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Abstract

The ability to categorize is a cornerstone of visual intel-

ligence, and a key functionality for artificial, autonomous

visual machines. This problem will never be solved without

algorithms able to adapt and generalize across visual do-

mains. Within the context of domain adaptation and gener-

alization, this paper focuses on the predictive domain adap-

tation scenario, namely the case where no target data are

available and the system has to learn to generalize from

annotated source images plus unlabeled samples with asso-

ciated metadata from auxiliary domains. Our contribution

is the first deep architecture that tackles predictive domain

adaptation and is able to leverage information brought

by the auxiliary domains through a graph. Moreover, we

present a simple yet effective strategy that allows us to take

advantage of the incoming target data at test time, in a con-

tinuous domain adaptation scenario. Experiments on three

benchmark databases support the value of our approach.

1. Introduction

Over the past years, deep learning has enabled rapid

progress in many visual recognition tasks, even surpass-

ing human performance [30]. While deep networks exhibit

excellent generalization capabilities, previous studies [8]

demonstrated that their performance drops when test data

significantly differ from training samples. In other words

deep models suffer from the domain shift problem, i.e. clas-

sifiers trained on source data do not perform well when

tested on samples in the target domain. In practice, domain

shift arises in many computer vision tasks, as many factors

(e.g. lighting changes, different view-points, etc.) determine

appearance variations in visual data.

To cope with this, several efforts focused on develop-

ing Domain Adaptation (DA) techniques [33], attempting

to reduce the mismatch between source and target data dis-

tributions to learn accurate prediction models for the tar-

get domain. In the challenging case of unsupervised DA,

only source data are labelled while no annotation is pro-
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Figure 1. Predictive Domain Adaptation. During training we have

access to a labeled source domain (yellow block) and a set of un-

labeled auxiliary domains (blue blocks), all with associated meta-

data. At test time, given the metadata corresponding to the un-

known target domain, we predict the parameters associated to

the target model. This predicted model is further refined during

test, while continuously receiving data of the target domain. Best

viewed in color.

vided for target samples. Although it might be reasonable

for some applications to have target samples available dur-

ing training, it is hard to imagine that we can collect data

for every possible target. More realistically, we aim for pre-

diction models which can generalize to new, previously un-

seen target domains. Following this idea, previous studies

proposed the Predictive Domain Adaptation (PDA) scenario

[36], where neither the data, nor the labels from the target

are available during training. Only annotated source sam-

ples are available, together with additional information from

a set of auxiliary domains, in form of unlabeled samples and

associated metadata (e.g. corresponding to the image times-

tamp or to camera pose, etc).

In this paper we introduce a deep architecture for PDA.

Following recent advances in DA [3, 20, 23], we propose

to learn a set of domain-specific models by considering

a common backbone network with domain-specific align-

ment layers embedded into it. We also propose to ex-

ploit metadata and auxiliary samples by building a graph

which explicitly describes the dependencies among do-
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mains. Within the graph, nodes represent domains, while

edges encode relations between domains, imposed by their

metadata. Thanks to this construction, when metadata for

the target domain are available at test time, the domain-

specific model can be recovered. We further exploit tar-

get data directly at test time by devising an approach for

continuously updating the deep network parameters once

target samples are made available (Figure 1). We demon-

strate the effectiveness of our method with experiments on

three datasets: the Comprehensive Cars (CompCars) [35],

the Century of Portraits [12] and the CarEvolution datasets

[28], showing that our method outperforms state of the art

PDA approaches. Finally, we show that the proposed ap-

proach for continuous updating of the network parameters

can be used for continuous domain adaptation, producing

more accurate predictions than previous methods [14, 19].

Contributions. To summarize, the contributions of this

work are: (i) we propose the first deep architecture for ad-

dressing the problem of PDA; (ii) we present a strategy for

injecting metadata information within a deep network archi-

tecture by encoding the relation between different domains

through a graph; (iii) we propose a simple strategy for refin-

ing the predicted target model which exploits the incoming

stream of target data directly at test time.

