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Abstract

Future prediction is a fundamental principle of intelli-

gence that helps plan actions and avoid possible dangers.

As the future is uncertain to a large extent, modeling the

uncertainty and multimodality of the future states is of great

relevance. Existing approaches are rather limited in this re-

gard and mostly yield a single hypothesis of the future or,

at the best, strongly constrained mixture components that

suffer from instabilities in training and mode collapse. In

this work, we present an approach that involves the predic-

tion of several samples of the future with a winner-takes-all

loss and iterative grouping of samples to multiple modes.

Moreover, we discuss how to evaluate predicted multimodal

distributions, including the common real scenario, where

only a single sample from the ground-truth distribution is

available for evaluation. We show on synthetic and real

data that the proposed approach triggers good estimates of

multimodal distributions and avoids mode collapse.

1. Introduction

Future prediction at its core is to estimate future states

of the environment, given its past states. The more complex

the dynamical system of the environment, the more com-

plex the prediction of its future. The future trajectory of a

ball in free fall is almost entirely described by deterministic

physical laws and can be predicted by a physical formula. If

the ball hits a wall, an additional dependency is introduced,

which conditions the ball’s trajectory on the environment,

but it would still be deterministic.

Outside such restricted physical experiments, future

states are typically non-deterministic. Regard the bicycle

traffic scenario in Figure 1. Each bicyclist has a goal where

to go, but it is not observable from the outside, thus, mak-

ing the system non-deterministic. On the other hand, the

environment restricts the bicyclists to stay on the lanes and

adhere (mostly) to certain traffic rules. Also statistical in-

formation on how bicyclists moved in the past in this round-

Figure 1: Given the past images, the past positions of an ob-

ject (red boxes), and the experience from the training data,

the approach predicts a multimodal distribution over future

states of that object (visualized by the overlaid heatmap).

The bicyclist is most likely to move straight (1), but could

also continue on the roundabout (2) or turn right (3).

about and potentially subtle cues like the orientation of the

bicycle and its speed can indicate where a bicyclist is more

likely to go. A good future prediction must be able to model

the multimodality and uncertainty of a non-deterministic

system and, at the same time, take all the available con-

ditional information into account to shape the predicted dis-

tribution away from a non-informative uniform distribution.

Existing work on future prediction is mostly restricted to

predict a single future state, which often corresponds to the

mean of all possible outcomes [42, 57, 39, 12, 10]. In the

best case, such system predicts the most likely of all pos-

sible future states, ignoring the other possibilities. As long

as the environment stays approximately deterministic, the

latter is a viable solution. However, it fails to model other

possibilities in a non-deterministic environment, preventing

the actor to consider a plan B.

Rupprecht et al. [44] addressed multimodality by pre-

dicting diverse hypotheses with the Winner-Takes-All

(WTA) loss [16], but no distribution and no uncertainty.

Conditional Variational Autoencoders (cVAE) provide a
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way to sample multiple futures [56, 4, 24], but also do not

yield complete distributions. Many works that predict mix-

ture distributions constrain the mixture components to fixed,

pre-defined actions or road lanes [26, 18]. Optimizing for

general, unconstrained mixture distributions requires spe-

cial initialization and training procedures and suffers from

mode collapse; see [44, 8, 9, 35, 15, 17]. Their findings are

consistent with our experiments.

In this paper, we present a generic deep learning ap-

proach that yields unconstrained multimodal distribution as

output and demonstrate its use for future prediction in non-

deterministic scenarios. In particular, we propose a strategy

to avoid the inconsistency problems of the Winner-Takes-

All WTA loss, which we name Evolving WTA (EWTA).

Second, we present a two-stage network architecture, where

the first stage is based on EWTA, and the second stage fits

a distribution to the samples from the first stage. The ap-

proach requires only a single forward pass and is simple

and efficient. In this paper, we apply the approach to fu-

ture prediction, but it applies to mixture density estimation

in general.

