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Abstract

In this work we address task interference in universal

networks by considering that a network is trained on mul-

tiple tasks, but performs one task at a time, an approach

we refer to as “single-tasking multiple tasks”. The network

thus modifies its behaviour through task-dependent feature

adaptation, or task attention. This gives the network the

ability to accentuate the features that are adapted to a task,

while shunning irrelevant ones. We further reduce task in-

terference by forcing the task gradients to be statistically in-

distinguishable through adversarial training, ensuring that

the common backbone architecture serving all tasks is not

dominated by any of the task-specific gradients.

Results in three multi-task dense labelling problems

consistently show: (i) a large reduction in the number

of parameters while preserving, or even improving per-

formance and (ii) a smooth trade-off between computa-

tion and multi-task accuracy. We provide our system’s

code and pre-trained models at https://github.

com/facebookresearch/astmt.

1. Introduction

Real-world AI problems involve a multitude of visual

tasks that call for multi-tasking, universal vision systems.

For instance autonomous driving requires detecting pedes-

trians, estimating velocities and reading traffic signs, while

identity recognition, pose, face and hand tracking are re-

quired for human-computer interaction.

A thread of works have introduced multi-task networks

[54, 13, 22, 28] handling an increasingly large number of

tasks. Still, it is common practice to train devoted networks

for individual tasks when single-task performance is criti-

cal. This is supported by negative results from recent works

that have aimed at addressing multiple problems with a sin-

gle network [22, 28] - these have shown that there is a limit

on performance imposed by the capacity of the network,

manifested as a drop in performance when loading a sin-

gle network with more tasks. Stronger backbones can uni-

formly improve multi-task performance, but still the per-

task performance can be lower than the single-task perfor-

mance with the same backbone.

*Work done while at Facebook AI Research.
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Figure 1. Learned representations across tasks and layers: We

visualize how features change spatially in different depths of our

multi-task network. For each layer (row) we compute a common

PCA basis across tasks (column) and show the first three principal

components as RGB values at each spatial location. We observe

that the features are more similar in early layers and get more

adapted to specific tasks as depth increases, leading to disentan-

gled, task-specific representations in the later layers. We see for

instance that the normal task features co-vary with surface proper-

ties, while the part features remain constant in each human part.

This problem, known as task interference, can be under-

stood as facing a the dilemma of invariance versus sensitiv-

ity: the most crucial information for one task can be a nui-

sance parameter for another, which leads to potentially con-

flicting objectives when training multi-task networks. An

example of such a task pair is pose estimation and object de-

tection: when detecting or counting people the detailed pose

information is a nuisance parameter that should be elimi-

nated at some point from the representation of a network

aiming at pose invariance [22]. At the same time, when

watching a dance performance, one needs the detailed pose

of the dancers, while ignoring the large majority of specta-

tors. More generally this is observed when combining a task
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Figure 2. While using a shared backbone network, every task

adapts its behavior in a separate, flexible, and lightweight man-

ner, allowing us to customize computation for the task at hand.

We refine features with a task-specific residual adapter branch

(RA), and attend to particular channels with task-specific Squeeze-

and-Excitation (SE) modulation. We also enforce the task gradi-

ents (dashed lines) to be statistically indistinguishable through ad-

versarial training, further promoting the separation between task-

specific and generic layers.

that is detail-oriented and requires high spatial acuity with a

task that requires abstraction from spatial details, e.g. when

one wants to jointly do low- and high-level vision. In other

words, one task’s noise is another one’s signal.

We argue that this dilemma can be addressed by single-

tasking, namely executing task a time, rather than getting all

task responses in a single forward pass through the network.

This reflects many practical setups, for instance when one

sees the results of a single computational photography task

at a time on the screen of a mobile phone, rather than all of

them jointly. Operating in this setup allows us to implement

an “attention to task” mechanism that changes the network’s

behaviour in a task-adapted manner, as shown in Fig. 1. We

use the exact same network backbone in all cases, but we

modify the network’s behavior according to the executed

task by relying on the most task-appropriate features. For

instance when performing a low-level task such as boundary

detection or normal estimation, the network can retain and

elaborate on fine image structures, while shunning them for

a high-level task that requires spatial abstraction.

