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Abstract

We present a deep learning method for end-to-end

monocular 3D object detection and metric shape retrieval.

We propose a novel loss formulation by lifting 2D detec-

tion, orientation, and scale estimation into 3D space. In-

stead of optimizing these quantities separately, the 3D in-

stantiation allows to properly measure the metric misalign-

ment of boxes. We experimentally show that our 10D lift-

ing of sparse 2D Regions of Interests (RoIs) achieves great

results both for 6D pose and recovery of the textured met-

ric geometry of instances. This further enables 3D synthetic

data augmentation via inpainting recovered meshes directly

onto the 2D scenes. We evaluate on KITTI3D against other

strong monocular methods and demonstrate that our ap-

proach doubles the AP on the 3D pose metrics on the official

test set, defining the new state of the art.

1. Introduction

How much can one understand a scene from a single

color image? Using large annotated datasets and deep neu-

ral networks, the Computer Vision community has steadily

pushed the envelope of what was thought possible, not just

for semantic understanding but also in terms of 3D prop-

erties of scenes and objects. In particular, Deep learning

methods on monocular imagery have proven competitive

with multi-sensor approaches for important ill-posed in-

verse problems like 3D object detection ([3, 31, 20, 34, 24],

6D pose tracking [30, 40], depth prediction [9, 11, 13, 42,

33], or shape recovery [18, 23]. These improvements have

been mainly accomplished by incorporating strong implicit

or explicit priors that regularize the underconstrained out-

put space towards geometrically-coherent solutions. Fur-

thermore, these models benefit directly from being end-to-

end trainable in general. This leads to increased accuracy,

since networks are discriminatively tuned towards the target

objective instead of intermediate outputs followed by non-

trainable post-processing heuristics. The main challenge,

∗ Equal contribution. This work was part of an internship stay at TRI.

Figure 1. Top (from left to right): our 2D detections, 3D boxes, and

meshed shapes inferred from a single monocular image in one for-

ward pass. Middle: our predictions on top of a LIDAR point cloud,

demonstrating metric accuracy. Bottom: example well-localized,

metrically-accurate, textured meshes predicted by our network.

though, is to design a model and differentiable loss function

that lend itself to well-behaved minimization.

In this work we introduce a new end-to-end method for

metrically accurate monocular 3D object detection, i.e. the

task of predicting the location and extent of objects in 3D

using a single RGB image as input. Our key idea is to

regress oriented 3D bounding boxes by lifting predicted 2D

Regions of Interest (RoIs) using a monocular depth net-

work. Our main contributions are:

• an end-to-end multi-scale deep network for monocu-

lar 3D object detection, including a differentiable 2D

to 3D RoI lifting map that internally regresses all re-

quired components for 3D box instantiation;
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• a loss function that aligns those 3D boxes in metric

space, directly minimizing their error with respect to

ground truth 3D boxes;

• an extension of our model to predict metric textured

meshes, enabling further 3D reasoning, including 3D-

coherent synthetic data augmentation.

We call our method ”ROI-10D”, as it lifts 2D regions of in-

terests to 3D for prediction of 6 degrees of freedom pose

(rotation and translation), 3 DoF spatial extents, and 1 or

more DoF shape. Experiments on the KITTI3D [12] bench-

marks show that our approach enables accurate predictions

from a single RGB image. Furthermore, we show that our

monocular 3D poses are competitive or better than the state

of the art.

2. Related Work

Since the amount of work on object detection has ex-

panded significantly over the last years, we will narrow our

focus to recent advances among RGB-based methods for

3D object detection. 3DOP from Chen et al. [4] use KITTI

[12] stereo data and additional scene priors to create 3D ob-

ject proposals followed by a CNN-based scoring. In their

follow-up work Mono3D [3], the authors replace the stereo-

based priors by exploiting various monocular counterparts

such as shape, segmentation, location, and spatial context.

Mousavian et al. [31] propose to couple single-shot 2D de-

tection with an additional binning of azimuth orientations

plus offset regression. Similarly, SSD-6D from Kehl et

al. [20] introduces a structured discretization of the full ro-

tational space for single-shot 6D pose estimation. The work

from Xu et al. [41] incorporates a monocular depth module

to further boost the accuracy of inferred poses on KITTI.