2. Related Works

Unsupervised Deep Domain Adaptation. Previous

works on deep DA learn domain invariant representations

by exploiting different architectures, such as Convolutional

Neural Networks [21, 32, 10, 3, 20, 9, 1], deep autoencoders

[37] or GANs [31, 15]. Some methods describe source and

target features distributions considering their first and sec-

ond order statistics and minimize their distance either defin-

ing an appropriate loss function [21] or deriving some do-

main alignment layers [20, 3, 9]. Other approaches rely on

adversarial loss functions [32, 11] to learn domain agnos-

tic representations. GAN-based techniques [2, 15, 31] for

unsupervised DA focus directly on images and aim at gen-

erating either target-like source images or source-like target

images. Recent works also showed that considering both

the transformation directions is highly beneficial [31].

In many applications multiple source domains may be

available. This fact has motivated the study of multi-source

DA algorithms [34, 23]. In [34] an adversarial learning

framework for multi-source DA is proposed, inspired by

[10]. A similar adversarial strategy is also exploited in [38].

In [23] a deep architecture is proposed to discover multiple

latent source domains in order to improve the classification

accuracy on target data.

Our work performs domain adaptation by embedding

into a deep network domain-specific normalization layers

as in [20, 3, 9, 29]. However, the design of our layers is dif-

ferent as they are required to guarantee a continuous update

of parameters and to exploit information from the domain

graph. Our approach considers information from multiple

domains at training time. However, instead of having la-

beled data from all source domains, we do not have annota-

tions for samples of auxiliary data.

Finally, our work is linked to graph-based domain adap-

tation methods [6, 5]. Differently from these works how-

ever, in our approach a node does not represent a single

sample but a whole domain and edges do not link seman-

tically related samples but domains with related metadata.

Domain Adaptation without Target Data. In some appli-

cations, the assumption that target data are available during

training does not hold. This calls for DA methods able to

cope with the domain shift by exploiting either the stream

of incoming target samples, or side information describing

possible future target domains.

The first scenario is typically referred to as continuous

[14] or online DA [22]. To address this problem, in [14]

a manifold-based DA technique is employed to model an

evolving target data distribution. In [19] Li et al. propose

to sequentially update a low-rank exemplar SVM classifier

as data of the target domain becomes available. In [17],

the authors propose to extrapolate the target data dynamics

within a reproducing kernel Hilbert space.

The second scenario corresponds to the problem of pre-

dictive DA tackled in this paper. PDA is introduced in [36],

where a multivariate regression approach is described for

learning a mapping between domain metadata and points

in a Grassmanian manifold. Given this mapping and the

metadata for the target domain, two different strategies are

proposed to infer the target classifier.

Other closely related tasks are the problems of zero shot

domain adaptation and domain generalization. In zero-shot

domain adaptation (ZDDA) [27] the task is to learn a predic-

tion model in the target domain under the assumption that

task-relevant source-domain data and task-irrelevant dual-

domain paired data are available. We highlight that the PDA

problem is related, but different, from ZDDA. ZDDA as-

sumes that the domain shift is known during training from

the presence of data of a different task but with the same

visual appearance of source and target domains, while in

PDA metadata of auxiliary domains is the only available in-

formation, and the target metadata is received only at test

time. For this reason, ZDDA is not applicable to a PDA

scenario, and it cannot predict the classification model for a

target domain given only the metadata.

Domain generalization methods [25, 18, 7, 24] attempt to

learn domain-agnostic classification models by exploiting

labeled source samples from multiple domains but without

having access to target data. Similarly to Predictive DA in

domain generalization, multiple datasets are available dur-

ing training. However, in PDA data from auxiliary source

domains are not labeled.
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3. Method

3.1. Problem Formulation

Our goal is to produce a model that is able to accomplish

a task in a target domain T for which no data are available

during training, neither labeled nor unlabeled. The only in-

formation we can exploit is a characterization of the content

of the target domain in the form of metadata mT plus a set

of known domainsK, each of them having associated meta-

data. All domains in K carry information about the task we

want to accomplish in the target domain. In particular, since

in this work we focus on classification tasks, we assume that

images from the domains in K and T can be classified with

semantic labels from a same set Y . As opposed to standard

DA scenarios, the target domain T does not necessarily be-

long to the set of known domains K. Also, we assume that

K can be partitioned into a labeled source domain S and N
unlabeled auxiliary domains A = {A1, · · · , AN}.

In the specific, this paper focuses on predictive DA

(PDA) problems aimed at regressing the target model pa-

rameters using data from the domains in K. We achieve

this objective by (i) interconnecting each domain inK using

the given domain metadata; (ii) building domain-specific

models from the data available in each domain in K; (iii)

exploiting the connection between the target domain and

the domains in K, inferred from the respective metadata,

to regress the model for T .