We explore two different task attention mechanisms, as

shown in Fig. 2. Firstly, we use data-dependent modulation

signals [42] that enhance or suppress neuronal activity in a

task-specific manner. Secondly, we use task-specific Resid-

ual Adapter [45] blocks that latch on to a larger architecture

in order to extract task-specific information which is fused

with the representations extracted by a generic backbone.

This allows us to learn a shared backbone representation

that serves all tasks but collaborates with task-specific pro-

cessing to build more elaborate task-specific features.

These two extensions can be understood as promoting a

disentanglement between the shared representation learned

across all tasks and the task-specific parts of the network.

Still, if the loss of a single task is substantially larger, its

gradients will overwhelm those of others and disrupt the

training of the shared representation. In order to make

sure that no task abuses the shared resources we impose

a task-adversarial loss to the network gradients, requir-

ing that these are statistically indistinguishable across tasks.

This loss is minimized during training through double back-

propagation [10], and leads to an automatic balancing of

loss terms, while promoting compartmentalization between

task-specific and shared blocks.

2. Related Work

Our work draws ideas from several research threads.

Multiple Task Learning (MTL): Several works have

shown that jointly learning pairs of tasks yields fruitful re-

sults in computer vision. Successful pairs include detec-

tion and classification [19, 46], detection and segmenta-

tion [22, 12], or monocular depth and segmentation [13, 59].

Joint learning is beneficial for unsupervised learning [43],

when tasks provide complementary information (eg. depth

boundaries and motion boundaries [65]), in cases where

task A acts as regularizer for task B due to limited data [32],

or in order to learn more generic representations from syn-

thetic data [47]. Xiao et al. [58] unify inhomogeneous

datasets in order to train for multiple tasks, while [62]

explore relationships among a large amount of tasks for

transfer learning, reporting improvements when transfer-

ring across particular task pairs.

Despite these positive results, joint learning can be harm-

ful in the absence of a direct relationship between task pairs.

This was reported clearly in [28] where the joint learning of

low-, mid- and high-level tasks was explored, reporting that

the improvement of one task (e.g. normal detection) was to

the detriment of another (e.g. object detection). Similarly,

when jointly training for human pose estimation on top of

detection and segmentation, Mask R-CNN performs worse

than its two-task counterpart [22].

This negative result first requires carefully calibrating the

relative losses of the different tasks, so that none of them

deteriorates excessively. To address this problem, Grad-

Norm [8] provides a method to adapt the weights such

that each task contributes in a balanced way to the loss,

by normalizing the gradients of their losses; a more recent

work [56] extends this approach to homogenize the task

gradients based on adversarial training. Following a proba-

bilistic treatment [25] re-weigh the losses according to each

task’s uncertainty, while Sener and Koltun [53] estimate an

adaptive weighting of the different task losses based on a

pareto-optimal formulation of MTL. Similarly, [20] provide

a MTL framework where tasks are dynamically sorted by
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difficulty and the hardest are learned first.

A second approach to mitigate task interference consists

in avoiding the ‘spillover’ of gradients from one task’s loss

to the common features serving all tasks. One way of doing

this is explicitly constructing complementary task-specific

feature representations [51, 49], but results in an increase of

complexity that is linear in the number of tasks. An alter-

native, adopted in the related problem of lifelong learning

consists in removing from the gradient of a task’s loss those

components that would incur an increase in the loss of pre-

vious tasks [26, 33]. For domain adaptation [4] disentangle

the representations learned by shared/task-specific parts of

networks by enforcing similarity/orthogonality constraints.

Adversarial Training has been used in the context of domain

adaptation [17, 32] to the feature space in order to fool the

discriminator about the source domain of the features.

In our understanding these losses promote a compart-

mental operation of a network, achieved for instance when

a block-structured weight matrix prevents the interference

of features for tasks that should not be connected. A

deep single-task implementation of this would be the gat-

ing mechanism of [1]. For multi-tasking, Cross Stitch Net-

works [38] automatically learn to split/fuse two indepen-

dent networks in different depths according to their learned

tasks, while [40] estimate a block-structured weight matrix

during CNN training.