Instead of discretizing SO(3), [34, 37] formulate the 6D

estimation problem as a regression of the 2D projections of

the 3D bounding box. These methods assume the scale of

the objects to be known and can therefore use a perspective-

n-point (PnP) variant to recover poses from 2D-3D corre-

spondences. Grabner et al. [14] present a mixed approach

where they regress 2D control points and absolute scale to

recover pose and, subsequently, the object category. In ad-

dition, Rad et al. [34] empirically show the superiority of

this proxy loss over standard regression of the 6 degrees

of freedom. In contrast, [40, 24, 30] directly encode the 6D

pose. In particular, Xiang et al. [40] first regress the rotation

as Euler angles and the 3D translation as the backprojected

2D centroid. Thereafter, they transform the 3D mesh into

the camera frame and measure the average distance of the

model points [16] towards the ground truth. Similarly, [24]

also minimizes the average distance of model points for 6D

pose refinement. Manhardt et al. [30] also conduct 6D pose

refinement but regress a 4D update quaternion to describe

the 3D rotation. Their proxy loss samples and transforms

3D contour points to maximize projective alignment.

Notably, all these direct encoding methods require

knowledge of the precise 3D model. However, when work-

ing at a category-level the 3D models are usually not avail-

able, and these approaches are not designed to handle intra-

class 3D shape variations (for instance between different

types of cars). We therefore propose a more robust way

of lifting to 3D that only requires bounding boxes. Thereby,

the extents of these bounding boxes can also be of variable

size. Similar to us, [7] use RoIs to lift 2D detections, but

their pipeline is not trained end-to-end and reliant on RGB-

D input for 3D box instantiation.

In terms of monocular shape recovery, 3D-RCNN from

Kundu et al. [23] uses an RPN to estimate the orientation

and shape of cars on KITTI with a render-and-compare

loss. Kanazawa et al. [18] predict instance shape, texture,

and camera pose using a differentiable mesh renderer [19].

While these methods show very impressive results as part of

their synthesis error minimization, they recover shapes only

up to scale. Furthermore, our approach does not require dif-

ferentiable rendering or approximations thereof.

3. Monocular lifting to 10D for pose and shape

In this section we describe our method of detecting ob-

jects in 2D space and consequently, computing their 6D

pose and metric shape from a single monocular image.

First, we give an overview of our network architecture. Sec-

ond, we explain how we lift the loss computation to 3D

in order to improve pose accuracy. Third, we describe our

learned metric shape space and its use for 3D reconstruction

from estimated shape parameters. Finally, we describe how

our shape estimation enables 3D-coherent data augmenta-

tion to improve detection.

3.1. Endtoend Monocular Architecture

Our architecture (Figure 2) follows a two-stage ap-

proach, similar to Faster R-CNN [36], where we first pro-

duce 2D region proposals and then run subsequent pre-

dictions for each. For the first stage we employ a Reti-

naNet [26] that uses a ResNet-34 backbone with FPN struc-

ture [25] and focal loss weighting. For each detected and

precise 2D object proposal, we then use the RoIAlign oper-

ation [15] to extract localized features for each region.

In contrast to the aforementioned related works, we do

not directly regress 3D information independently for each

proposal from these localized features. Predicting this infor-

mation from monocular data, in particular absolute trans-

lation, is ill-posed due to scale and reprojection ambigui-

ties, which the lack of context exacerbates. In contrast, net-

works that aim to predict global depth information over the

whole scene can overcome these ambiguities by leveraging

geometric constraints as supervision [11]. Consequently,

we use a parallel stream based on the state-of-the-art Su-
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Figure 2. We process our input image with a ResNet-FPN architecture for 2D detection and a monocular depth prediction network. We use

the predicted Regions of Interest (RoI) to extract fused feature maps from the ResNet-FPN and depth network via a RoIAlign operation

before regressing 3D bounding boxes, a process we call RoI lifting.

perDepth network [33], which predicts per-pixel depth from

the same monocular image.

We use these predicted depth maps to support distance

reasoning in the subsequent 3D lifting part of our network.

