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Abstract

The simplicity of gradient descent (GD) made it the de-

fault method for training ever-deeper and complex neural

networks. Both loss functions and architectures are often ex-

plicitly tuned to be amenable to this basic local optimization.

In the context of weakly-supervised CNN segmentation, we

demonstrate a well-motivated loss function where an alter-

native optimizer (ADM)1 achieves the state-of-the-art while

GD performs poorly. Interestingly, GD obtains its best result

for a “smoother” tuning of the loss function. The results are

consistent across different network architectures. Our loss

is motivated by well-understood MRF/CRF regularization

models in “shallow” segmentation and their known global

solvers. Our work suggests that network design/training

should pay more attention to optimization methods.

1. Motivation and Background

Weakly supervised training of neural networks is often

based on regularized losses combining an empirical loss

with some regularization term, which compensates for lack

of supervision [38, 14]. Regularized losses are also use-

ful for CNN segmentation [32, 34] where full supervision

is often infeasible, particularly in biomedical applications.

Such losses are motivated by regularization energies in shal-

low2 segmentation, where multi-decade research went into

designing robust regularization models based on geometry

[24, 7, 5], physics [18, 1], or robust statistics [13]. Such

models should represent realistic shape priors compensating

for image ambiguities, yet be amenable to efficient solvers.

Many robust regularizers commonly used in vision [31, 17]

are non-convex and require powerful optimizers to avoid

many weak local minima. Basic local optimizers typically

fail to produce practically useful results with such models.

Effective weakly-supervised CNN methods for vision

should incorporate priors compensating for image data am-

biguities and lack of supervision just as in shallow vision

methods. For example, recent work [38, 34] formulated

1https://github.com/dmitrii-marin/adm-seg
2In this paper, “shallow” refers to methods unrelated to deep learning.

the problems of semi-supervised classification and weakly-

supervised segmentation as minimization of regularized

losses. This principled approach outperforms common ‘’pro-

posal generation” methods [23, 20] computing “fake” ground

truths to mimic standard fully-supervised training. However,

we show that the use of regularization models as losses in

deep learning is limited by GD, the backbone optimizer

in current training methods. It is well-known that GD

leads to poor local minima for many regularizers in shal-

low segmentation and many stronger algorithms were pro-

posed [4, 6, 21, 31, 15]. Similarly, we show better optimiza-

tion beyond GD for regularized losses in deep segmentation.

One popular general approach applicable to regularized

losses is ADMM [3] that splits optimization into two effi-

ciently solvable sub-problems separately focusing on the

empirical loss and regularizer. We advocate similar splitting

to improve optimization of regularized losses in CNN train-

ing. In contrast, ADMM-like splitting of network parameters

in different layers was used in [35] to improve parallelism.

In our work weakly-supervised CNN segmentation is a

context for discussing regularized loss optimization. As a

regularizer, we use the common Potts model [6] and consider

its nearest- and large-neighborhood variants, a.k.a. sparse

grid CRF and dense CRF models. We show effectiveness of

ADMM-like splitting for grid CRF losses due to availability

of powerful sub-problem solvers, e.g. graph cuts [5]. As de-

tailed in [34, Sec.3], an earlier iterative proposal-generation

technique by [20] can be related to regularized loss splitting,

but their method is limited to dense CRF and its approximate

mean-field solver [22]. In fact, given such weak sub-problem

solvers, splitting is inferior to basic GD over the regularized

loss [34]. More insights on grid and dense CRF are below.

1.1. Pairwise CRF for Shallow Segmentation

Robust pairwise Potts model and its binary version (Ising

model) are used in many application such as stereo, recon-

struction, and segmentation. One can define this model as

a cost functional over integer-valued labeling S := (Sp ∈
Z+ | p ∈ Ω) of image pixels p ∈ Ω as follows

EP (S) =
∑

pq∈N

wpq · [Sp 6= Sq] (1)
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(a) 1D image (b) grid CRF [4] (c) dense CRF [22]

Figure 1. Synthetic segmentation example for grid and dense CRF (Potts) models: (a) intensities I(x) on 1D image. The cost of segments

S
t = {x | x < t} with different discontinuity points t according to (b) nearest-neighbor (grid) Potts and (c) larger-neighborhood (dense)

Potts. The latter gives smoother cost function, but its flatter minimum may complicate discontinuity localization.