To evaluate a predicted multimodal distribution, a

ground-truth distribution is required. To this end, we intro-

duce the synthetic Car Pedestrian Interaction (CPI) dataset

and evaluate various algorithms on this dataset using the

Earth Mover’s Distance. In addition, we evaluate on real

data, the Standford Drone Dataset (SDD), where ground-

truth distributions are not available and the evaluation must

be based on a single ground-truth sample of the true distri-

bution. We show that the proposed approach outperforms

all baselines. In particular, it prevents mode collapse and

leads to more diverse and more accurate distributions than

prior work.

2. Related Work

Classical Future Prediction. Future prediction goes

back to works like the Kalman filter [23], linear regres-

sion [34], autoregressive models [53, 1, 2], frequency

domain analysis of time series [37], and Gaussian Pro-

cesses [36, 55, 40, 32]. These methods are viable base-

lines, but have problems with high-dimensional data and

non-determinism.

Future Prediction with CNNs. The possibilities of

deep learning have attracted increased interest in future pre-

diction, with examples from various applications: action

anticipation from dynamic images [42], visual path pre-

diction from single image [19], future semantic segmenta-

tion [31], future person localization [57] and future frame

prediction [28, 52, 33]. Jin et al. [22] exploited learned mo-

tion features to predict scene parsing into the future. Fan et

al. [13] and Luc et al. [30] learned feature to feature transla-

tion to forecast features into the future. To exploit the time

dependency inherent in future prediction, many works use

RNNs and LSTMs [58, 48, 50, 54, 49]. Liu et al. [29] and

Rybkin et al. [45] formulated the translation from two con-

secutive images in a video by an autoencoder to infer the

next frame. Jayaraman et al. [21] used a VAE to predict

future frames independent of time.

Due to the uncertain nature of future prediction, many

works target predicting uncertainty along with the predic-

tion. Djuric et al. [10] predicted the single future trajecto-

ries of traffic actors together with their uncertainty as the

learned variance of the predictions. Radwan et al. [39] pre-

dicted single trajectories of interacting actors along with

their uncertainty for the purpose of autonomous street cross-

ing. Ehrhardt et al. [12] predicted future locations of the

objects along with their non-parametric uncertainty maps,

which is theoretically not restricted to a single mode. How-

ever, it was used and evaluated for a single future outcome.

Despite the inherent ambiguity and multimodality in future

states, all approaches mentioned above predict only a single

future.

Multimodal predictions with CNNs. Some works pro-

posed methods to obtain multiple solutions from CNNs.

Guzman-Rivera et al. [16] introduced the Winner-Takes-

All (WTA) loss for SSVMs with multiple hypotheses as

output. This loss was applied to CNNs for image classi-

fication [25], semantic segmentation [25], image caption-

ing [25], and synthesis [6]. Firman et al. [14] used the WTA

loss in the presence of multiple ground truth samples. The

diversity in the hypotheses also motivated Ilg et al. [20] to

use the WTA loss for uncertainty estimation of optical flow.

Another option is to estimate a complete mixture distri-

bution from a network, like the Mixture Density Networks

(MDNs) by Bishop [5]. Prokudin et al. [38] used MDNs

with von Mises distributions for pose estimation. Choi et

al. [7] utilized MDNs for uncertainties in autonomous driv-

ing by using mixture components as samples alternative to

dropout [47]. However, optimizing for a general mixture

distribution comes with problems, such as numerical insta-

bility, requirement for good initializations, and collapsing

to a single mode [44, 8, 9, 35, 15, 17]. The Evolving WTA

loss and two stage approach proposed in this work addresses

these problems.