Besides the aforementioned localized feature maps from our

2D RPN, we also want to include the corresponding re-

gions in the predicted depth map. For better localization

accuracy, we furthermore decided to include a 2D coordi-

nates map [27]. We thus propagate all the information to

our fusion module, which consists of two convolutional lay-

ers with Group Normalization [39] for each input modal-

ity. Finally, we concatenate all features, use RoIAlign and

run into separate branches for the regression of 3D rotation,

translation, absolute (metric) extents, and object shape, as

described in the following sections.

3.2. From Monocular 2D Instance to 6D Pose

Formally, our approach towards the problem is to define

a fully-differentiable lifting mapping F : R4 → R
8×3 from

a 2D RoI X to a 3D box B := {B1, ..., B8} of eight or-

dered 3D points. We chose to encode the rotation as a 4D

quaternion and the translation as the projective 2D object

centroid (similar to [31, 20, 40]) together with the associ-

ated depth. In addition, we describe the 3D extents as the

deviation from the mean extents over the whole data set.

Given RoI X , our lifting F(X ) runs RoIAlign at that po-

sition, followed by separate prediction heads to recover ro-

tation q, RoI-relative 2D centroid (x, y), depth z and metric

extents (w, h, l). From this we build the 8 corners Bi:

Bi := q ·





±w/2
±h/2
±l/2



 · q−1 +K−1





x · z
y · z
z



 (1)

with K−1 being the inverse camera intrinsics. We build the

points Bi in a defined order to preserve absolute orientation.

We depict the instantiation in Figure 3.

Our formulation is reminiscent of 3D anchoring (as

MV3D [5], AVOD [22]). However, our 2D instantiation

of those 3D anchors is sparse and works over the whole im-

Figure 3. Our lifting F regresses all components to estimate a 3D

box B (blue). From here, our loss minimizes the pointwise dis-

tances towards the ground truth B
∗ (red). We visualize three of

the eight correspondences in green.

age plane. While such 3D anchors explicitly provide the

object’s 3D location, our additional degree of freedom also

requires the estimation of the depth.

Lifting Pose Error Estimation to 3D When estimating

the pose from monocular data only, little deviations in pixel-

space can induce big errors in 3D. Additionally, penalizing

each term individually can lead to volatile optimization and

is prone to suboptimal local minima. We propose to lift

the problem to 3D and employ a proxy loss describing the

full 6D pose. Consequently, we do not force to optimize

all terms equally at the same time, but let the network de-

cide its focus during training. Given a ground truth 3D box

B∗ := {B∗
1
, ..., B∗

8
} and its associated 2D detection X in

the image, we run our lifting map to retrieve the 3D predic-

tion F(X ) = B. The loss itself is the mean over the eight

corner distances in metric space:

L(F(X ),B∗) =
1

8

∑

i∈{1..8}

||F(X )i − B∗
i||. (2)

We depict some of the 3D-3D correspondences that the loss

is aligning as green lines in Figure 3.
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Figure 4. Comparison between egocentric (top) and allocen-

tric (bottom) poses. While egocentric poses undergo viewpoint

changes towards the camera when translated, allocentric poses al-

ways exhibit the same view, independent of the object’s location.

When deriving the loss, the chain rule leads to
[

∇F(X )

∇q
,
∇F(X )

∇(x, y)
,
∇F(X )

∇z
,
∇F(X )

∇(w, l, h)

]

∇L(·)

∇F(X )
L(·)

(3)

and shows clearly the individual impact that each lift-

ing component contributes towards 3D alignment. Simi-

lar to work that employ projective or geometric constraints

[29, 30], we observe that we require a warm-up period to

bring regression into proper numerical regimes. We there-

fore train with separate terms until we reach a stable 3D box

instantiation and switch then to our lifting loss.

We also want to stress that our parametrization allows

for general 6D pose regression. Although the object anno-

tations in KITTI3D exhibit only changing azimuths, many

driving scenarios and most robotic use cases require solving

for all 6 degrees of freedom.

Allocentric Regression and Egocentric Lifting Multi-

ple works [31, 23] emphasize the importance of estimat-

ing the allocentric pose for monocular data, especially for

larger fields of view. The difference is depicted in Figure

4 where the relative object translation with respect to the

camera changes the observed viewpoint. Accordingly, we

follow the same principle since RoIs lose the global con-

text. Therefore, rotations q are considered allocentric dur-

ing regression inside F and then corrected with the inferred

translation to build the egocentric 3D boxes.