Attention mechanisms: Attention has often been used

in deep learning to visualize and interpret the inner work-

ings of CNNs [55, 63, 52], but has also been employed

to improve the learned representations of convolutional

networks for scale-aware semantic segmentation [5], fine-

grained image recognition [16] or caption generation [60,

34, 2]. Squeeze and Excitation Networks [24] and their

variants [57, 23] modulate the information of intermedi-

ate spatial features according to a global representation and

be understood as implementing attention to different chan-

nels. Deep Residual Adapters [44, 45] modulate learned

representations depending on their source domain. Several

works study modulation for image retrieval [64] or classifi-

cation tasks [42, 39], and embeddings for different artistic

styles [11]. [61] learns object-specific modulation signals

for video object segmentation, and [48] modulates features

according to given priors for detection and segmentation. In

our case we learn task-specific modulation functions that al-

low us to drastically change the network’s behaviour while

using identical backbone weights.

3. Attentive Single-Tasking Mechanisms

Having a shared representation for multiple tasks can

be efficient from the standpoint of memory- and sample-

complexity, but can result in worse performance if the same

resources are serving tasks with unrelated, or even conflict-

ing objectives, as described above. Our proposed remedy to

SE(.)
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Skip Connection
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Figure 3. Single-task network architecture: We use Deeplab-

v3+ with a Squeeze-and-Excitation (SE)-ResNet backbone. SE

modules are present in all bottleneck blocks of the encoder and

the decoder. Attentive multi-tasking uses different SE layers per

task to modulate the network features in a task-specific manner.

this problem consists in learning a shared representation for

all tasks, while allowing each task to use this shared repre-

sentation differently for the construction of its own features.

3.1. Taskspecific feature modulation

In order to justify our approach we start with a minimal

example. We consider that we have two tasks A and B that

share a common feature tensor F(x, y, c) at a given network

layer, where x, y are spatial coordinates and c = 1, . . . , C
are the tensor channels. We further assume that a subset

SA of the channels is better suited for task A, while SB is

better for B. For instance if A is invariant to deformations

(detection) while B is sensitive (pose estimation), SA could

be features obtained by taking more context into account,

while SB would be more localized.

One simple way of ensuring that tasks A and B do not

interfere while using a shared feature tensor is to hide the

features of task B when training for task A:

FA(x, y, c) = mA[c] · F(x, y, c) (1)

where mA[c] ∈ {0, 1} is the indicator function of set SA. If

c /∈ SA then FA(x, y, c) = 0, which means that the gradient
∂LA

∂F(x,y,c) sent by the loss LA of task A to c ∈ SA will be

zero. We thereby avoid task interference since Task A does

not influence nor use features that it does not need.

Instead of this hard choice of features per task we opt for

a soft, differentiable membership function that is learned in

tandem with the network and allows the different tasks to

discover during training which features to use. Instead of

a constant membership function per channel we opt for an

image-adaptive term that allows one to exploit the power of

the squeeze-and-excitation block [24].
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In particular we adopt the squeeze-and-excitation (SE)

block (also shown in Fig. 2), combining a global aver-

age pooling operation of the previous layer with a fully-

connected layer that feeds into a sigmoid function, yielding

a differentiable, image-dependent channel gating function.

We set the parameters of this layer to be task-dependent, al-

lowing every task to modulate the available channels differ-

ently. As shown in Section 5, this can result in substantial

improvements when compared to a baseline that uses the

same SE block for all tasks.

3.2. Residual Adapters

The feature modulation described above can be under-

stood as shunning those features that do not contribute to

the task while focusing on the more relevant ones. Intu-

itively, this does not add capacity to the network but rather

cleans the signal that flows through it from information that

the task should be invariant to. We propose to complement

this by appending task-specific sub-networks that adapt and

refine the shared features in terms of residual operations of

the following form:

LA(x) = x+ L(x) + RAA(x), (2)

where L(x) denotes the default behaviour of a residual

layer, RAA is the task-specific residual adapter of task A,

and LA(x) is the modified layer. We note that if L(x) and

RAA(x) were linear layers this would amount to the classi-

cal regularized multi-task learning of [15].

