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Abstract

To bridge source and target domains for domain adap-

tation, there are three important types of information in-

cluding data structure, domain label, and class label. Most

existing domain adaptation approaches exploit only one or

two types of the above information and cannot make them

complement and enhance each other. Different from exist-

ing methods, we propose an end-to-end Graph Convolution-

al Adversarial Network (GCAN) for unsupervised domain

adaptation by jointly modeling data structure, domain la-

bel, and class label in a unified deep model. The proposed

GCAN model enjoys several merits. First, to the best of our

knowledge, this is the first work to model the three kinds

of information jointly in a deep model for unsupervised do-

main adaptation. Second, the proposed model has designed

three effective alignment mechanisms including structure-

aware alignment, domain alignment, and class centroid

alignment, which can learn domain-invariant and semantic

representations effectively to reduce the domain discrepan-

cy for domain adaptation. Extensive experimental results

on five standard benchmarks demonstrate that the proposed

GCAN algorithm performs favorably against state-of-the-

art unsupervised domain adaptation methods.

1. Introduction

Deep learning approaches can learn discriminative rep-

resentations and have significantly improved the state of the

arts for a wide variety of machine-learning tasks and com-

puter vision applications [4, 10, 19, 33, 34, 43, 48, 83, 85,

87, 88, 3]. Unfortunately, the impressive performance gains

come only when massive amounts of labeled data are avail-

able for deep model training. In practice, manual labeling

of such sufficient training data is often prohibitive or im-

possible to collect, especially for a target task short of la-

Data Structure

Domain Label

Class Label

Figure 1. Illustration of our motivation. The data structure, domain

label and class label are three important types of information to

bridge source and target domains for domain adaptation.

beled data. Therefore, there is a strong motivation to build

effective learners that can leverage rich labeled data from

a different source domain [61]. However, due to the phe-

nomenon known as dataset bias or domain shift, predictive

models trained on one large scale dataset do not generalize

well to new datasets and tasks [61]. As a result, this learning

paradigm suffers from the shift in data distributions across

different domains, which poses a huge obstacle for adapting

predictive models to the target task [69, 61].

Learning a discriminative classifier or other predictors

in the presence of the shift between training and test dis-

tributions is known as transfer learning or domain adapta-

tion [61]. The main technical difficulty of domain adap-

tation is how to formally reduce the distribution discrep-

ancy across different domains, usually labeled source da-

ta and unlabeled target data. To address this issue, a

variety of domain adaptation approaches have been pro-

posed [15, 61, 76]. Generally, these methods can be cat-

egorized into three major categories including instance-
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based domain adaptation [14, 37, 11, 13, 39, 7, 8, 12],

parameter-based domain adaptation [20, 62], feature-based

domain adaptation [53, 14, 37, 40, 61, 32]. Among exist-

ing methods, Maximum Mean Discrepancy (MMD) [32]

is one of the most widely used strategies to measure the

distribution difference between source and target domain-

s [50, 38, 57, 45]. Later on, numerous domain adapta-

tion approaches have been proposed by designing a re-

vised class-wise MMD, such as, class-wise MMD [38, 79],

multi-kernel MMD [74, 49]. Recently, numerous adversar-

ial adaptation methods [1, 23, 47, 82, 41, 73] have been

proposed, which is analogous to generative adversarial net-

works [30]. A domain classifier is trained to tell whether

the sample comes from source domain or target domain.

The feature extractor is trained to minimize the classifica-

tion loss and maximize the domain confusion loss. Domain-

invariant yet discriminative features are seemingly obtain-

able through the principled lens of adversarial training.

In the above mentioned methods, three types of informa-

tion play crucial roles in bridging the labeled source and un-

labeled target domains, namely data structure, domain label,

and class label, as shown in Figure 1. Data structure gen-

erally reflects the inherent properties of dataset including

marginal or conditional data distributions [51], data statis-

tics information [86], geometric data structure [66, 78] and

so on. Domain label is used in adversarial domain adap-

tation methods [1, 23, 73, 7, 8, 12], and can help train a

domain classifier to model the global distribution of source

and target domains. Class labels, specifically target pseudo

labels, are usually adopted to enforce the semantic align-

ment [18, 77], which can guarantee that samples from d-

ifferent domains with the same class label will be mapped

nearby in the feature space. In summary, the three types of

information help reduce the domain discrepancy in different

aspects, and they can complement and enhance each other

for domain adaptation. It naturally comes into minds that

how to effectively leverage data structure, domain label,

and class label jointly in a unified network for unsupervised

domain adaptation. As we know, most previous methods

only exploit one or two kinds of information into consider-

ation. In [77], the deep adversarial adaptation method only

enforces the alignment of global domain statistics, and the

crucial semantic class label information for each category

may be lost. Even with perfect confusion alignment, there is

no guarantee that samples from different domains with the

same class label will be mapped nearby in the feature space.