3.3. Object Shape Learning & Retrieval

In this section we explain how we extend our end-to-

end monocular 3D object detection method to additionally

predict meshes and how to use them for data augmentation.

Learning of a Smooth Shape Space Given a set of 50

commercially available CAD models of cars, we created

projective truncated signed distances fields (TSDF) φi of

size 128 × 128 × 256. We initially used PCA to learn a

low-dimensional shape, similar to [23]. During experimen-

tation we found the shape space to be quickly discontinuous

away from the mean, inducing degenerated meshes. Using

PCA to generate proper shapes requires to evaluate each di-

mension according to its standard deviation. To avoid this

Figure 5. Top: Median of each category in the learned shape space.

Bottom: Smooth interpolation on the latent hypersphere between

two categories.

tedious process, we instead trained a 3D convolutional au-

toencoder, consisting of encoder E as well as decoder D,

and enforced different constraints on the output TSDF. In

particular, we employed 4 convolutional layers with filter

sizes of 1,8,16,32 for both E and D. In addition, we used a

fully-connected layer of 6 to represent the latent space. Dur-

ing training we further map all latent representations on the

unit hypersphere to ensure smoothness within the embed-

ding. Furthermore, we penalize jumps in the output level

set via total variation, which regularizes towards smoother

surfaces. The final loss is the sum of all these components:

Ltsdf (E,D, φ) =

|D(E(φ))− φ|+ |(||E(φ)|| − 1)|+ |∇D(E(φ))|
(4)

We additionally classified each CAD model as either ’Small

Car’, ’Car’, ’Large Car’ or ’SUV’. Afterwards, we com-

puted the median shape over each class, and all cars to-

gether, using the Weiszfeld algorithm [38], as illustrated

in Fig. 5 (top). Below, we show our ability to smoothly

interpolate between the median shapes in the embedding.

We observed that we could safely traverse all intermedi-

ate points on the embedding without degenerate shapes and

found a six-dimensionsal latent space to be a good compro-

mise between smoothness and detail.

Ground truth shape annotation. To avoid gradient ap-

proximation through central differences as [23], we labeled

the KITTI3D car instances offline. Running greedy search

initialized from every median, we seek for the minimal pro-

jective discrepancy in LIDAR and segmentation from [15].

For the shape branch of our 3D lifter, we measure the

similarity between predicted shape s and ground truth shape

s∗ as the angle between the two points on the hypersphere.

Lshape(s, s
∗) = arccos

(

2〈s, s∗〉2 − 1
)

(5)

During inference we predict the low-dimensional latent

vector and feed it to the decoder to obtain its TSDF rep-

resentation. We can also compute the 3D mesh from the

TSDF employing marching cubes [28].
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Simple mesh texturing. Since our method computes ab-

solute scale and 6D pose, we conduct projective texturing of

the retrieved 3D mesh. To this end, we project each vertex

that faces towards the camera onto the image plane and as-

sign the corresponding pixel value. Afterwards, we mirror

the colors along the symmetry axis for completion.

3.4. Synthetic 3D data augmentation

Since annotating monocular data with metrically accu-

rate 3D annotations is usually costly and difficult, many re-

cent works leverage synthetic data [10, 8, 2, 1] to train their

methods [20, 17, 35]. Nevertheless, this often comes with

a significant drop in performance due to the domain gap.

This is especially true for KITTI3D, since it is a very small

dataset with only around 7k images (or 3.5k images for train

and val respectively with the split from [3]). This can easily

result in severe overfitting to the training data distribution.

An interesting solution to this domain gap, proposed by

Alhaija et al. [1], consists in extending the dataset by in-

painting 3D synthetic renderings of objects onto real-world

image backgrounds. Inspired by this Augmented Reality

type of approach, we propose to utilize our previously ex-

tracted meshes in order to produce realistic renderings. This

allows for increased realism and diversity, in contrast to us-

ing a small set of fixed CAD models as in [1]. Further-

more, we do not use strong manual or map priors to place

the synthetic objects in the scene. Instead, we employ the

allocentric pose to move the object in 3D without chang-

ing the viewpoint. We apply some rotational perturbations

in 3D to generate new unseen poses and decrease overfit-

ting. Fig. 6 illustrates one synthetically generated training

sample. While the red bounding boxes show the original

ground truth annotations, the green bounding boxes depict

the synthetically added cars and their sampled 6D pose.