These adapters introduce a task-specific parameter and

computation budget that is used in tandem with that of the

shared backbone network. We show in Section 5 that this is

typically a small fraction of the budget used for the shared

network, but improves accuracy substantially.

When employing disentangled computation graphs with

feature modulation through SE modules and/or residual

adapters, we also use task-specific batch-normalization lay-

ers, that come with a trivial increase in parameters (while

the computational cost remains the same).

4. Adversarial Task Disentanglement

The idea behind the task-specific adaptation mechanisms

described above is that even though a shared representation

has better memory/computation complexity, every task can

profit by having its own ‘space’, i.e. separate modelling ca-

pacity to make the best use of the representation - by mod-

ulating the features or adapting them with residual blocks.

Pushing this idea further we enforce a strict separation

of the shared and task-specific processing, by requiring that

the gradients used to train the shared parameters are statis-

tically indistinguishable across tasks. This ensures that the

shared backbone serves all tasks equally well, and is not

disrupted e.g. by one task that has larger gradients.

x
A

y=Ax
L(y)

g=dy
dA=xTg

x
A

y=Ax
L(y)

g=dy

dx=gAT

x
A

y=Ax
L(y)

•(-λ)

h=D(g)
LD(h)

dy: ∂L/∂y

forward pass

backward pass

dA=xTg
dx=gAT

g=dy

-λ • ∂LD/∂h ∂LD/∂h

Figure 4. Double backprop [10] exposes the gradients computed

during backprop (row 1) by unfolding the computation graph of

gradient computation (row 2). Exposing the gradients allows us

to train them in an adversarial setting by using a discriminator,

forcing them to be statistically indistinguishable across tasks (row

3). The shared network features x then receive gradients that have

the same distribution irrespective of the task, ensuring that no task

abuses the shared network, e.g. due to higher loss magnitude. The

gradient of the discriminator is reversed (negated) during adver-

sarial training, and the parameter λ ∈ [0, 1] controls the amount

of negative gradient that flows back to the network [17].

Database Type # Train Im. # Test Im. Edge S.Seg H. Parts Normals Saliency Depth Albedo

PASCAL Real 4,998 5,105 X X X X∗ X∗

NYUD Real 795 654 X X X X

FSV Synthetic 223,197 50,080 X X X

Table 1. Multi-task benchmark statistics: We conduct the main

volume of experiments on PASCAL for 5 tasks (∗ labels obtained

via distillation). We also use the fully labelled subsets of NYUD,

and the synthetic FSV dataset.

We enforce this constraint through adversarial learning.

Several methods, starting from Adversarial Domain Adap-

tation [18], use adversarial learning to remove any trace of

a given domain from the learned mid-level features in a

network; a technique called Adversarial multi-task training

[32] falls in the same category.

Instead of removing domain-specific information from

the features of a network (which serves domain adaptation),

we remove any task-specific trace from the gradients sent

from different tasks to the shared backbone (which serves

a division between shared and task-specific processing). A

concurrent work [56] has independently proposed this idea.

As shown in Fig. 4 we use double back-propagation [10]

to ‘expose’ the gradient sent from a task t to a shared layer

l, say gt(l). By exposing the variable we mean that we un-

fold its computation graph, which in turn allows us to back-

propagate through its computation. By back-propagating on

the gradients we can force them to be statistically indistin-

guishable across tasks through adversarial training.

In particular we train a task classifier on top of the gra-

dients lying at the interface of the task-specific and shared

networks and use sign negation to make the task classifier

fail [17]. This amounts to solving the following optimiza-
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Task Dataset Metric R-101 strong baseline

Edge BSDS500 odsF ↑ 82.5 81.3 [27]

S.Seg VOC mIoU ↑ 78.9 79.4 [6]

H. Parts P. Context mIoU ↑ 64.3 64.9* [5]

Normals NYUD mErr ↓ 20.1 19.0 [3]

Saliency PASCAL-S maxF ↑ 84.0 83.5 [28]

Depth NYUD RMSE ↓ 0.56 0.58 [59]

Table 2. Architecture capacity: We report upper-bounds of per-

formance that can be reached on various competitive (but inhomo-

geneous) datasets by our architecture, and compare to strong task-

specific baselines. All experiments are initialized from ImageNet

pre-trained weights (∗ means that COCO pre-training is included).