Therefore, some semantic transfer methods [77, 55, 58, 72]

have been proposed and can propagate the class label in-

formation into the deep adversarial adaptation network to

address the above limitations. For traditional data structure

related methods [54, 86, 81, 78], they can reduce the distri-

butional divergence between domains while preserving data

properties in original spaces. However, it is difficult to mod-

el and integrate the data structure information into existing

deep networks effectively.

To deal with the above limitations, we propose an end-

to-end Graph Convolutional Adversarial Network (GCAN)

for unsupervised domain adaptation by jointly modeling da-

ta structure, domain label, and class label in a unified deep

model. To align domain distributions robustly, we design

three effective alignment mechanisms including structure-

aware alignment, domain alignment, and class centroid

alignment, which play important roles in reducing the do-

main discrepancy for domain adaptation. In the structure-

aware alignment, data structures of source and target do-

mains are exploited so that the structure discrepancy can be

minimized to reduce domain shift. To model data structures

under the deep network, we use the CNN features of sam-

ples to construct a dense-connected instance graph based

on the similarity of structural characteristics of samples.

Each node corresponds to CNN features of a sample, which

is extracted by a standard convolutional network, e.g., the

AlexNet. Then, the Graph Convolution Network (GCN) is

applied on the instance graph, which allows the structure in-

formation to be propagated along the weighted graph edge

which can be learned from a designed network. In the do-

main alignment, global domain statistics from different do-

mains are excavated to match each other. The divergence

of domain statistics measured by the adversarial similarity

loss is used to guide the feature extractor to learn domain-

invariant representations. In the class centroid alignment,

we constrain class centroids from different domains to move

closer with iteration increasing so that the learned repre-

sentations can be encoded with the class label information.

Thereby, samples with the same category label can be em-

bedded nearby in the feature space. Our model conducts a

class alignment loss to achieve the idea and a moving cen-

troid strategy is applied to suppress the influence of false

pseudo-labels. By modeling the three alignment mecha-

nisms, the deep network can generate domain-invariant and

discriminative semantic representations.

The major contributions of this work can be summa-

rized as follows. (1) We propose an end-to-end Graph Con-

volutional Adversarial Network for unsupervised domain

adaptation by modeling data structure, domain label, and

class label jointly in a unified network. To the best of our

knowledge, this is the first work to model the three kinds

of information jointly in a deep model for unsupervised do-

main adaptation. (2) The proposed alignment mechanism-

s (structure-aware alignment, domain alignment, and class

centroid alignment) can learn domain-invariant and seman-

tic representations effectively to reduce the domain discrep-

ancy for domain adaptation. (3) Extensive experimental re-

sults on five standard benchmarks demonstrate that the pro-

posed GCAN algorithm performs favorably against state-

of-the-art unsupervised domain adaptation methods.
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2. Related Work

In this section, we briefly overview methods that are re-

lated to domain adaptation and graph neural networks.

Domain Adaptation. A large number of domain adap-

tation methods have been proposed over the recent years.

Generally, they can be mainly categorized into three group-

s: (1) Instance-based domain adaptation aims to identify

the training samples that are most relevant to the target

domain by instance reweighting and importance sampling.

The reweighted source instances are then used for training

a target domain model. Here, training on the reweight-

ed source samples guarantees classifiers with transferabil-

ity [11, 13, 39, 7, 8, 12]. (2) Parameter-based domain adap-

tation assumes that models of the source and target domain

share the same prior parameters. It is designed to transfer

knowledge by shared or regularized parameters of source

and target domain models, or through combining multiple

reweighted source models to form an improved target mod-

el [20, 62]. (3) Feature-based domain adaptation is de-

signed to map different domains into a common shared s-

pace and make their feature distributions as close as pos-

sible [14, 37, 40, 61, 32]. In addition, [76] categorizes

feature-based domain adaptation methods into two groups:

asymmetric feature-based methods and symmetric feature-

based methods. Asymmetric feature-based methods trans-

form the features of one domain to more closely match an-

other domain [40, 37] while symmetric feature-based meth-

ods [54, 86, 18, 54] map different domains to a common

latent space where the feature distributions are close.

Recently, deep learning has been regarded as a power-

ful way to learn feature representations for domain adapta-

tion. Among existing methods, Maximum Mean Discrep-

ancy (MMD) [32] is one of the most widely used strategies

to measure the distribution difference between source and

target domains [50, 38, 57, 45]. The MMD is a nonparamet-

ric metric that measures the distribution divergence between

the mean embedding of two distributions in Reproducing

Kernel Hilbert Space (RKHS). The deep domain confusion

(DDC) method [74] utilizes the MMD metric in the last ful-

ly connected layer in addition to the regular classification

loss to learn representations that are both domain invariant

and discriminative. In [49], the deep adaptation network

(DAN) is proposed to enhance the feature transferability

by minimizing a multi-kernel MMD in several task-specific

layers. Currently, most methods use an adversarial objec-

tive to reduce domain discrepancy [5, 22, 47, 49, 53, 59, 73].