3.5. Implementation details

The method was implemented in PyTorch [32] and we

employed AWS p3.16xlarge instances for training. We used

SGD with momentum, a batch size of 8 and a learning rate

of 0.001 with linear warm-up. We ran a total of 200k it-

erations and decayed the learning rate after 120k and 180k

steps by 0.1. We employed both scale-jittering and hori-

zontal flipping to augment the dataset. For the synthetic

car augmentations, we extracted in total 140 meshes from

the training sequences, which we textured using the cor-

responding ground truth poses. We then augmented each

input sample with up to 3 different cars by shooting rays

in random directions and sampling a 3D translation along

the ray. Additionally, we employed the original allocen-

tric rotation to avoid textural artifacts, however, perturbed

the rotations up to 10 degrees in order to always produce

new unseen 6D poses. Our shape space is six-dimensional

although smaller dimensionality can lead to well-behaving

Figure 6. Synthetically generated training sample. Top: Green

bounding boxes show original ground truth cars and poses. In con-

trast, red boxes illustrate the rendered meshes from a sampled 6D

pose. Bottom: Augmented depth map from SuperDepth [33]. No-

tice that we utilized the annotated meshes, which we colored using

the ground truth pose and our projective texturing.

spaces, too. We show qualitative results in the supplement.

During testing, we resize the shorter side of the image to

600 and run 2D detection. We filter the detections with 2D-

NMS at 0.65 before RoI-lifting. The resulting 3D boxes

are then processed by a very strict Bird’s Eye View-NMS at

0.05 that prevents physical intersections.

4. Evaluation

In this section, we describe our evaluation protocol, com-

pare to the state of the art for RGB-based approaches, and

provide an ablative analysis discussing the merits of our in-

dividual contributions.

4.1. Evaluation Protocol

We use the standard KITTI3D benchmark [12] and its

official evaluation metrics. We evaluate our method on three

different difficulties: easy, moderate, hard. Furthermore, as

suggested we also set the IoU threshold to 0.7 for both 2D

and 3D. For the pose, we compute the average precision

(AP) in the Bird’s eye view, which measures the overlap of

the 3D bounding boxes projected on the ground plane. We

also compute the AP for the full 3D bounding box.

4.2. Comparison to Related Work

We compare ourselves on the train/validation split from

[3] and on the official test set against state-of-the-art RGB-

based methods on KITTI3D, namely (stereo-based) 3DOP

[4], Mono3D [3], and Xu et al. [41] which also uses a depth

module for better reasoning. Note that, although slightly

lower in 2D AP, our model using synthetic data provides

the best pose accuracy among our trained networks and we

chose this model to compete against the others. As can be

seen in Table 1 and 2, our method performs worse in 2D
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Method Type
Bird Eye View AP [val / test] 3D Detection AP [val / test]

Easy Moderate Hard Easy Moderate Hard

Mono3D [3] Mono 5.22 / – 5.19 / – 4.13 / – 2.53 / – 2.31 / – 2.31 / –

3DOP [4] Stereo 12.63 / – 9.49 / – 7.59 / – 6.55 / – 5.07 / – 4.10 / –

Xu et al. [41] Mono 22.03 / 13.73 13.63 / 9.62 11.60 / 8.22 10.53 / 7.08 5.69 / 5.18 5.39 / 4.68

ROI-10D Mono 10.74 / – 7.46 / – 7.06 / – 7.79 / – 5.16 / – 3.95 / –

ROI-10D (Syn.) Mono 14.50 / 16.77 9.91 / 12.40 8.73 / 11.39 9.61 / 12.30 6.63 / 10.30 6.29 / 9.39

Table 1. 3D detection performance on KITTI3D validation [3] and official KITTI3D test set. We report our AP for Bird’s eye view and 3D

IoU at the official IoU threshold of 0.7 for each metric. Note that we only evaluated the synthetic ROI-10D version on the online test set.