The arrow indicates better performance for each metric.

tion problem in terms of the discriminator weights, wD and

the network weights, wN :

minwD
maxwN

L(D(gt(wN ), wD), t), (3)

where gt(wN ) is the gradient of task t computed with wN ,

D(·, wD) is the discriminator’s output for input ·, and L(·, t)
is the cross-entropy loss for label t that indicates the source

task of the gradient.

Intuitively this forces every task to do its own process-

ing within its own blocks, so that it does not need from the

shared network anything different from the other tasks. This

results in a separation of the network into disentangled task-

specific and shared compartments.

5. Experimental Evaluation

Datasets We validate our approach on different datasets

and tasks. We focus on dense prediction tasks that can be

approached with fully convolutional architectures. Most of

the experiments are carried out on the PASCAL [14] bench-

mark, which is popular for dense prediction tasks. We also

conduct experiments on the smaller NYUD [41] dataset of

indoor scenes, and the recent, large scale FSV [29] dataset

of synthetic images. Statistics, as well as the different tasks

used for each dataset are presented in Table 1.

Base architecture: We use our re-implementation of

Deeplab-v3+ [6] as the base architecture of our method,

due to its success on dense semantic tasks. Its architecture

is based on a strong ResNet encoder, with a-trous convo-

lutions to preserve reasonable spatial dimensions for dense

prediction. We use the latest version that is enhanced with

a parallel a-trous pyramid classifier (ASPP) and a power-

ful decoder. We refer the reader to [6] for more details.

The ResNet-101 backbone used in the original work is re-

placed with its Squeeze-and-Excitation counterpart (Fig. 3),

pre-trained on ImageNet [50]. The pre-trained SE modules

serve as an initialization point for the task-specific modula-

tors for multi-tasking experiments.

The architecture is tested for a single task in various

competitive benchmarks for dense prediction: edge de-

tection, semantic segmentation, human part segmentation,

SE-bb #T Edge ↑ Seg ↑ Parts ↑ Norm ↓ Sal ↑

1 70.3 63.98 55.85 15.11 63.92

X 1 71.3 64.93 57.12 14.90 64.17

5 68.0 58.59 53.80 16.68 60.71

X 5 69.2 60.20 54.10 17.04 62.10

(a) Baselines. Using SE blocks in ResNet backbones (SE-bb) improves

results. In all our experiments we use SE-bb baselines for fair comparison.

SE RA #T Edge ↑ Seg ↑ Parts ↑ Norm ↓ Sal ↑ ∆m% ↓

1 71.3 64.93 57.12 14.90 64.17

5 69.2 60.20 54.10 17.04 62.10 6.62

X 5 70.5 62.80 56.41 15.27 64.84 1.42

X 5 71.1 64.00 56.84 15.05 64.35 0.59

(b) Modulation. Both SE and RA are effective modulation methods.

enc dec #T Edge ↑ Seg ↑ Parts ↑ Norm ↓ Sal ↑ ∆m% ↓

1 71.3 64.93 57.12 14.90 64.17

5 69.2 60.20 54.10 17.04 62.1 6.62

X 5 70.6 63.33 56.73 15.14 63.23 1.44

X X 5 71.1 64.00 56.84 15.05 64.35 0.59

(c) SE modulation. Modulating varying portions of the network (e.g. en-

coder or decoder) allows trading off performance and computation.

mod A #T Edge ↑ Seg ↑ Parts ↑ Norm ↓ Sal ↑ ∆m% ↓

1 71.3 64.93 57.12 14.90 64.17

5 69.2 60.20 54.10 17.04 62.10 6.62

X 5 69.7 62.20 55.04 16.17 62.19 4.34

X 5 71.1 64.00 56.84 15.05 64.35 0.59

X X 5 71.0 64.61 57.25 15.00 64.70 0.11

(d) Adversarial training is beneficial both w/ and w/o SE modulation.