A schematic representation of the method is shown in

Figure 2. We propose to use a graph because of its seamless

ability to encode relationships within a set of elements (do-

mains in our case). Moreover, it can be easily manipulated

to include novel elements (such as the target domain T ).

3.2. AdaGraph: Graphbased Predictive DA

We model the dependencies between the various do-

mains by instantiating a graph composed of nodes and

edges. Each node represents a different domain and each

edge measures the relatedness of two domains. Each edge

of the graph is weighted, and the strength of the connec-

tion is computed as a function of the domain-specific meta-

data. At the same time, in order to extract one model for

each available domain, we employ recent advances in do-

main adaptation involving the use of domain-specific batch-

normalization layers [20, 4]. With the domain-specific

models and the graph we are able to predict the parameters

for a novel domain that lacks data by simply (i) instantiating

a new node in the graph and (ii) propagating the parameters

from nearby nodes, exploiting the graph connections.

Connecting domains through a graph. Let us denote the

space of domains as D and the space of metadata asM. As

stated in Section 3.1, in the PDA scenario, we have a set

of known domains K = {k1, · · · , kn} ⊂ D and a bijective

mapping φ : D 7→ M relating domains and metadata. For

simplicity, we regard as unknown some metadata m that is

not associated to domains in K, i.e. such that φ−1(m) /∈ K.

In this work we structure the domains as a graph G =
(V, E), where V ⊂ D represents the set of vertices corre-

sponding to domains and E ⊆ V × V the set of edges, i.e.

relations between domains. Initially the graph contains only

the known domains so V = K. In addition, we define an

edge weight ω : E → R that measures the relation strength

between two domains (v1, v2) ∈ E by computing a distance

between the respective metadata, i.e.

ω(v1, v2) = e−d(φ(v1),φ(v2)) , (1)

where d :M2 → R is a distance function onM.

Let Θ be the space of possible model parameters and

assume we have properly exploited the domain data from

each domain in k ∈ K to learn a set of domain-specific

models (we will detail this procedure in the next subsec-

tion). We can then define a mapping ψ : K 7→ Θ, relating

each domain to its set of domain-specific parameters. Given

some metadata m ∈ M we can recover an associated set

of parameters via the mapping ψ ◦ φ−1(m) provided that

φ−1(m) ∈ K. In order to deal with metadata that is un-

known, we introduce the concept of virtual node. Basically,

a virtual node ṽ ∈ V is a domain for which no data are

available but we have metadata m̃ associated to it, namely

m̃ = φ(ṽ). For simplicity, let us directly consider the target

domain T . We have T ∈ D and we know φ(T ) = mT .

Since no data of T are available, we have no parameters

that can be directly assigned to the domain. However, we

can estimate parameters for T by using the domain graph

G. Indeed, we can relate T to other domains v ∈ V using

ω(T , v) defined in (1) by opportunely extending E with new

edges (T , v) for all or some v ∈ V (e.g. we could connect

all v that satisfy ω(T , v) > τ for some τ ). The extended

graph G′ = (V ∪ {T }, E ′) with the additional node T and

the new edge set E ′ can then be exploited to estimate pa-

rameters for T by propagating the model parameters from

nearby domains. Formally we regress the parameters θ̂T
through

θ̂T = ψ(T ) =

∑

(T ,v)∈E′ ω(T , v)ψ(v)
∑

(T ,v)∈E′ ω(T , v)
, (2)

where we normalize the contribution of each edge by the

sum of the weights of the edges connecting node T . With

this formula we are able to provide model parameters for the

target domain T and, in general, for any unknown domain

by just exploiting the corresponding metadata.

We want to highlight that this strategy simply requires

extending the graph with a virtual node ṽ and computing the

relative edges. While the relations of ṽ with other domains

can be inferred from given metadata, as in (1), there could

be cases in which no metadata are available for the target

domain. In such situations, we can still exploit the incom-

ing target image x to build a probability distribution over
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nodes in V , in order to assign the new data point to a mix-

ture of known domains. To this end, let use define p(v|x)
the conditional probability of an image x ∈ X , where X
is the image space, to be associated with a domain v ∈ V .