Method
2D Detection AP [val /test]

Easy Moderate Hard

Mono3D [3] 93.89 / 92.33 88.67 / 88.66 79.68 / 78.96

3DOP [4] 93.08 / 93.04 88.07 / 88.64 79.39 / 79.10

Xu et al. [41] – / 90.43 – / 87.33 – / 76.78

ROI-10D 89.04 / – 88.39 / – 78.77 / –

ROI-10D (Syn.) 85.32 / 75.33 77.32 / 69.64 69.70 /61.18

Table 2. 2D AP performance on KITTI3D validation [3] and offi-

cial test set at official IoU threshold of 0.7.

due to our strict 3D-NMS, but we are by far the strongest in

the Bird’s Eye View and the 3D AP. This underlines the

important aspect of of proper data analysis to counteract

overfitting. On the official test set, we get around twice the

3D AP of our closest monocular competitor. It is notewor-

thy that [41] trained their depth module on both KITTI3D

and Cityscapes [6] for better generalization whereas the

SuperDepth model we use has been pre-trained on KITTI

data only. Interestingly, they have a strong drop in num-

bers when moving from the validation set onto the test set

(e.g. from 22.03% to 13.73% or 10.53% to 7.08%), which

suggests aggressive tuning towards the validation set with

known ground truth. We want to mention that the evalua-

tion protocol forces the 3D AP and Bird’s eye view AP to be

bounded from above by the 2D detection AP since missed

detections in 2D always reflect negatively on the pose met-

rics. This strengthens our case further since our pose metric

numbers would be even higher if we were to correct them

with a 2D AP normalization.

4.3. Ablative Analysis

In the ablative analysis we want to first investigate how

our new loss specifically minimizes the alignment problem.

Additionally, we will identify where and why certain poses

in KITTI3D are so much more difficult to estimate right.

Finally, we analyze our method in respect to different inputs

and how well our loss affects the quality of the poses.

Lifting Loss We run a controlled experiment where, iso-

lating one instance with ground truth RoI X and 3D box

B∗, we solely optimize the lifting module F with randomly

initialized parameters. The step-wise improvement in align-

ment between F(X ) and B∗ is depicted in Figure 7 and

we refer to the supplementary material for the full anima-

tions. Independent of initialization, we can observe that

our loss always converges smoothly towards the global op-

timum. We also show the magnitude of each Jacobian com-

ponent from Eq. 3 and can see that the loss focuses strongly

on depth while steadily increasing importance towards ro-

tation and 2D centroid position. Since our scale regression

recovers deviation from the average car size, it was mostly

neglected during optimization since the original error in ex-

tents was minimal. Without manually enforcing any princi-

pal direction during optimization or scaling the magnitudes,

the loss steers the impact of each component quite well.

Pose Recall vs. Training Data To better understand our

strengths and weaknesses, in Fig. 8 we show our recall for

different bins for depth and rotation on the train/val split

from [3]. We accept a detection if the Bird’s Eye View IoU

is larger than 0.5. Note that we followed the KITTI con-

vention, such that an angle of 0 degrees corresponds to an

object facing to the right. Since the dataset is rather small

for deep learning methods, we also plot the training data

distribution to understand if there is a correlation between

sample frequency and pose quality.

For translation we did not discover any connection be-

tween the number of occurrences in the training data and the

pose results. Nevertheless, closer objects are in general sig-

nificantly better localized in 3D than objects further away.

This can be explained by the fact that the network strongly

relies on the predicted depth map to estimate the distance.

However, the uncertainty of our monocular depth estima-

tion also grows with distance. Very interestingly, utilizing

our synthetic data generation improves the results across all

bins. This confirms that, since the variety of scenes is lim-

ited, the network learns biases quickly and risks over-fitting

without our proposed augmentation.

Our synthetic approach also clearly leads to better ro-

tation estimates. In contrast to translation, we can find a

strong correlation between the training data distribution and

pose quality. While our method achieves good results on

frequent viewpoints, the recall naturally drops when objects

are seen from an underrepresented angle.
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Method
2D Detection AP [0.7] Bird’s Eye View AP [0.5 / 0.7] 3D Detection AP [0.5 / 0.7]

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

No Weighting 88.95 87.54 78.68 40.17 / 11.85 27.85 / 7.32 24.49 / 7.22 33.95 / 7.47 22.53 / 4.83 21.78 / 3.76

Multi-Task Weighting [21] 88.20 83.81 74.87 36.22 / 10.00 26.82 / 6.60 23.02 / 5.84 31.40 / 6.70 21.04 / 4.64 17.32 / 3.63

