the structure scores and CNN features are used to construct dense-connected instance graphs for the GCN. The

concatenated CNN and GCN features are input to the domain alignment and class centroid alignment modules. In the domain alignment,

a domain alignment loss is applied to match the global domain statistics. In the class centroid alignment, pseudo-labeled target features

and labeled source features are used to calculate the class centroid alignment loss to ensure that samples with same class from different

domains can be embedded closely. For more details, please refer to the text.

is able to predict labels for samples from target domain.

3.2. Graph Convolutional Adversarial Network
The architecture of our proposed Graph Convolutional

Adversarial Network is shown in Figure 2. For unsuper-

vised domain adaptation, in the presence of domain shift,

a label prediction function f is trained by minimizing the

overall objective as shown in Eq. (1):

L (XS ,YS ,XT ) = LC (XS ,YS) + λLDA (XS ,XT )

+ γLCA (XS ,YS ,XT ) + ηLT ,
(1)

The classification loss LC (XS ,YS) is shown in Eq.(2).

LC (XS ,YS) = E(x,y)∼DS
[J (f (x) , y)] (2)

The J (·, ·) is typically a cross entropy loss. The λ, γ, and

η are the balance parameters. The LDA, LCA and LT rep-

resent the domain alignment loss, the class alignment loss,

and the triplet loss for the structure-aware alignment, re-

spectively. The details are introduced as follows.

3.2.1 Domain Alignment

Here, we use the domain adversarial similarity loss as the

domain alignment loss as shown in Eq. (3). Specifically, we

employ an additional domain classifier D to tell whether the

features from the feature extractor G arise from source or

target domain while the G is trained to fool the D . This

two-player minimax game is expected to reach an equilibri-

um where the features from G are domain-invariant.

LDA (XS ,XT ) = Ex∈DS
[log (1−D (G (x)))]

+ Ex∈DT
[log (D (G (x)))]

(3)

3.2.2 Structure-aware Alignment

The domain alignment mechanism only enforces the align-

ment of global domain statistics but ignores the structure in-

formation of a mini-batch samples. In fact, previous meth-

ods [54, 86] focus on modeling the data structure informa-

tion for unsupervised domain adaptation and have gained

impressive performance, which further emphasizes the im-

portance of data structure information. In order to model the

data structure from a mini-batch source and target samples

in a deep network, we propose a structure-aware alignment

mechanism for unsupervised domain adaptation.

For the structure-aware alignment, we first use a Da-

ta Structure Analyzer (DSA) network to generate Struc-

ture Scores for a mini-batch samples. Then, the obtained

structure scores and the learnt CNN features of samples are

employed to construct densely-connected instance graphs.

The Graph Convolutional Network (GCN) is then operat-

ed on the instance graphs to learn GCN Features encoded

with the data structure information. Before introducing our

method, we first give a brief introduction of the GCN pro-

posed in [42]. The GCN aims to learn the layerwise prop-

agation operations that can be applied directly on graphs.

Given an undirected graph with m nodes, a set of edges

between nodes, and an adjacency matrix A ∈ Rm×m, we

formulate a linear transformation of graph convolution as

the multiplication of a graph signal X ∈ Rk×m (the colum-

n vector X i ∈ Rk is the feature representation of the i-th

node) with a filter W ∈ Rk×c:

Z = D̂ − 1
2 Â D̂ − 1

2 X T W , (4)
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