From this probability distribution, we can infer the parame-

ters of a classification model for x through:

θ̂x =
∑

v∈V

p(v|x) · ψ(v) (3)

where ψ(v) is well-defined for each node linked to a known

domain, while it must be estimated with (2) for each virtual

domain ṽ ∈ V for which p(ṽ|x) > 0.

In practice, the probability p(v|x) is constructed from a

metadata classifier fm, trained on the available data, that

provides a probability distribution overM given x, which

can be turned into a probability over D through the inverse

mapping φ−1.

Extracting node specific models. We have described how

to regress model parameters for an unknown domain by

exploiting the domain graph. Now, we focus on the ac-

tual problem of training domain-specific models using data

available from the known domains K. Since K entails a la-

beled source domain S and a set of auxiliary domains A,

we cannot simply train independent models with data from

each available domain due to the lack of supervision on do-

mains inA for the target classification task. For this reason,

we need to estimate the model parameters for the unlabeled

domains A by exploiting DA techniques.

Recent works [20, 3, 4] have shown the effectiveness of

applying domain-specific batch-normalization (DABN) lay-

ers to address domain adaptation tasks. In particular, these

works rewrite each batch-normalization layer [16] (BN) of

the network in order to take into account domain-specific

statistics. Given a domain k, a DABN layer differs from

standard BN by including domain-specific information:

DABN(x, k) = γ ·
x− µk
√

σ2
k + ǫ

+ β , (4)

where the mean and variance statistics {µk, σk} are esti-

mated from x conditioned on domain k, γ and β are learn-

able scale and bias parameters, respectively, and ǫ is a small

constant used to avoid numerical instabilities. Notice that

we have dropped the dependencies on spatial location and

channel dimension for simplicity. The effectiveness of this

simple DA approach is due to the fact that features of source

and target domains are forced to be aligned to the same ref-

erence distribution, and this allows to implicitly address the

domain shift problem.

In this work we exploit the same ideas to provide each

node in the graph with its own BN statistics. At the same

time, we depart from [20, 4] since we do not keep scale and

bias parameters shared across the domains, but we include

also them within the set of domain-specific parameters.

In this scenario, the set of parameters for a domain k
ψ(k) = θk is composed of different parts. Formally for

each domain we have ψ(k) = {θa, θsk}, where θa holds the

domain-agnostic components and θsk the domain-specific

ones. In our case θa comprises parameters from standard

layers (i.e. the convolutional and fully connected layers of

the architecture), while θsk comprises parameters and statis-

tics of the domain-specific BN layers.

We start by using the labeled source domain S to esti-

mate θa and initialize θsS . In particular, we obtain θS by

minimizing the standard cross-entropy loss:

L(θS) = −
1

|S|

∑

(x,y)∈S

log(fθS (y;x)) , (5)

where fθS is the classification model relative to the source

domain, with parameters θS .

To extract the domain-specific parameters θsk for each

k ∈ K, we employ 2 steps: the first is a selective forward

pass for estimating the domain-specific statistics while the

second is the application of a loss to further refine the scale

and bias parameters. Formally, we replace each BN layer in

the network with a GraphBN counterpart (GBN), where the

forward pass is defined as follows:

GBN(x, v) = γv ·
x− µv
√

σ2
v + ǫ

+ βv . (6)

Basically in a GBN layer, the set of BN parameters and

statistics to apply is conditioned on the node/domain to

which x belongs. During training, as for standard BN, we

update the statistics by leveraging their estimate obtained

from the current batch B:

µ̂v =
1

|Bv|

∑

x∈Bv

x and σ̂2
v =

1

|Bv|

∑

x∈Bv

(x− µv)
2 , (7)

where Bv is the set of elements in the batch belonging to

domain v. As for the scale and bias parameters, we opti-

mize them by means of a loss on the model output. For

the auxiliary domains, since the data are unlabeled, we use

an entropy loss, while a cross-entropy loss is used for the

source domain:

L(Θs) = −
1

|S|

∑

(x,y)∈S

log(fθS (y;x))

−λ ·
∑

Ai∈A

1

|Ai|

∑

x∈Ai

∑

y∈Y

fθAi
(y;x) log

(

fθAi
(y;x)

)

,

(8)

where Θs = {θsk | k ∈ K} represents the whole set of

domain-specific parameters and λ is the trade off between

the cross-entropy and the entropy loss.