ROI-10D (w/o depth) 78.57 73.44 63.69 36.21 / 14.04 24.90 / 3.69 21.03 / 3.56 29.38/ 10.12 19.80 / 1.76 18.04 / 1.30

ROI-10D 89.04 88.39 78.77 42.65 / 10.74 29.80 / 7.46 25.03 / 7.06 36.25 / 7.79 23.00 / 5.16 22.06 / 3.95

ROI-10D (Syn.) 85.32 77.32 69.70 46.85 / 14.50 34.05 / 9.91 30.46 / 8.73 37.59 / 9.61 25.14 / 6.63 21.83 / 6.29

Table 3. Different weighting strategies and input modalities on the train/validation split from [3]. We report our AP referring to 2D

detection, the bird’s eye view challenge and 3D IoU. Besides the official IoU threshold of 0.7, we also report for a softer threshold of 0.5.

Figure 7. Controlled lifting loss experiment with given 2D RoI X

over multiple runs with different seeding. Top: Visualizing F(X )
during optimization in camera and bird’s eye view. Bottom: Gradi-

ent magnitudes of each lifting component, averaged over all runs.

We refer to the supplement for the full animations.

Loss and input data We trained networks with different

loss and data configurations on the train/validation [3] split

to incrementally highlight our contributions. In the first

two rows of Table 3 we ran training with separate regres-

sion terms instead of our lifting loss. While the first row

shows the results with uniform weighting of all terms of F
(similar to the approach of Xu et al. [41]), the second row

shows training with the adaptive multi-task weighting from

Kendall et al. [21]. Interestingly, we were not able to see

an improvement with the adaptive weighting. We believe

it comes from the fact that each term’s magnitude is not

at all comparable: while the (x, y) centroid moves in RoI-

normalized image coordinates, the depth z is metric, the ex-

Figure 8. Recall of orientation and depth against the ground truth

split distributions. Evidently, there exists a strong correlation be-

tween model performance and sample distribution. Synthetically

augmenting underrepresented bins leads to overall better results.

tents (w, h, l) are multiples of standard deviation from the

mean extent, and the rotation q moves on a 4D unit sphere.

Any uninformed weighting about the actual 3D instantia-

tion has no means to properly assess the relative importance

apart from numerical magnitude, thus comparing apples to

oranges. Our formulation (row 4) avoids these problems

and is either equal or better across all metrics.

Table 3 also presents results of a trained variant without

monocular depth (row 3) and results for our method using

depth without (rows 4) and with (row 5) synthetic augmen-

tation. The results without depth cues are clearly worse,

but we nonetheless get respectable numbers for the Bird’s

eye view and 3D AP. Unfortunately, our aggressive 3D-

NMS discarded some correct solutions because of wrongly-

regressed overlapping z-values, reducing our 2D AP sig-

nificantly. Our synthetic data training shows strong im-
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Figure 9. Qualitative results on the test (left) and validation (right) set. Noteworthy, we only trained on the train split to ensure that we

never saw any of these images. For the validation samples, we additionally depict the ground truth poses in red. To get a proper estimate

of the accuracy of the poses, we also plot the Bird’s eye view (right) where we show clearly that we can recover accurate poses and proper

metric shapes for unseen data, even at a distance.

provement on the pose metrics since we reduced the rota-

tional data sample imbalance. By inspecting the drop in

2D AP, we realized that we designed our augmentations to

be occlusion-free to avoid unrealistic intersections with the

environment. In turn, this led to a weaker representation of

strongly-occluded instances and to another introduced bias.

We also show some qualitative results in Figure 9.

5. Conclusion

We proposed a monocular deep network that can lift 2D

detections in 3D for metrically accurate pose estimation and

shape recovery, optimizing directly a novel 3D loss formu-

lation. We found that maximizing 3D alignment end-to-

end for 6D pose estimation leads to very good results since

we optimize for exactly the quantity we seek. We provided

some insightful analysis on pose distributions in KITTI3D

and how to leverage this information with recovered meshes

for synthetic data augmentation. We found this reflection to

be very helpful and quite important to improve the pose re-

call. Non-maximum-suppression in 2D and 3D is, however,

a major influence on the final results and should to be ad-

dressed in future work, too.
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