Some of the above techniques were used for future pre-

diction. Vondric et al. [51] learned the number of possible

actions of objects and humans and the possible outcomes

with an encoder-decoder architecture. Prediction of a distri-

bution of future states was approached also with conditional

variational autoencoders (cVAE). Xue et al. [56] exploited

cVAEs for estimating multiple optical flows to be used in

future frame synthesis. Lee et al. [24] built on cVAEs to

predict multiple long-term futures of interacting agents. Li

et al. [27] proposed a 3D cVAE for motion encoding. Bhat-

tacharyya et al. [4] integrated dropout-based Bayesian in-

ference into cVAE.
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The most related work to ours is by Rupprecht et al. [44],

where they proposed a relaxed version of WTA (RWTA).

They showed that minimizing the RWTA loss is able to

capture the possible futures for a car approaching a road

crossing, i.e., going straight, turning left, and turning right.

Bhattacharyya et al. [3] set up this optimization within an

LSTM network for future location prediction. Despite cap-

turing the future locations, these works do not provide the

whole distribution over the possible locations.

Few methods predict mixture distributions, but only in a

constrained setting, where the number of modes is fixed and

the modes are manually bound according to the particular

application scenario. Leung et al. [26] proposed a recurrent

MDN to predict possible driving behaviour constrained to

human driving actions on a highway. More recent work by

Hu et al. [18] used MDNs to estimate the probability of a

car being in another free space in an automated driving sce-

nario. In our work, neither the exact number of modes has

to be known a priori (only an upper bound is provided), nor

does it assume a special problem structure, such as driving

lanes in a driving scenario. Another drawback of existing

works is that no evaluation for the quality of multimodality

is presented other than the performance on the given driving

task.

3. Multimodal Future Prediction Framework

Figure 2b shows a conceptual overview of the ap-

proach. The input of the network is the past images

and object bounding boxes for the object of interest x =
(It−h, ..., It,Bt−h, ...,Bt), where h is the length of the his-

tory into the past and the bounding boxes Bi are provided as

mask images, where pixels inside the box are 1 and others

are 0. Given x, the goal is to predict a multimodal distri-

bution p(y|x) of the annotated object’s location y at a fixed

time instant t+∆t in the future.

The training data is a set of images, object masks and fu-

ture ground truth locations: D = {(x1, ŷ1), ..., (xN , ŷN )},

where N is the number of samples in the dataset. Note that

this does not provide the ground-truth conditional distribu-

tion for p(y|xi), but only a single sample ŷi from that dis-

tribution. To have multiple samples of the distribution, the

dataset must contain multiple samples with the exact same

input xi, which is very unlikely for high-dimensional in-

puts. The framework is rather supposed to generalize from

samples with different input conditions. This makes it an

interesting and challenging learning problem, which is self-

supervised by nature.

In general, p(y|x) can be modeled by a parametric or

non-parametric distribution. The non-parametric distribu-

tion can be modeled by a histogram over possible future

locations, where each bin corresponds to a pixel. A para-

metric model can be based on a mixture density, such as

a mixture of Gaussians. In Section 6, we show that para-
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(b) Our proposed two-stage approach (EWTAD-MDF). The first stage

generates hypotheses trained with EWTA loss and the second part fits

a mixture distribution by predicting soft assignments of the hypothe-

ses to mixture components.

Figure 2: Illustration of the normal MDN approach (a) and

our proposed extension (b).

metric modelling leads to superior results compared to the

non-parametric model.

3.1. MDN Baseline

A mixture density network (MDN) as in Figure 2a mod-

els the distribution as a mixture of parametric distributions:

p(y|x) =

M
∑

i=1

πiφ(y|θi) , (1)

where M is the number of mixture components, φ can be

any type of parametric distribution with parameters θi, and

πi is the respective component’s weight. In this work, we

use Laplace and Gaussian distributions, thus, in the case of

the Gaussian, θi = (µi,σ
2

i ), with µi = (µi,x, µi,y) be-

ing the mean, and σ2

i = (σ2

i,x, σ
2

i,y) the variance of each

mixture component. We treat x- and y-components as inde-

pendent, i.e. φ(x, y) = φ(x) · φ(y), because this is usually

easier to optimize. Arbitrary distributions can still be ap-

proximated by using multiple mixture components [5].