While (8) allows to optimize the domain-specific scale

and bias parameters, it does not take into account the pres-

ence of the relationship between the domains, as imposed

6571



Conv
G
B
N

FCConv
G
B
N

Conv
G
B
N

Conv
G
B
N

AdaGraph

mz

m𝓣

Known 
Metadata 

(Training)

Unknown
Metadata 

(Test) φ-1(ṽ)

φ-1(z)

Domain Specific Params

Conv
G
B
N

Figure 2. AdaGraph framework (Best viewed in color). Each BN layer is replaced by its GBN counterpart. The parameters used in a GBN

layer are computed from a given metadata and the graph. Each domain in the graph (circles) contains its specific parameters (rectangular

blocks). During the training phase (blue part), a metadata (i.e. mz , blue block) is mapped to its domain (z). While the statistics of GBN are

determined only by the one of z (θz), scale and bias are computed considering also the graph edges. During test, we receive the metadata

for the target domain (mT , red block) to which no node is linked. Thus we initialize T and we compute its parameters and statistics

exploiting the connection with the other nodes in the graph (θT ).

by the graph. A way to include the graph within the opti-

mization procedure is to modify (6) as follows:

GBN(x, v,G) = γGv ·
x− µv
√

σ2
v + ǫ

+ βG
v , (9)

where we have

νGv =

∑

k∈K ω(v, k) · νk
∑

k∈K ω(v, k)
, (10)

for ν ∈ {β, γ}. Basically, we use scale and bias parameters

during the forward pass which are influenced by the graph

edges, as described in (10).

Taking into account the presence of G during the forward

pass is beneficial for mainly two reasons. First, it allows to

keep a consistency between how those parameters are com-

puted at test time and how they are used at training time.

Second, it allows to regularize the optimization of γv and

βv , which may be beneficial in cases where a domain con-

tains few data. While the same procedure may be applied

also for µv, σv , in our current design we avoid mixing them

during training. This choice is related to the fact that each

image belongs to a single domain and keeping the statistics

separate allows to estimate them more precisely.

At test time, we initialize the domain-specific statistics

and parameters of T given metadata mT using (2), com-

puting the forward pass of each GBN through (9). If no

metadata are available, we compute the statistics and pa-

rameters through (3), performing the forward pass through

(6). In Figure 2, we sketch the behaviour of our method

given mT both at training and test time.

3.3. Model Refinement through Joint Prediction
and Adaptation

The approach described in the previous section allows

to instantiate GBN parameters and statistics for a novel do-

main T given the target metadata mT . However, without

any sample of T , we have no way to assess how well the es-

timated statistics and parameters approximate the real ones

of the target domain. This implies that we do not have the

possibility to correct the parameters from a wrong initial es-

timates, a problem which may occur e.g. if we have noisy

metadata. A possible strategy to solve this issue is to exploit

the images we receive at test time to refine the GBN layers.

To this extent, we propose a simple strategy for performing

continuous domain adaptation [14] within AdaGraph.

Formally, let us define as XT = {x1, · · · , xT } the set

of images of T that we receive at test time. Without loss

of generality, we assume that the images of XT are pro-

cessed sequentially, one by one. Given the sequence XT ,

our goal is to refine the statistics {µT , σT } and the pa-

rameters {γT , βT } of each GBN layer as new data arrives.

Following recent works [22, 20], we continuously adapt a

model to the target domain by feeding as input to the net-

work batches of target images, updating the statistics as in

standard BN. In order to achieve this, we store target sam-

ples in a buffer M . The buffer M has a fixed size and stores

the samples one by one. Exploiting the buffer, we update

the target statistics as follows:

µT ←− (1− α) · µT + α · µM

σ2
T ←− (1− α) · σ2

T + α ·
|M |

|M | − 1
· σ2

M ,
(11)

where {µM , σM} are computed through (7), replacing Bv
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with M :

µM =
1

|M |

∑

x∈M

x and σ2
M =

1

|M |

∑

x∈M

(x−µM )2. (12)

While this allows to update the statistics, using (11) does

not produce any refinement on {γT , βT }. To this extent, we

can easily employ the entropy term in (8):

L(θT ) = −
1

|M |

∑

x∈M

∑

y∈Y

fθT (y;x) log
(

fθT (y;x)
)

. (13)

To summarize, with (11) and (13) we define a simple

refinement procedure for AdaGraph which allows to re-

cover from bad initialization of the predicted parameters

and statistics. The update of statistics and parameters is

performed together, each time the buffer is full. To avoid

producing a bias during the refinement, we clear the buffer

after each update step.