backbone SEA #T Edge ↑ Seg ↑ Parts ↑ Norm ↓ Sal ↑ ∆m% ↓

R-26 1 71.3 64.93 57.12 14.90 64.17

R-26 5 69.2 60.20 54.10 17.04 62.10 6.62

R-26 X 5 71.0 64.61 57.25 15.00 64.70 0.11

R-50 1 72.7 68.30 60.70 14.61 65.40

R-50 5 69.2 63.20 55.10 16.04 63.60 6.81

R-50 X 5 72.4 68.00 61.12 14.68 65.71 0.04

R-101 1 73.5 69.76 63.48 14.15 67.41

R-101 5 70.5 66.45 61.54 15.44 66.39 4.50

R-101 X 5 73.5 68.51 63.41 14.37 67.72 0.60

(e) Backbones. Improvements from SE modulation with adversarial train-

ing (SEA) are observed regardless of the capacity/depth of the backbones.

Table 3. Ablations on PASCAL. We report average relative per-

formance drop (∆m%) with respect to single task baselines. Back-

bone is R-26 unless otherwise noted.

surface normal estimation, saliency, and monocular depth

estimation. We compare the results obtained with vari-

ous competitive architectures. For edge detection we use

the BSDS500 [37] benchmark and its optimal dataset F-

measure (odsF) [36]. For semantic segmentation we train

on PASCAL VOC trainaug [14, 21] (10582 images),

and evaluate on the validation set of PASCAL using mean

intersection over union (mIoU). For human part segmenta-

tion we use PASCAL-Context [7] and mIoU. For surface

normals we train on the raw data of NYUD [41] and evalu-

ate on the test set using mean error (mErr) in the predicted
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Figure 5. Performance vs. Resources: Average relative drop (∆m%) as a function of the number of parameters (left), and multiply-adds

(right), for various points of operation of our method. We compare 3 different backbone architectures, indicated with different colors.

We compare against single-tasking baseline (ST baseline), and multi-tasking baseline (MT baseline). Performance is measured relative to

the best single-tasking model (R-101 backbone). An increase in performance comes for free with adversarial training (Adv). Modulation

per task (SE) results in large improvements in performance, thanks to the disentangled graph representations, albeit with an increase in

computational cost if used throughout the network, instead of only on the decoder (SE Dec-only vs. SE). We observe a drastic drop in

number of parameters needed for our model in order to reach the performance of the baseline (SE, Adv). By using both modulation and

adversarial training (Adv SE RA), we are able to reach single-task performance, with far fewer parameters.

SEA #T Edge ↑ Seg ↑ Norm ↓ Depth ↓ ∆m% ↓

1 74.4 32.82 23.30 0.61

4 73.2 30.95 23.34 0.70 5.44

X 4 74.5 32.16 23.18 0.57 -1.22

(a) Results on NYUD-v2.

SEA #T Seg ↑ Albedo ↓ Disp ↓ ∆m% ↓

1 71.2 0.086 0.063

3 66.9 0.093 0.078 7.04

X 3 70.7 0.085 0.063 -0.02

(b) Results on FSV.

Table 4. Improvements from SE with modulation (SEA) transfer

to NYUD-v2 and FSV datasets. We report average performance

drop with respect to single task baselines. We use R-50 backbone.

angles as the evaluation metric. For saliency we follow [28]

by training on MSRA-10K [9], testing on PASCAL-S [31]

and using the maximal F-measure (maxF) metric. Finally,

for depth estimation we train and test on the fully anno-

tated training set of NYUD using root mean squared error

(RMSE) as the evaluation metric. For implementation de-

tails, and hyper-parameters, please refer to the Appendix.