The parameters (πi,µi,σi) are all outputs of the net-

work and depend on the input data x (omitted for brevity).

When using Laplace distributions for the mixture compo-

nents, the output becomes the scale parameter bi instead

of σi. For training the network, we minimize the negative

log-likelihood (NLL) of (1) [5, 38, 26, 7, 18].

Optimizing all parameters jointly in MDNs is difficult,

becomes numerically unstable in higher dimensions, and

suffers from degenerate predictions [44, 8]. Moreover,

MDNs are usually prone to overfitting, which requires

special regularization techniques and results in mode col-

lapse [9, 15, 35, 17]. We use methodology similar to [17]

7146



and sequentially learn first the means, then the variances

and finally all parameters jointly. Even though applying

such techniques helps training MDNs, the experiments in

Section 6.4 show that MDNs still suffer from mode col-

lapse.

3.2. Sampling and Distribution Fitting Framework

Since direct optimization of MDNs is difficult, we pro-

pose to split the problem into sub-tasks: sampling and dis-

tribution fitting; see Figure 2b. The first stage implements

the sampling. Motivated by the diversity of hypotheses ob-

tained with the WTA loss [16, 25, 6, 44], we propose an

improved version of this loss and then use it to obtain these

samples, which we will keep referring to as hypotheses to

distinguish them from the samples of the training data D.

Given these hypotheses, one would typically proceed

with the EM-algorithm to fit a mixture distribution. Inspired

by [59], we rather apply a second network to perform the

distribution fitting; see Figure 2b. This yields a faster run-

time and the ability to finetune the whole network end-to-

end.

3.2.1 Sampling - EWTA

Let hk be a hypothesis predicted by our network. We inves-

tigate two versions. In the first we model each hypothesis

as a point estimate hk = µk and use the Euclidean distance

as a loss function:

lED(hk, ŷ) = ||hk − ŷ|| . (2)

In the second version, we model hk = (µk,σk) as a uni-

modal distribution and use the NLL as a loss function [20]:

lNLL(hk, ŷ) = − log(φ(ŷ|hk)) . (3)

To obtain diverse hypotheses, we apply the WTA meta-

loss [16, 25, 6, 44, 20]:

LWTA =

K
∑

k=1

wkl(hk, ŷ) , (4)

wi = δ(i = argmin
k

||µk − ŷ||) , (5)

where K is the number of estimated hypotheses and δ(·)
is the Kronecker delta, returning 1 when the condition is

true and 0 otherwise. Following [20], we always base the

winner selection on the Euclidean distance; see (5). We

denote the WTA loss with l = lED as WTAP (where P

stands for Point estimates) and the WTA loss with l = lNLL

as WTAD (where D stands for distribution estimates).

Rupprecht et al. [44] showed that given a fixed input and

multiple ambiguous ground-truth outputs, the WTA loss

ideally leads to a Voronoi tessellation of the ground truth.

Comparing to the EM-algorithm, this is equivalent to a per-

fect k-means clustering. However, in practice, k-means is

known to depend on the initialization. Moreover, in our

case, only one hypothesis is updated at a time (compara-

ble to iterative k-means), the input condition x is constantly

alternating, and we have a CNN in the loop.

This makes the training process very brittle, as illustrated

in Figure 3a. The red dots here present ground truths, which

are iteratively presented one at a time, each time putting a

loss on one of the hypotheses (black crosses) and thereby at-

tracting them. When the ground truths iterate, it can happen

that hypotheses get stuck in an equilibrium (i.e. a hypoth-

esis is attracted by multiple ground truths). In the case of

WTA, a ground truth pairs with at most one hypothesis, but

one hypothesis can pair with multiple ground truths. In the

example from Figure 3a, this leads to one hypothesis pairing

with ground truth 3 and one hypothesis pairing with both,

ground truths 1 and 2. This leads to a very bad distribution

in the end. For details see caption of Figure 3.