4. Experiments

4.1. Experimental setting

Datasets. We analyze the performance of our approach on

three datasets: the Comprehensive Cars (CompCars) [35],

the Century of Portraits [12] and the CarEvolution [28].

The Comprehensive Cars (CompCars) [35] dataset is

a large-scale database composed of 136,726 images span-

ning a time range between 2004 and 2015. As in [36], we

use a subset of 24,151 images with 4 types of cars (MPV,

SUV, sedan and hatchback) produced between 2009

and 2014 and taken under 5 different view points (front,

front-side, side, rear, rear-side). Considering each view

point and each manufacturing year as a separate domain

we have a total of 30 domains. As in [36] we use a PDA

setting where 1 domain is considered as source, 1 as target

and the remaining 28 as auxiliary sets, for a total of 870 ex-

periments. In this scenario, the metadata are represented as

vectors of two elements, one corresponding to the year and

the other to the view point, encoding the latter as in [36].

Century of Portraits (Portraits) [12] is a large scale col-

lection of images taken from American high school year-

books. The portraits are taken over 108 years (1905-2013)

across 26 states. We employ this dataset in a gender clas-

sification task, in two different settings. In the first setting

we test our PDA model in a leave-one-out scenario, with a

similar protocol to the tests on the CompCars dataset. In

particular, to define domains we consider spatio-temporal

information and we cluster images according to decades

and to spatial regions (we use 6 USA regions, as defined

in [12]). Filtering out the sets where there are less than 150

images, we obtain 40 domains, corresponding to 8 decades

(from 1934 on) and 5 regions (New England, Mid Atlantic,

Mid West, Pacific, Southern). We follow the same experi-

mental protocol of the CompCars experiments, i.e. we use

one domain as source, one as target and the remaining 38 as

auxiliaries. We encode the domain metadata as a vector of

3 elements, denoting the decade, the latitude (0 or 1, indi-

cating north/south) and the east-west location (from 0 to 3),

respectively. Additional details can be found in the supple-

mentary material. In a second scenario, we use this dataset

for assessing the performance of our continuous refinement

strategy. In this case we employ all the portraits before 1950

as source samples and those after 1950 as target data.

CarEvolution [35] is composed of car images collected

between 1972 and 2013. It contains 1008 images of cars

produced by three different manufacturers with two car

models each, following the evolution of the production of

those models during the years. We choose this dataset in

order to assess the effectiveness of our continuous domain

adaptation strategy. A similar evaluation has been employed

in recent works considering online DA [19]. As in [19], we

consider the task of manufacturer prediction where there are

three categories: Mercedes, BMW and Volkswagen. Im-

ages of cars before 1980 are considered as the source set and

the remaining are used as target samples.

Networks and Training Protocols. To analyze the im-

pact on performance of our main contributions we consider

the ResNet-18 architecture [13] and perform experiments

on the Portraits dataset. In particular, we apply our model

by replacing each BN layer with its AdaGraph counterpart.

We start with the network pretrained on ImageNet, training

it for 1 epoch on the source dataset, employing Adam as

optimizer with a weight decay of 10−6 and a batch-size of

16. We choose a learning rate of 10−3 for the classifier and

10−4 for the rest of the architecture. We train the network

for 1 epoch on the union of source and auxiliary domains to

extract domain-specific parameters. We keep the same op-

timizer and hyper-parameters except for the learning rates,

decayed by a factor of 10. The batch size is kept to 16,

but each batch is composed by elements of a single pair

year-region belonging to one of the available domains (ei-

ther auxiliary or source). The order of the pairs is randomly

sampled within the set of allowed ones.

In order to fairly compare with previous methods we

also consider Decaf features [8]. In particular, in the ex-

periments on the CompCars dataset, we use Decaf features

extracted at the fc7 layer. Similarly, for the experiments

on CarEvolution, we follow [19] and use Decaf features ex-

tracted at the fc6 layer. In both cases, we apply our model

by adding either a BN layer or our AdaGraph approach di-

rectly to the features, followed by a ReLU activation and a

linear classifier. For these experiments we train the model

on the source domain for 10 epochs using Adam as opti-

mizer with a learning rate of 10−3, a batch-size of 16 and

a weight decay of 10−6. The learning rate is decayed by a

factor of 10 after 7 epochs. For CompCars, when training

with the auxiliary set, we use the same optimizer, batch size
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and weight decay, with a learning rate 10−4 for 1 epoch.