In [1, 23], the domain adversarial neural network (DANN)

is proposed to learn domain invariant features by a minimax

game between the domain classifier and the feature extrac-

tor. In order to back-propagate the gradients computed from

the domain classifier, the DANN employs a gradient rever-

sal layer. On the other hand, a general framework [73] is

proposed for adversarial adaptation by choosing adversar-

ial loss type with respect to the domain classifier and the

weight sharing strategy. Our proposed GCAN model can

also be viewed as an adversarial adaptation method. The

difference is that our model can leverage data structure, do-

main label and class label jointly in a unified network for

unsupervised domain adaptation.

Graph Neural Networks (GNN). The GNN is designed

to use deep learning architectures on graph-structured data,

which is in fact natural generalizations of convolutional net-

works to non-Euclidean graphs. The GNN is first proposed

in [31, 64] as a trainable recurrent message passing whose

fixed points could be adjusted discriminatively. In [46, 70],

the GNN model is relaxed by untying the recurrent layer

weights and using several nonlinear updates through gating

mechanisms. In [6, 35], the models are designed to learn

smooth spectral multipliers of the graph Laplacian, albeit

with high computational cost. In [16, 42], the computa-

tional bottleneck is resolved by learning polynomials of the

graph Laplacian, thus avoiding the computation of eigen-

vectors and completing the connection with GNNs.

Among above graph neural networks, the Graph Con-

volutional Network (GCN) has been applied to many ap-

plications [80, 65, 44, 84, 24, 25, 26]. The principle of

constructing GCNs on graph generally follows two stream-

s: (1) the spectral perspective, where the locality of the

graph convolution is considered in the form of spectral anal-

ysis [21, 35, 42]. (2) the spatial perspective, where the con-

volution filters are applied directly on the graph nodes and

their neighbors [60]. Our works is based on the spectral per-

spective line [42]. The proposed model exploits the GCN

to operate on a dense-connected instance graph so that da-

ta structure information can be jointly complemented with

domain label and class label information in a unified deep

network.

3. Our Approach

In this section, we provide details of the proposed model

for unsupervised domain adaptation.

3.1. Notations and Definitions
We give some notations and definitions following [15,

61, 76]. In unsupervised domain adaptation, we are given

ns labeled samples
{(

x
(i)
S , y

(i)
S

)}ns

i=1
from the source do-

main DS , where x
(i)
S ∈ XS and y

(i)
S ∈ YS . XS and YS

are defined as the source data space and source label space,

respectively. Additionally, we are also given nt unlabeled

target samples
{(

x
(i)
T

)}nt

i=1
, where x

(i)
T ∈ XT , and the XT

represents target data space. The XS and XT are assumed

to be different but related (referred as covariate shift in the

literature [67]). The target task is assumed to be the same

with the source task, which means the source label space

YS is shared with the target label space YT . Our ultimate

goal is to develop a deep neural network f : XT → YT that
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Class Alignment Loss

Adversarial Loss
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Labeled Source Features

Ground Truth

Pseudo-label 

CNN

Data Structure Analyzer (DSA)

Hidden Layers

Structure-aware Alignment  ( Feature Extractor  G) Class Centroid Alignment
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GCN feature

Domain Classifier  D

Figure 2. The architecture of the proposed Graph Convolutional Adversarial Network (GCAN). Our GCAN consists of three alignment

mechanisms including structure-aware alignment, domain alignment, and class centroid alignment. In the structure-aware alignment, the

Data Structure Analyzer network generates structure scores encoded with source data structure information while the CNN features are

extracted by CNNs. Then, the structure scores and CNN features are used to construct dense-connected instance graphs for the GCN. The

concatenated CNN and GCN features are input to the domain alignment and class centroid alignment modules. In the domain alignment,

a domain alignment loss is applied to match the global domain statistics. In the class centroid alignment, pseudo-labeled target features

and labeled source features are used to calculate the class centroid alignment loss to ensure that samples with same class from different

domains can be embedded closely. For more details, please refer to the text.

is able to predict labels for samples from target domain.

3.2. Graph Convolutional Adversarial Network
The architecture of our proposed Graph Convolutional

Adversarial Network is shown in Figure 2. For unsuper-

vised domain adaptation, in the presence of domain shift,

a label prediction function f is trained by minimizing the

overall objective as shown in Eq. (1):

L (XS ,YS ,XT ) = LC (XS ,YS) + λLDA (XS ,XT )

+ γLCA (XS ,YS ,XT ) + ηLT ,
(1)

The classification loss LC (XS ,YS) is shown in Eq.(2).