Hence, Rupprecht et al. [44] relaxed the argmin operator

in (5) and added a small constant ǫ to all wi (RWTA), while

still ensuring
∑

i wi = 1. The effect of the relaxation is

illustrated in Figure 3b. In comparison to WTA, this results

in more hypotheses to pair with ground truths. However,

each ground truth also pairs with at most one hypothesis

and all excess hypotheses move to the equilibrium. RWTA

therefore alleviates the convergence problem of WTA, but

still leads to hypotheses generating an artificial, incorrect

mode. The resulting distribution also reflects the ground

truth samples very badly. This effect is confirmed by our

experiments in Section 6.

We therefore propose another strategy, which we name

Evolving WTA (EWTA). In this version, we update the top-

k winners. Referring to (5), this means that k weights are

1, while M − k weights are 0. We start with k = M and

then decrease k until k = 1. Whenever k is decreased, a hy-

pothesis previously bound to a ground truth is effectively re-

leased from an equilibrium and becomes free to pair with a

ground truth. The process is illustrated in Figure 3c. EWTA

provides an alternative relaxation, which assures that no

residual forces remain. While this still does not guarantee

that in odd cases a hypothesis is left in an equilibrium, it

leads to much fewer hypotheses being unused than in WTA

and RWTA and for a much better distribution of hypothe-

ses in general. The resulting spurious modes are removed

later, after adding the second stage and a final end-to-end

finetuning of our pipeline.

3.2.2 Fitting - MDF

In the second stage of the network, we fit a mixture distribu-

tion to the estimated hypotheses (we call this stage Mixture

Density Fitting (MDF); see Figure 2b). Similar to Zong et
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(a) WTA (b) RWTA

(c) EWTA

Figure 3: Illustrative example of generating hypotheses with different variants of the WTA loss. Eight hypotheses are

generated by the sampling network (crosses) with the purpose to cover the three ground truth samples (numbered red circles).

During training, only some ground truth samples are in the minibatch at each iteration. For each, the WTA loss selects the

closest hypothesis and the gradient induces an attractive force (indicated by arrows). We also show the distributions that arise

from applying a Parzen estimator to the final set of hypotheses. (a) In the WTA variant, each ground truth sample selects

one winner, resulting in one hypothesis paired with sample 3, one hypothesis in the equilibrium between samples 1 and 2,

and the rest never being updated (inconsistent hypotheses). The resulting distribution does not well match the ground truth

samples. (b) With the relaxed WTA loss, the non-winning hypotheses are attracted slightly by all samples (thin arrows),

moving them slowly to the equilibrium. This increases the chance of single hypotheses to pair with a sample. The resulting

distribution contains some probability mass at the ground truth locations, but has a large spurious mode in the center. (c)

With the proposed evolving WTA loss, all hypotheses first match with all ground truth samples, moving all hypotheses to the

equilibrium (Top 8). Then each ground truth releases 4 hypotheses and pulls only 4 winners, leading to 2 hypotheses pairing

with samples 1 and 3 respectively, and 2 hypotheses moving to the equilibrium between samples 1/2 and 2/3, respectively

(Top 4). The process continues until each sample selects only one winner (Top 1). The resulting distribution has three modes,

reflecting the ground truth sample locations well. Only small spurious modes are introduced.

al. [59], we estimate the soft assignments of each hypothesis

to the mixture components:

γk = softmax(zk) , (6)

where k = 1..K and zk is an M -dimensional output vec-

tor for each hypothesis k. The soft-assignments yield the

mixture parameters as follows [59]:

πi =
1

K

K
∑

k=1

γk,i , (7)

µi =

∑K

k=1
γk,iµk

∑K

k=1
γk,i

, (8)

σ2

i =

∑K

k=1
γk,i

[

(µi − µk)
2 + σ2

k

]

∑K

k=1
γk,i

. (9)

In Equation 9, following the law of total variance, we add

σ2

k . This only applies to WTAD. For WTAP σ2

k = 0.