Domain-specific batches are randomly sampled, as for the

experiments on Portraits.

For all the experiments we use as distance measure

d(x, y) = 1
2·σ ·||x−y||

2
2 with σ = 0.1 and set λ equal to 1.0,

both in the training and in the refinement stage. At test time,

we classify each input image as it arrives, performing the

refinement step after the classification. The buffer size in

the refinement phase is equal to 16 and we set α = 0.1, the

same used for updating the GBN components while training

with the auxiliar domains.

We implemented1 our method with the PyTorch [26]

framework and our evaluation is performed using a

NVIDIA GeForce 1080 Ti GTX GPU.

4.2. Results

In this section we report the results of our evaluation,

showing both an empirical analysis of the proposed contri-

butions and a comparison with state of the art approaches.

Analysis of AdaGraph. We first analyze the performance

of our approach by employing the Portraits dataset. In par-

ticular, we evaluate the impact of (i) introducing a graph

to predict the target domain BN statistics (AdaGraph BN),

(ii) adding scale and bias parameters trained in isolation

(AdaGraph SB) or jointly (AdaGraph Full) and (iii) adopt-

ing the proposed refinement strategy (AdaGraph + Refine-

ment). As baseline2 we consider the model trained only on

the source domain and, as an upper bound, a corresponding

DA method which is allowed to use target data during train-

ing. In our case, the upper bound corresponds to a model

similar to the method proposed in [3].

The results of our ablation are reported in Table 1, where

we report the average classification accuracy correspond-

ing to two scenarios: across decades (considering the same

region for source and target domains) and across regions

(considering the same decade for source and target dataset).

The first scenario corresponds to 280 experiments, while

the second to 160 tests. As shown in the table, by simply

replacing the statistics of BN layers of the source model

with those predicted through our graph a large boost in ac-

curacy is achieved (+4% in the across decades scenario and

+2.4% in the across regions one). At the same time, esti-

mating the scale and bias parameters without considering

the graph is suboptimal. In fact there is a misalignment be-

tween the forward pass of the training phase (i.e. consider-

ing only domain-specific parameters) and how these param-

eters will be combined at test time (i.e. considering also the

connection with the other nodes of the graph). Interestingly,

in the across regions setting, our full model slightly drops in

performance with respect to predicting only the BN statis-

1The code is available at https://github.com/

mancinimassimiliano/adagraph
2We do not report the results of previous approaches [36] since the code

is not publicly available.

Table 1. Portraits dataset. Ablation study.

Method Across Decades Across Regions

Baseline 82.3 89.2

AdaGraph BN 86.3 91.6

AdaGraph SB 86.0 90.5

AdaGraph Full 87.0 91.0

Baseline + Refinement 86.2 91.3

AdaGraph + Refinement 88.6 91.9

DA upper bound 89.1 92.1

tics. This is probably due to how regions are encoded in the

metadata (i.e. considering geographical location), making

it difficult to capture factors (e.g. cultural, historical) which

can be more discriminative to characterize the population of

a region or a state. However, as stated in Section 3.3, em-

ploying a continuous refinement strategy allows the method

to compensate for prediction errors. As shown in Table 1,

with a refinement step (AdaGraph + Refinement) the accu-

racy constantly increases, filling the gap between the per-

formance of the initial model and our DA upper bound.

It is worth noting that applying the refinement procedure

to the source model (Baseline + Refinement) leads to bet-

ter performance (about +4% in the across decades scenario

and +2.1% for across regions one). More importantly, the

performance of the Baseline + Refinement method is always

worse than what obtained by AdaGraph + Refinement, be-

cause our model provides, on average, a better starting point

for the refinement procedure.

Figure 3 shows the results associated to the across

decades scenario. Each bar plot corresponds to experiments

where the target domain is associated to a specific year. As

shown in the figure, on average, our full model outperforms

both AdaGraph BN and AdaGraph SB, showing the bene-

fit of the proposed graph strategy. The results in the figure

clearly also show that our refinement strategy always leads

to a boost in performance.