LC (XS ,YS) = E(x,y)∼DS
[J (f (x) , y)] (2)

The J (·, ·) is typically a cross entropy loss. The λ, γ, and

η are the balance parameters. The LDA, LCA and LT rep-

resent the domain alignment loss, the class alignment loss,

and the triplet loss for the structure-aware alignment, re-

spectively. The details are introduced as follows.

3.2.1 Domain Alignment

Here, we use the domain adversarial similarity loss as the

domain alignment loss as shown in Eq. (3). Specifically, we

employ an additional domain classifier D to tell whether the

features from the feature extractor G arise from source or

target domain while the G is trained to fool the D. This

two-player minimax game is expected to reach an equilibri-

um where the features from G are domain-invariant.

LDA (XS ,XT ) = Ex∈DS
[log (1−D (G (x)))]

+ Ex∈DT
[log (D (G (x)))]

(3)

3.2.2 Structure-aware Alignment

The domain alignment mechanism only enforces the align-

ment of global domain statistics but ignores the structure in-

formation of a mini-batch samples. In fact, previous meth-

ods [54, 86] focus on modeling the data structure informa-

tion for unsupervised domain adaptation and have gained

impressive performance, which further emphasizes the im-

portance of data structure information. In order to model the

data structure from a mini-batch source and target samples

in a deep network, we propose a structure-aware alignment

mechanism for unsupervised domain adaptation.

For the structure-aware alignment, we first use a Da-

ta Structure Analyzer (DSA) network to generate Struc-

ture Scores for a mini-batch samples. Then, the obtained

structure scores and the learnt CNN features of samples are

employed to construct densely-connected instance graphs.

The Graph Convolutional Network (GCN) is then operat-

ed on the instance graphs to learn GCN Features encoded

with the data structure information. Before introducing our

method, we first give a brief introduction of the GCN pro-

posed in [42]. The GCN aims to learn the layerwise prop-

agation operations that can be applied directly on graphs.

Given an undirected graph with m nodes, a set of edges

between nodes, and an adjacency matrix A ∈ Rm×m, we

formulate a linear transformation of graph convolution as

the multiplication of a graph signal X ∈ Rk×m (the colum-

n vector Xi ∈ Rk is the feature representation of the i-th

node) with a filter W ∈ Rk×c:

Z = D̂
− 1

2 ÂD̂
− 1

2X
T
W, (4)
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where Â = A + I, I is the identity matrix, and D̂ii =
∑

j Âij . In this formulation, the output is a c×m matrix Z.

Note that the GCN can be constructed by stacking multiple

graph convolutional layers as the form in Eq. (4), and each

layer is followed by a non-linear operation (such as ReLU).

Next, we show how to build densely-connected instance

graphs for the GCN, i.e. the graph signal X and the adja-

cency matrix A in Eq. (4). Each node in the instance graph

represents the feature of a sample, which is extracted by a

standard convolutional network, e.g., the AlexNet [43] or

VGG [68]. Thus, the graph signal X can be obtained by:

X = CNN(Xbatch), (5)

where Xbatch represents a mini-batch samples. To con-

struct the adjacency matrix Â, the same mini-batch samples

are fed into a Data Structure Analyzer (DSA) network to

generate structure scores Xsc. With these structure scores,

the adjacency matrix Â can be constructed by:

Â = XscX
T
sc, (6)

where Xsc ∈ Rw×h, w is the batch size, and h is the dimen-
sion of the structure scores. It is noticed that structure scores
from source domain can be further constrained by the triplet
loss [36] as in Eq. (7), which can guide the Data Structure
Analyzer network to generate structure scores by modeling
the structure similarity information of data samples.

LT = max

(

∥

∥Xsca −Xscp

∥

∥

2

− ‖Xsca −Xscn‖
2
+ αT , 0

)

(7)
Where Xsca is randomly sampled from source domain.

The Xscp is chosen from the same category with Xsca ,

and Xscn is from a different category. The threshold αT

is a margin. Given the graph signal X and an adjacen-

cy matrix Â, we can obtain the GCN feature according

to the Eq. (4). As source and target CNN features are

domain-discriminative in the early training, simultaneously

constructing graphs may influence the stability of network

training. Therefore, source and target graphs are individu-

ally constructed and fed into the parameters-shared GCNs

to learn representations.

3.2.3 Class Centroid Alignment

The domain invariance and structure consistency are not e-

qual to discriminability. For example, features of target cat-

egory “laptops” can be mapped near features of source cat-

egory “screens” while satisfying the condition of domain

invariance and structure consistency. Separately, it has been

shown that supervised domain adaptation (SDA) method

improves unsupervised domain adaptation (UDA) by mak-

ing use of class label information, since the SDA can en-

sure features of the same class from different domains to

be mapped nearby [59]. This key observation motivates us

to model class label information for the UDA via a class

centroid alignment as in [77].