Finally, we insert the estimated parameters from equa-

tions (7), (8), (9) back into the NLL in (1). First, we

train the two stages of the network sequentially, i.e., we

train the fitting network after the sampling network. How-

ever, since EWTA does not ensure hypotheses that follow a

well-defined distribution in general, we finally remove the

EWTA loss and finetune the full network end-to-end with

the NLL loss.

4. Car Pedestrian Interaction Dataset

Detailed evaluation of the quality of predicted distribu-

tions requires a test set with the ground truth distribution.

Such distribution is typically not available for datasets. Es-

pecially for real-world datasets, the true underlying distri-

bution is not available, but only one sample from that dis-

tribution. Since there exists no future prediction dataset

with probabilistic multimodal ground truth, we simulated

a dataset based on a static environment and moving objects

(a car and a pedestrian) that interact with each other; see

Figure 4. The objects move according to defined policies

that ensure realistic behaviour and multimodality. Since the

policies are known, we can evaluate on the ground-truth dis-

tributions p(y|x) of this dataset. For details we refer to the

supplementary material.
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5. Evaluation Metrics

Oracle Error. For assessing the diversity of the pre-

dicted hypotheses, we report the commonly used Oracle

Error. It is computed by selecting the hypothesis or mode

closest to the ground truth. This metric uses the ground

truth to select the best from a set of outputs, thus it prefers

methods that produce many diverse outputs. Unreasonable

outputs are not penalized.

NLL. The Negative Log-Likelihood (NLL) measures the

fit of a ground-truth sample to the predicted distribution and

allows evaluation on real data, where only a single sam-

ple from the ground truth distribution is available. Missing

modes and inconsistent modes are both penalized by NLL

when being averaged over the whole dataset. In case of syn-

thetic data with the full ground-truth distribution, we sample

from this distribution and average the NLL over all samples.

EMD. If the full ground-truth distribution is avail-

able for evaluation, we report the Earth Mover’s distance

(EMD) [43], also known as Wasserstein metric. As a met-

ric between distributions, it penalizes accurately all differ-

ences between the predicted and the ground-truth distribu-

tion. One can interpret it as the energy required to move

the probability mass of one distribution such that it matches

the other distribution, i.e. it considers both, the size of the

modes and the distance they must be shifted. The compu-

tational complexity of EMD is O(N3logN) for an N -bin

histogram and in our case every pixel is a bin. Thus, we

use the wavelet approximation WEMD [46], which has a

complexity of O(N).
SEMD. To make the degree of multimodality of a mix-

ture distribution explicit, we use the EMD to measure

the distance between all secondary modes and the pri-

mary (MAP) mode, i.e., the EMD to convert a multimodal

into a unimodal distribution. We name this metric Self-

EMD (SEMD). Large SEMD indicates strong multimodal-

ity, while small SEMD indicates unimodality. SEMD is

only sensible as a secondary metric besides NLL.

6. Experiments

6.1. Training Details

Our sampling stage is the encoder of the FlowNetS ar-

chitecture by Dosovitskiy et al. [11] followed by two addi-

tional convolutional layers. The fitting stage is composed

of two fully connected layers (details in the Supplemental

Material). We choose the first stage to produce K = 40
hypotheses and the mixture components to be M = 4. For

the sampling network, we use EWTA and follow a sequen-

tial training procedure, i.e., we learn σis after we learn

µis. We train the sampling and the fitting networks one-by-

one. Finally, we remove the EWTA loss and finetune every-

thing end-to-end. The single MDN networks are initialized

with the same training procedure as mentioned above before

switching to actual training with the NLL loss for a mixture

distribution.