Table 2 benchmarks our architecture against popular

state-of-the-art methods. We obtain competitive results,

for all tasks. We emphasize that these benchmarks are

inhomogeneous, i.e. their images are not annotated with

all tasks, while including domain shifts when training for

multi-tasking (eg. NYUD contains only indoor images). In

order to isolate performance gains/drops as a result of multi-

task learning (and not domain adaptation, or catastrophic

forgetting), in the experiments that follow, we use homoge-

neous datasets.

Multi-task learning setup: We proceed to multi-tasking

experiments on PASCAL. We keep the splits of PASCAL-

Context, which provides labels for edge detection, seman-

tic segmentation, and human part segmentation. In or-

der to keep the dataset homogeneous and the architec-

ture identical for all tasks, we did not use instance level

tasks (detection, pose estimation) that are provided with

the dataset. To increase the number of tasks we auto-

matically obtained ground-truth for surface normals and

saliency through label-distillation using pre-trained state-

of-the-art models ([3] and [6], respectively), since PAS-

CAL is not annotated with those tasks. For surface nor-

mals, we masked out predictions from unknown and/or in-

valid classes (eg. sky) during both training and testing. In

short, our benchmark consists of 5 diverse tasks, ranging

from low-level (edge detection, surface normals), to mid-

level (saliency) and high-level (semantic segmentation, hu-

man part segmentation) tasks.

Evaluation metric: We compute multi-tasking perfor-

mance of method m as the average per-task drop with re-

spect to the single-tasking baseline b (i.e different networks

trained for a single task each):

∆m =
1

T

T∑

i=1

(−1)li (Mm,i −Mb,i) /Mb,i (4)

where li = 1 if a lower value means better for measure Mi

of task i, and 0 otherwise. Average relative drop is com-

puted against the baseline that uses the same backbone.

To better understand the effect of different aspects of

our method, we conduct a number of ablation studies and

present the results in Table 3.
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Edge Detection Semantic Segmentation Human Parts Surface Normals Saliency Estimation

Figure 6. t-SNE visualization of task-dependent feature activations of a single image at increasing depths of the network (from left to

right). Features in early layers are more similar across tasks and progressively get more adapted to specific tasks in later layers.

We construct a second baseline, which tries to learn all

tasks simultaneously with a single network, by connecting

T task-specific convolutional classifiers (1 × 1 conv lay-

ers) at the end of the network. As also reported by [28], a

non-negligible average performance drop can be observed

(-6.6% per task for R-26 with SE). We argue that this drop

is mainly triggered by conflicting gradients during learning.

Effects of modulation and adversarial training: Next,

we introduce the modulation layers described in Section 3.

We compare parallel residual adapters to SE (Table 3b)

when used for task modulation. Performance per task re-

covers immediately by separating the computation used by

each task during learning (-1.4 and -0.6 vs. -6.6 for adapters

and SE, respectively). SE modulation results in better per-

formance, while using slightly fewer parameters per task.

We train a second variant where we keep the computation

graph identical for all tasks in the encoder, while using SE

modulation only in the decoder (Table 3c). Interestingly,

this variant reaches the performance of residual adapters (-

1.4), while being much more efficient in terms of number

of parameters and computation, as only one forward pass of

the encoder is necessary for all tasks.

In a separate experiment, we study the effects of adver-

sarial training described in Section 4. We use a simple, fully

convolutional discriminator to classify the source of the gra-

dients. Results in Table 3d show that adversarial training is

beneficial for multi-tasking, increasing performance com-

pared to standard multi-tasking (-4.4 vs -6.6). Even though

the improvements are less significant compared to modula-

tion, they come without extra parameters or computational

cost, since the discriminator is used only during training.

The combination of SE modulation with adversarial

training (Table 3d) leads to additional improvements (-0.1%

worse than the single-task baseline), while further adding

residual adapters surpasses single-tasking (+0.45%), at the

cost of 12.3% more parameters per task (Fig. 5).

Deeper Architectures: Table 3e shows how modulation

and adversarial training perform when coupled with deeper

architectures (R-50 and R-101). The results show that our

method is invariant to the depth of the backbone, consis-

tently improving the standard multi-tasking results.

Resource Analysis: Figure 5 illustrates the performance

of each variant as a function of the number of parameters, as

well as the FLOPS (multiply-adds) used during inference.