To design the class centroid alignment module, we fol-

low the basic idea in [77]. Specifically, we firstly assign

pseudo labels by using a target classifier F and obtain a

pseudo-labeled target domain. The labeled and pseudo-

labeled samples are used together to compute the centroid

for each class. The centroid alignment objective for unsu-

pervised domain adaptation is as follows.

LCA (XS ,YS ,XT ,YT ) =

K
∑

k=1

φ
(

Ck
S , C

k
T

)

(8)

Where Ck
S and Ck

T are centroids of class k in the source and

target domain respectively, and φ (·, ·) is any proper dis-

tance measure function. We use the squard Euclidean dis-

tance φ (x, x′) = ‖x− x′‖
2

in our experiments. Through

explicitly restricting the distance between class centroids

from different domains, we can ensure that features in the

same class will be mapped nearby.

3.3. Discussion

In this section, we show the differences among our mod-

el and two relevant methods including GAKT [18] and M-

STN [77]. (1) The GAKT jointly optimizes target labels

and domain-free features in a unified shallow framework.

Meanwhile, the semi-supervised knowledge adaptation and

a label propagation on target data are coupled to benefit each

other. Different from the GAKT, our proposed model prop-

agates the class label information by a simple class align-

ment loss term which is quite more comprehensive and ef-

fective. (2) The MSTN [77] learns semantic representation-

s for unlabeled target samples by aligning labeled source

centroid and pseudo-labeled target centroid. Both the M-

STN and our model adopt the similar centroid alignment,

but our model can employ structure representations to cal-

culate class centroids, which is more accurate to measure

the class-level domain divergency. (3) Unlike the GAKT

and MSTN, our model not only utilizes the domain label

and class label information, but also models the data struc-

ture information into a deep network. Overall, three types

of vital information in unsupervised domain adaptation are

jointly fused to learn domain-invariant representations and

boost the performance of target task.

4. Experiments

In this section, we first illustrate the datasets, baseline

methods, and implementation details. Then, we show ex-

tensive experimental results and analysis.

4.1. Datasets

Office-31 [63] is a benchmark dataset for domain adapta-

tion, comprising 4,110 images in 31 classes collected from

three distinct domains: Amazon (A), which contains im-

ages downloaded from amazon.com, Webcam (W) and D-

SLR (D), which contain images taken by web camera and
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(a) AlexNet: A → W (b) RevGrad: A → W (c) GCAN: A → W (d) AlexNet: W → A (e) RevGrad: W → A (f) GCAN: W → A

Figure 3. The representation visualization over transfer tasks A → W and W → A. Here, we demonstrate the effectiveness of our

method through the learned representation visualization using the t-distributed stochastic neighbor embedding (t-SNE) [56]. Blue points

are source samples and red ones are target samples. (a) and (d) are trained without any adaptation. (b) and (e) are trained with previous

adversarial domain adaptation methods. (c) and (f) are trained by our proposed method. Compared to the non-adapted methods, the

adversarial adaptation methods successfully fuse the source and target domain features. However, the class label information is ignored

and ambiguous features are generated near to the class boundary, which is catastrophic for the classification task. Different from existing

methods, our model attempts to fuse features in the same class while separating features in different classes.

digital SLR camera with different photographical settings,

respectively. To enable the unbiased evaluation, we evaluate

all methods on all six transfer tasks A→W, D→W, W→D,

A→D, D→A and W→A.

ImageCLEF-DA1 is a benchmark dataset for ImageCLEF

2014 domain adaptation challenge, which is organized by

selecting the 12 common categories shared by the following

three public datasets. Here, each dataset is considered as a

domain: Caltrch-256 (C), ImageNet ILSVRC 2012 (I), and

Pascal VOC 2012 (P). There are 50 images in each category

and 600 images in each domain. We build 6 transfer tasks:

I→P, P→I, I→C, C→I, C→P and P→C.

Office-Home [75] contains 4 domains, each with 65 cat-

egories including daily objects. Specifically, Art (Ar) de-

notes artistic depictions for object images, Clipart (Cl)

means picture collection of clipart, Product (Pr) shows ob-

ject images with a clear background and is similar to Ama-

zon category in Office-31, and Real-World (Rw) represents

object images collected with a regular camera. We use all

domain combinations and build 12 transfer tasks.