Since the CPI dataset was generated using Gaussian dis-

tributions, we use a Gaussian mixture model when training

models for the CPI dataset. For the SDD dataset, we choose

the Laplace mixture over a Gaussian mixture, because min-

imizing its negative log-likelihood corresponds to minimiz-

ing the L1 distance [20] and is more robust to outliers.

6.2. Datasets

CPI Dataset. The training part consists of 20k random

samples, while for testing, we randomly pick 54 samples

from the policy. For the time offset into the future we

choose ∆t = 20 frames. We evaluated our method and its

baselines on this dataset first, since it allows for quantitative

evaluation of distributions.

SDD. We use the Stanford Drone Dataset (SDD) [41] to

validate our methods on real world data. SDD is composed

of drone images taken at the campus of the Stanford Univer-

sity to investigate the rules people follow while navigating

and interacting. It includes different classes of traffic ac-

tors. We used a split of 50/10 videos for training/testing.

For this dataset we set ∆t = 5 sec. For more details see

Supplemental Material.

6.3. Hypotheses prediction

In our two-staged framework, the fitting stage depends

on the quality of the hypotheses. To this end, we start with

experiments to compare the techniques for hypotheses gen-

eration (sampling): WTA, RWTA with ǫ=0.05 and the pro-

posed EWTA. Alternatively one could use dropout [47] to

generate multiple hypotheses. Hence, we also compare to

this baseline.

The predicted hypotheses can be seen as equal point

probability masses and their density leads to a distribution.

To assess how well the hypotheses reflect the ground-truth

distribution of the CPI dataset, we treat the hypotheses as

a uniform mixture of Dirac distributions and compute the

EMD between this Dirac mixture and the ground truth. The

results in Table 1 show that the proposed EWTA clearly out-

performs other variants in terms of EMD, showing that the

set of hypotheses from EWTA is better distributed than the

sets from RWTA and WTA. WTA and RWTA are better in

terms of the oracle error, i.e., the best hypothesis from the

set fits a little better than the best hypothesis in EWTA.

Clearly, WTA is very well-suited to produce diverse hy-

potheses, from which one of them will be very good, but

it fails on producing hypotheses that represent the samples

of the true distribution. This problem is fixed with the pro-

posed Evolving WTA.

The effect is visualized by the example in Figure 4. The

figure also shows that dropout fails to produce diverse hy-

potheses, which results in a very bad oracle error. Its EMD
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GT Dropout WTA Relaxed WTA Evolving WTA

Figure 4: Hypotheses generation on the CPI dataset. The dataset has always the same environment of one crossing area

(red rectangle) and two objects navigating and interacting (pedestrian and car). In this case, a pedestrian (black rectangle) is

heading towards the crossing area (indicated by a blue arrow) and a car (pink rectangle) is entering the crossing area. Left

shows the ground-truth distribution for the future locations (after 20 frames) of the pedestrian (black dots) and the car (pink

dots). According to the policy to be learned, the pedestrian should wait at the corner until the car passes and the car has three

options to exit the crossing. Dropout predicts very similar hypotheses (mode-collapse), while all variants of WTA ensure

diversity. The set of hypotheses generated by our evolving WTA additionally approximates the ground-truth distribution.

Oracle Error EMD

Dropout 41.80 3.25
WTA [44] 6.96 3.94
Relaxed WTA [44] 7.94 2.82

Evolving WTA (ours) 9.84 1.89

Table 1: Comparison between approaches for hypotheses

prediction on the CPI dataset. The overall hypotheses dis-

tribution of EWTA matches the ground truth distribution

much better, as measured by the Earth Mover’s distance

(EMD). The high oracle error for Dropout indicates lack-

ing diversity among the hypotheses.

is better than WTA, but much worse than with the proposed

EWTA.