Comparison with the state of the art. Here we compare

the performances of our model with state of the art PDA

approaches. We use the CompCars dataset and we bench-

mark against the Multivariate Regression (MRG) methods

proposed in [36].

We apply our model in the same setting as [36] and per-

form 870 different experiments, computing the average ac-

curacy (Table 2). Our model outperforms the two meth-

ods proposed in [36] by improving the performances of the

Baseline network by 4%. AdaGraph alone outperforms the

Baseline model when it is updated with our refinement strat-

egy and target data (Baseline + Refinement). When coupled

with a refinement strategy, our graph-based model further

improves the performances, filling the gap between Ada-

Graph and our DA upper bound. It is interesting to note that

our model is also effective when there are no metadata avail-

able in the target domain. In the table, AdaGraph (images)

corresponds to our approach when, instead of initializing

the BN layer for the target exploiting metadata, we employ
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Figure 3. Portraits dataset: comparison of different models in the PDA scenario with respect to the average accuracy on a target decade,

fixed the same region of source and target domains. The models are based on ResNet-18.

Table 2. CompCars dataset [35]. Comparison with state of the art.

Method Avg. Accuracy

Baseline [36] 54.0

Baseline + BN 56.1

MRG-Direct [36] 58.1

MRG-Indirect [36] 58.2

AdaGraph (metadata) 60.1

AdaGraph (images) 60.8

Baseline + Refinement 59.5

AdaGraph + Refinement 60.9

DA upper bound 60.9

the current input image and a domain classifier to obtain a

probability distribution over the graph nodes, as described

in Section 3.2. The results in the Table show that AdaGraph

(images) is more accurate than AdaGraph (metadata).

Exploiting AdaGraph Refinement for Continous Do-

main Adaptation. In Section 3.3, we have shown a way

to boost the performances of our model by leveraging the

stream of incoming target data and refine the estimates of

the target BN statistics and parameters. Throughout the

experimental section, we have also demonstrated how this

strategy improves the target classification model, with per-

formances close to DA methods which exploit target data

during training.

In this section we show how this approach can be em-

ployed as a competitive method in the case of continu-

ous domain adaptation [14]. We consider the CarEvolu-

tion dataset and compare the performances of our proposed

strategy with two state of the art algorithms: the manifold-

based adaptation method in [14] and the low-rank SVM

strategy presented in [19]. As in [19] and [14], we apply

our adaptation strategy after classifying each novel image

and compute the overall accuracy. The images of the target

domain are presented to the network in a chronological or-

der i.e. from 1980 to 2013. The results are shown in Table

3. While the integration of a BN layer alone leads to bet-

ter performances over the baseline, our refinement strategy

produces an additional boost of about 3%. If scale and bias

parameters are refined considering the entropy loss, accu-

racy further increases.

We also test the proposed model on a similar task con-

Table 3. CarEvolution [28]: comparison with state of the art.

Method Accuracy

Baseline SVM [19] 39.7

Baseline + BN 43.7

CMA+GFK [14] 43.0

CMA+SA [14] 42.7

LLRESVM [19] 43.6

LLRESVM+EDA[19] 44.3

Baseline + Refinement Stats 46.5

Baseline + Refinement Full 47.3

Table 4. Portraits dataset [35]: performances of the refinement

strategy on the continuous adaptation scenario

Method Baseline Refinement Stats Refinement Full

Accuracy 81.9 87.3 88.1

sidering the Portraits dataset. The results of our experiments

are shown in Table 4. Similarly to what observed on the pre-

vious experiments, continuously adapting our deep model

as target data become available leads to better performance

with respect to the baseline. The refinement of scale and

bias parameters contributes to a further boost in accuracy.

5. Conclusions

We present the first deep architecture for Predictive Do-

main Adaptation. We leverage metadata information to

build a graph where each node represents a domain, while

the strength of an edge models the similarity among two do-

mains according to their metadata. We then propose to ex-

ploit the graph for the purpose of DA and we design novel

domain-alignment layers. This framework yields the new

state of the art on standard PDA benchmarks. We further

present an approach to exploit the stream of incoming tar-

get data such as to refine the target model. We show that

this strategy itself is also an effective method for continu-

ous DA, outperforming state of the art approaches. Future

works will explore methodologies to incrementally update

the graph and to automatically infer relations among do-

mains, even in the absence of metadata.
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