4.2. Baseline Methods

On the Office-31 and ImageCLEF-DA datasets, we first

use a stand deep learning network trained on source da-

ta, e.g., Alexnet, to predict samples on target data, which

provides a low bound of target performance. Then, we

compare with state-of-art transfer learning methods includ-

ing DDC [74], DRCN [27], RevGrad [22], RTN [52],

JAN [53], AutoDIAL [9], and MSTN [77]. All baseline re-

sults are directly cited from these published papers. On the

Office-Home dataset, we mainly compare with seven state-

of-the-art shallow domain adaptation approaches including

GFK [29], JDA [50], CCSL [57], LSC [38], JGSA [86],

PUnDA [28], and GAKT [18]. We further compare to

several deep domain adaptation models, e.g., DAN [49],

DHN [75], and WDAN [79]. All results are directly cit-

ed from [18] except the MSTN whose results are obtained

by running the released code2 by ourselves.
1https://www.imageclef.org/2014/adaptation
2https://github.com/Mid-Push/Moving-Semantic-Transfer-Network

4.3. Implementation Details

We follow the standard evaluation protocols for unsuper-

vised domain adaptation as in [22, 49, 53]. We use all la-

beled source samples and all unlabeled target samples. We

repeat each transfer task three times and report the mean

accuracy and the standard error. The image random flip-

ping and cropping strategies are adopted as in JAN [53].

The stochastic gradient decent with 0.9 momentum is used,

and the learning rate is annealed by µp = µ0

(1+α·p)β
, where

µ0 = 0.01, α = 10, and β = 0.75 [22]. We set the learning

rate for finetuned layers to be 0.1 times of that from scratch.

We set the batch size to 128 for each domain. The domain

adversarial loss is scaled by 0.1 following [22].

Network Architecture. There are mainly four modules

in our model, i.e., CNNs, Data Structure Analyzer (DSA),

Domain Classifier, and GCNs. As for CNNs, we adopt the

AlexNet architecture in all experiments. Following the RT-

N [52] and Revgrad [22], a bottleneck layer fcb with 256

units is added after the fc7 layer in the AlexNet. For a

fair comparison with other methods, we also finetune con-

v1, conv2, conv3, conv4, conv5, fc6, fc7 layers in the pre-

trained AlexNet model. The Data Structure Analyzer (D-

SA) is implemented as the original pretrained AlexNet with

a 1000-dimensional output. It is finetuned on source da-

ta during training with the triplet loss. For the architecture

of GCNs, we only use one GCN. The dimension of node

representation is 256 and the output dimension is 150. As

for the domain classifier, we use the same architecture as

the RevGrad [22], i.e. x→1024→1024→1. The dropout s-

trategy is also used. In our implementation, all models and

methods are implemented with Tensorflow.

Hyper-parameters Tuning. There are five hyper-

parameters in our model, namely weight balance parame-

ters λ, γ, η, the threshold αT , and the moving average coef-

ficient θ. For a fair comparison with other methods, we de-

sign the parameters λ, γ, θ in our experiments as the same

values in [77]. The λ and γ are set as 2
1+exp(−k·p) , where the

k is set to 10, and the p is changing from 0 to 1 within the

training process. Here, the λ and γ are optimized by [22] to
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Table 1. Classification accuracy (%) on the Office-31 dataset.

Method A → W D → W W → D A → D D → A W → A Avg

AlexNet 61.6±0.5 95.4±0.3 99.0±0.2 63.8±0.5 51.1±0.6 49.8±0.4 70.1

DDC [74] 61.8±0.4 95.0±0.5 98.5±0.4 64.4±0.3 52.1±0.6 52.2±0.4 70.6

DRCN [27] 68.7±0.3 96.4±0.3 99.0±0.2 66.8±0.5 56.0±0.5 54.9±0.5 73.6

RevGrad [22] 73.0±0.5 96.4±0.3 99.2±0.3 72.3±0.3 53.4±0.4 51.2±0.5 74.3

RTN [52] 73.3±0.3 96.8±0.2 99.6±0.1 71.0±0.2 50.5±0.3 51.0±0.1 73.7

JAN [53] 74.9±0.3 96.6±0.2 99.5±0.2 71.8±0.2 58.3±0.3 55.0±0.4 76.0

AutoDIAL [50] 75.5 96.6 99.5 73.6 58.1 59.4 77.1

MSTN [77] 80.5±0.4 96.9±0.1 99.9±0.1 74.5±0.4 62.5±0.4 60.0±0.6 79.1

GCAN 82.7±0.1 97.1±0.1 99.8±0.1 76.4±0.5 64.9±0.1 62.6±0.3 80.6

suppress the noisy signal from the discriminator at the early

stages of training, and the noise brought by false labels. We

also set θ = 0.7, η = 0.001, αT = 1.

4.4. Results and Analysis

We next discuss experimental results on the Office-31,

ImageCLEF-DA and Office-Home datasets. Due to the lim-

ited space, more results and analysis on other datasets can

be found in the supplementary material.