Figure 4 shows that only EWTA and dropout learned the

interaction between the car and the pedestrian. WTA pro-

vides only the general options for the car (north, east, south

and west), and both, WTA and RWTA provide only the gen-

eral options of the pedestrian to be somewhere on the cross-

ing, regardless of the car. EWTA and dropout learned that

the pedestrian should stop, given that the car is entering the

crossing. However, dropout fails to estimate the future of

the car.

6.4. Mixture Density Estimation

We evaluated the distribution prediction with the full net-

work and compare it to several prediction baselines includ-

ing the standard mixture density network (MDN). Details

about the baseline implementations can be found in the sup-

plemental material.

Table 2 shows the results for the synthetic CPI dataset,

where the full ground-truth distribution is available for eval-

uation. The results confirm the importance of multimodal

predictions. While standard MDNs perform better than

single-mode prediction, they frequently suffer from mode

Method NLL EMD

Kalman-Filter 25.29 7.03
Single Point − 3.99
Unimodal Distribution 26.13 2.43

Non-Parametric 9.73 2.36

MDN 9.20 1.83
EWTAD-MDF (ours) 8.33 1.57

Table 2: Future prediction on the CPI dataset. The re-

sults show the importance of multimodality in the predic-

tion model. Classical mixture density networks suffer from

frequent mode collapse, which render them inferior to the

proposed approach based on EWTA.

collapse, even though they were initialized sequentially

with the proposed EWTAP and then EWTAD. The proposed

two-stage network avoids this mode collapse and clearly

outperforms all other methods. An ablation study between

EWTAD-MDF and EWTAP-MDF is given in the supple-

mental.

Table 3 shows the same comparison on the real-world

Stanford Drone dataset. Only a single sample from the

ground-truth distribution is available here. Thus, we can

only compute the NLL and not the EMD. The results con-

firm the conclusions we obtained for the synthetic dataset:

Multimodality is important and the proposed two-stage net-

work outperforms standard MDN. SEMD serves as a mea-

sure of multimodality and shows that the proposed approach

avoids the problem of mode collapse inherent in MDNs

(note that SEMD is only applicable to parametric multi-

modal distributions). This can be observed also in the ex-

amples shown in Figure 5.

In the supplemental material we show more qualitative

examples including failure cases and provide ablation stud-

ies on some of the design choices. Also a video is provided
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Non-Parametric MDN EWTAD-MDF

Figure 5: Qualitative examples of different multimodal probabilistic methods on SDD. Given three past locations of the target

object (red boxes), the task is to predict possible future locations. A heatmap overlay is used to show the predicted distribution

over future locations, while the ground truth location is indicated with a magenta box. Both variants of the proposed method

capture the multimodality better, while MDN and non-parametric methods reveal overfitting and mode-collapse.

Method NLL SEMD

Kalman-Filter 13.17 -

Unimodal Distribution 9.88 -

Non-Parametric 9.35 -

MDN 9.71 2.36
EWTAD-MDF (ours) 9.33 4.35

Table 3: Future prediction on the Stanford Drone dataset

(K = 20, M = 4). The two-stage approach yields the best

distributions (NLL) and suffers less from mode-collapse

than MDN (SEMD).

to show how predictions evolve over time.

7. Conclusion

In this work we contributed to future prediction by ad-

dressing the estimation of multimodal distributions. Com-

bining the Winner-Takes-All (WTA) loss for sampling hy-

potheses and the general principle of mixture density net-

works (MDNs), we proposed a two-stage sampling and fit-

ting framework that avoids the common mode collapse of

MDNs. The major component of this framework is the new

way of learning the generation of hypotheses with an evolv-

ing strategy. The experiments show that the overall frame-

work can learn interactions between objects and yields very

reasonable estimates of multiple possible future states. Al-

though future prediction is a very interesting task, multi-

modal distribution prediction with deep networks is not re-

stricted to this task. We assume that this work will have

impact also in other domains, where distribution estimation

plays a role.
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