We plot the relative average per-task performance compared

to the single-tasking R-101 variant (blue cross), for the 5

tasks of PASCAL. Different colors indicate different back-

bone architectures. We see a clear drop in performance by

standard multi-tasking (crosses vs. circles), but with fewer

parameters and FLOPS. Improvements due to adversarial

training come free of cost (triangles) with only a small over-

head for the discriminator during training.

Including modulation comes with significant improve-

ments, but also with a very slight increase of parameters and

a slight increase of computational cost when including the

modules on the decoder (rectangles). The increase becomes

more apparent when including those modules in the encoder

as well (diamonds). Our most accurate variant using all of

the above (hexagons) outperforms the single-tasking base-

lines by using only a fraction of their parameters.

We note that the memory and computational complex-

ities of the SE blocks and the adapters are negligible, but

since it affects the outputs of the layer it means that we can-

not share the computation of the ensuing layers across all

tasks, and thus the increased number of multiply-adds.

Learned Disentangled Representations: In order to

highlight the importance of task modulation, we plot the

learned representations for different tasks in various depths

of our network. Figure 6 shows the t-SNE representa-

tions [35] of the SE activations in equally spaced levels of

the network. The activations are averaged for the first 32

samples of the validation set, following [24], and they are

sorted per task. The resulting plots show that in the early

stages of the network the learned representations are almost

identical. They gradually become increasingly different as

depth grows, until they are completely different for differ-

ent tasks at the level of the classifier. We argue that this

disentanglement of learned representations also translates

to performance gains, as shown in Table 3.

Validation on additional datasets: We validate our
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Figure 7. Qualitative Results on PASCAL: We compare our model against standard multi-tasking. For the baseline, features from edge

detection appear in saliency estimation results, indicating the need to disentangle the learned representations.
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Figure 8. Qualitative Results on NYUD: We compare our model against standard multi-tasking. The baseline predicts blurry edges and

depth, as well as inconsistent labels on the pillow (where surface normals change). Our method is able to recover from these issues.

approach in two additional datasets, NYUD [41] and

FSV [29]. NYUD is an indoor dataset, annotated with la-

bels for instance edge detection, semantic segmentation into

41 classes, surface normals, and depth. FSV is a large-scale

synthetic dataset, labelled with semantic segmentation (3

classes), albedo, and depth (disparity).

Table 4 presents our findings for both datasets. As in

PASCAL, when we try to learn all tasks together, we ob-

serve a non-negligible drop compared to the single-tasking

baseline. Performance recovers when we plug in modula-

tion and adversarial training. Interestingly, in NYUD and

FSV we observe larger improvements compared to PAS-

CAL. Our findings are consistent with related works [59,

13] which report improved results for multi-tasking when

using depth and semantics.

Figures 7 and 8 illustrate some qualitative examples, ob-

tained by our method on PASCAL and NYUD, respectively.

Results in each row are obtained with a single network.

We compare our best model to the baseline architecture for

multi-tasking (without per-task modulation, or adversarial

training). We observe a quality degradation in the results of

the baseline. Interestingly, some errors are obtained clearly

as a result of standard multi-tasking. Edge features appear

during saliency estimation in Fig 7, and predicted seman-

tic labels change on the pillows, in areas where the surface

normals change, in Fig 8. In contrast, our method provides

disentangled predictions that are able to recover from such

issues, reach, and even surpass the single-tasking baselines.

6. Conclusions

In this work we have shown that we can attain, and

even surpass single-task performance through multi-task

networks, provided we execute one task at a time. We have

achieved this by introducing a method that allows a network

to ‘focus’ on the task at hand in terms of task-specific fea-

ture modulation and adaptation.

In a general vision architecture one can think of task

attention as being determined based on the operation cur-

rently being performed - e.g. using object detection to find

an object, normal estimation and segmentation to grasp it.

Tasks can also be executed in an interleaved manner, with

low-level tasks interacting with high-level ones in a bottom-

up/top-down cascade [30]. We intend to explore these direc-

tions in future research.
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