Office-31. We follow the fully transductive evaluation pro-

tocol in [22]. Results are shown in Table 1. The pro-

posed model outperforms all comparison methods on most

transfer tasks. It is noteworthy that the proposed GCAN

can effectively improve four hard transfer tasks including

A → W,A → D,W → A, and D → A. On these difficult

tasks, our method promotes classification accuracies sub-

stantially. The encouraging improvement on the hard trans-

fer tasks proves the importance of modeling structure-aware

alignment, domain alignment and class centroid alignment

jointly for unsupervised domain adaptation. Furthermore,

the results demonstrate that our model can effectively ex-

ploit the information of data structure, domain label and

class label to reduce the domain discrepancy. In addition,

the results reveal several interesting observations. (1) Deep

transfer learning methods outperform standard deep learn-

ing methods, e.g., the AlexNet. It validates that domain shift

cannot be removed by deep networks. (2) The DRCN trains

an extra decoder to enforce the extracted features contain-

ing semantic information and thus outperforms the Alexnet

by about 4%. This improvement also indicates the impor-

tance to learn semantic representations. (3) Separately, the

distribution matching methods RevGrad, RTN and JAN al-

so bring significant improvement over the AlexNet trained

only on source data. Our method exploits the advantages

of the DRCN and distribution matching methods in a very

simple form. In particular, in contrast to using a decoder

to extract semantic information, our method leverages the

class label information by the class centroid alignment so

that the features in same classes from different domains are

mapped nearby. (4) Compared with the state-of-the-art M-

STN, our GCAN significantly improves the performance,

which proves the effectiveness of modeling data structure

in a deep network for domain adaptation.

For completeness, as shown in Figure 3, we also con-

Table 2. Classification accuracy (%) on ImageCLEF-DA dataset.

Method I → P P → I I → C C → I C → P P → C Avg

AlexNet 66.2±0.2 70.0±0.2 84.3±0.2 71.3±0.4 59.3±0.5 84.5±0.3 73.9

RTN [52] 67.4±0.3 81.3±0.3 89.5±0.4 78.0±0.2 62.0±0.2 89.1±0.1 77.9

RevGrad [22] 66.5±0.5 81.8±0.4 89.0±0.5 79.8±0.5 63.5±0.4 88.7±0.4 78.2

JAN [53] 67.2±0.5 82.8±0.4 91.3±0.5 80.0±0.5 63.5±0.4 91.0±0.4 79.3

MSTN [77] 67.3±0.3 82.8±0.2 91.5±0.1 81.7±0.3 65.3±0.2 91.2±0.2 80.0

GCAN 68.2±0.5 84.1±0.2 92.2±0.1 82.5±0.1 67.2±0.2 91.3±0.1 80.9

duct representation visualizations for our model and the

RevGrad over transfer tasks A → W and W → A. From

the comparison between Figure 3(c) and 3(f), we can clearly

observe two interesting experimental phenomena: (1) The

target representations in different classes are more dispersed

in our method, which illustrates that the learned target rep-

resentations are more discrimitative. (2) The source and

target representations are perfectly matched in our meth-

ods, which proves the learned representations are domain-

invariant. The above two points illustrate that our model can

achieve better performance than the RevGrad.

ImageCLEF-DA. Results are shown in Table 2. From

the results, we can draw the following conclusions: (1)

The three domains on the ImageCLEF-DA dataset are more

balanced than those on the Office-31 dataset. With these

more balanced transfer tasks, we can testify whether trans-

fer learning can be improved when domain sizes do not

change. From the results, our model can still outperfor-

m existing methods in all transfer tasks but with less im-

provement compared to the results on the Office-31 dataset,

which validates the hypothesis that the domain size may

cause domain shift [53]. (2) Our GCAN model outperforms

all baseline methods on most transfer tasks. In particular,

the GCAN substantially improves the accuracy on the hard

transfer tasks, e.g. A → W and C → W , where the source

and target domains are very different, and achieves com-

parable accuracy on the easy transfer tasks, D → W and

W → D, where two domains are similar. These results

suggest that the GCAN is able to learn more adaptive clas-

sifiers and transferable features for the safer domain adapta-

tion. (3) The GCAN models outperform previous methods

and sets a new state of the art record. Compared with the

JAN which adapts the joint distributions of network activa-

tions in all domain-specific layers to fully correct the shifts

in joint distributions across domains, our GCAN shows bet-

ter performance by a large margin, which further illustrates

the effectiveness of the three alignment mechanisms.

Office-Home. Results on the Office-Home dataset are

shown in Table 3. The proposed model outperforms all

baseline methods on all transfer tasks by a large margin and

even exceeds the recent state-of-the-art MSTN about 3%.

From the results, we have the following observations. (1)

Comparing with shallow methods and deep methods, e.g.,

PUnDA and DAN, the performance of PUnDA and DAN

is approximately at the same level, which confirms that da-

ta structure matching is vital in domain adaptation problem.

(2) It has been proved that very deep convolutional network-
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Table 3. Recognition accuracies (%) for cross-domain experiments on the Office+Home dataset.
Source Ar Ar Ar Cl Cl Cl Pr Pr Pr Rw Rw Rw

Avg
Target Cl Pr Rw Ar Pr Rw Ar Cl Rw Ar Cl Pr

GFK [29] 21.60 31.72 38.83 21.63 34.94 34.20 24.52 25.73 42.92 32.88 28.96 50.89 32.40
JDA [50] 25.34 35.98 42.94 24.52 40.19 40.90 25.96 32.72 49.25 35.10 35.35 55.35 36.97

CCSL [57] 23.51 34.12 40.02 22.54 35.69 36.04 24.84 27.09 46.36 34.61 31.75 52.89 34.12
LSC [38] 31.81 39.42 50.25 35.46 51.19 51.43 30.46 39.54 59.74 43.98 42.88 62.25 44.87

RTML [17] 27.57 36.20 46.09 29.49 44.69 44.66 28.21 36.12 52.99 38.54 40.62 57.80 40.25
JGSA [86] 28.81 37.57 48.92 31.67 46.30 46.76 28.72 35.90 54.47 40.61 40.83 59.16 41.64

PUnDA [28] 29.99 37.76 50.17 33.90 48.91 48.71 30.31 38.69 56.91 42.25 44.51 61.05 43.60
DAN [49] 30.66 42.17 54.13 32.83 47.59 49.78 29.07 34.05 56.70 43.58 38.25 62.73 43.46
DHN [75] 31.64 40.75 51.73 34.69 51.93 52.79 29.91 39.63 60.71 44.99 45.13 62.54 45.54

WDAN [79] 32.26 43.16 54.98 34.28 49.92 50.26 30.82 38.27 56.87 44.32 39.35 63.34 44.82
GAKT [18] 34.49 43.63 55.28 36.14 52.74 53.16 31.59 40.55 61.43 45.64 44.58 64.92 47.01
MSTN [77] 34.87 46.20 56.77 36.63 54.97 55.41 33.27 41.66 60.62 46.94 45.90 68.25 48.46

GCAN 36.43 47.25 61.08 37.90 58.25 57.00 35.77 42.66 64.47 50.08 49.12 72.53 51.05
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Figure 4. (a) and (c): Comparison of different models. (b) and (d):

Comparison of the Revgrad and our GCAN on the Jensen Shannon

divergence (JSD) estimation during training. Our model stabilizes

and accelerates the adversarial learning process.

s, e.g., VGGnet [68], GoogLeNet [71] and ResNet [34], is

able to not only learn better representations for general vi-

sion tasks, but also learn more transferable representations

for domain adaptation [53]. It is noticed that all methods use

the VGG as their base feature extractor, while the MSTN

and GCAN use the AlexNet for feature extraction. Surpris-

ingly, the MSTN and GCAN can still surpass other shallow

and deep methods, which can verify the great power of the

class centroid alignment. (3) Unlike the GAKT and MSTN,

our model not only utilizes domain label and class label in-

formation but also models data structure information into a

deep network. The results can illustrate the effectiveness of

the three alignment mechanisms.

4.5. Further Remarks

Convergence. As our model involves the adversari-

al adaptation module, we testify its performance on the

convergence from two different aspects. The first is the

testing accuracy as shown in Figure 4(a) and 4(c). Our

model has similar convergence speed as the RevGrad. S-

ince the adversarial module in our model and the RevGrad

are analogous to the GAN [30], we will evaluate our

model from the perspective of the GAN. It has been

proved that when the discriminator is optimal, the genera-

tor involved in the min-max game can reduce the Jenson-

Shannon Divergence (JSD). For the discriminator in the

adversarial adaptation, it is trained to maximize LD =
Ex∼DS

[log (1−D (x))] + Ex∼DT
[logD (x)], which is a

low bound of 2JS (DS , DT ) − 2 log 2 [2]. Therefore, fol-

lowing [2], we plot the quantity of 1
2JS (DS , DT ) + log 2,

which is the lower bound of the JS distance. Results are

shown in Figure 4(b) and 4(d). We can make the follow-

ing observations: (1) Different from the vanishing generator

gradient problem in traditional GANs, the manifold, where

features generated by the adversarial adaptation method-

s lie, seems to be perfectly aligned. Therefore, the gradi-

ents for the feature extractor will not vanish but lead to re-

duce the JS distance. This justifies the feasibility for the

adversarial domain adaptation methods. (2) Compared to

the RevGrad, our model is more stable and can accelerate

the minimization process for the JSD. It indicates that our

method stabilizes the notorious unstable adversarial training

through the three alignment mechanisms.

5. Conclustion

In this paper, we propose a novel method to jointly lever-

age the data structure, domain label and class label infor-

mation in a unified deep network for unsupervised domain

adaptation. To match source and target domain distribu-

tions robustly, we design three effective alignment mecha-

nisms including structure-aware alignment, domain align-

ment and class centroid alignment. These three alignmen-

t mechanisms can enhance and complement each other to

learn domain-invariant and discriminative representations

for target task. Experiments on standard domain adaptation

datasets verify the effectiveness of the proposed model.
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