(a) image + seeds (b) grid CRF [4] (c) dense CRF [22]
Figure 2. Real "shallow" segmentation example for sparse (b) and dense (c) CRF (Potts) models for image with seeds (a). Sparse Potts gives

smoother segment boundary with better edge alignment, while dense CRF inference often gives noisy boundary.

where N is a given neighborhood system, wpq is a discon-

tinuity penalty between neighboring pixels {p, q}, and [·]
is Iverson bracket. The nearest-neighbor version over k-

connected grid Nk, as well as its popular variational ana-

logues, e.g. geodesic active contours [7], convex relaxations

[27, 9], or continuous max-flow [39], are particularly well-

researched. It is common to use contrast-weighted discon-

tinuity penalties [6, 4] between the neighboring points, as

emphasized by the condition {pq} ∈ Nk below

wpq = λ · exp
−||Ip − Iq||

2

2σ2
· [{pq} ∈ Nk]. (2)

Nearest neighbor Potts models minimize the contrast-

weighted length of the segmentation boundary preferring

shorter perimeter aligned with image edges, e.g. see Fig. 2(b).

The popularity of this model can be explained by generality,

robustness, well-established foundations in geometry, and a

large number of efficient discrete or continuous solvers that

guarantee global optimum in binary problems [4] or some

quality bound in multi-label settings, e.g. α-expansion [6].

Dense CRF [22] is a Potts model where pairwise inter-

actions are active over significantly bigger neighborhoods

defined by a Gaussian kernel with a relatively large band-

width ∆ over pixel locations

wpq = λ · exp
−||Ip − Iq||

2

σ2
· exp

−‖p− q‖2

∆2
. (3)

Its use in shallow vision is limited as it often produces noisy

boundaries [22], see also Fig. 2(c). Also, global optimization

methods mentioned above do not scale to dense neighbor-

hoods. Yet, dense CRF model is popular in the context of

CNNs where it can be used as a differentiable regularization

layer [41, 29]. Larger bandwidth yields smoother objective

(1), see Fig. 1(c), amenable to gradient descent or other local

linearization methods like mean-field inference that are easy

to parallelize. Note that existing efficient inference methods

for dense CRF require bilateral filtering [22], which is re-

stricted to Gaussian weights as in (3). This is in contrast to

global Potts solvers, e.g. α-expansion, that can use arbitrary

weights, but become inefficient for dense neighborhoods.

Noisier dense CRF results, e.g. in Fig. 2(c), imply weaker

regularization. Indeed, as discussed in [36], for larger neigh-

borhoods the Potts model gets closer to cardinality potentials.

Bandwidth ∆ in (3) is a resolution scale at which the model

sees the segmentation boundary. Weaker regularization in

dense CRF may preserve some thin structures smoothed

out by fine-resolution boundary regularizers, e.g. nearest-

neighbor Potts. However, this is essentially the same “noise

preservation” effect shown in Fig. 2(c). For consistency, the

rest of the paper refers to the nearest-neighbor Potts model

as grid CRF, and large-neighborhood Potts as dense CRF.

1.2. Summary of Contributions

Any motivation for standard regularization models in shal-

low image segmentation, as in the previous section, directly

translates into their motivation as regularized loss functions

in weakly supervised CNN segmentation [32, 34]. The main
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issue is how to optimize these losses. Standard training tech-

niques based on gradient descent may not be appropriate for

many powerful regularization models, which may have many

local minima. Below is the list of our main contributions:

• As an alternative to gradient descent (GD), we pro-

pose a splitting technique, alternating direction method

(ADM)3, for minimizing regularized losses during net-

work training. ADM can directly employ efficient regu-

larization solvers known in shallow segmentation.

• Compared to GD, our ADM approach with α-expansion

solver significantly improves optimization quality for

the grid CRF (nearest-neighbor Potts) loss in weakly

supervised CNN segmentation. While each iteration of

ADM is slower than GD, the loss function decreases at

a significantly larger rate with ADM. In one step it can

reach lower loss values than those where GD converges.

Grid CRF has never been investigated as loss for CNN

segmentation and is largely overlooked.

• The training quality with grid CRF loss achieves the-

state-of-the-art in weakly supervised CNN segmenta-

tion. We compare dense CRF and grid CRF losses.

Our results may inspire more research on regularized

segmentation losses and their optimization.

2. ADM for Regularized Loss Optimization

Assume there is a dataset of pairs of images and partial

ground truth labelings. For simplicity of notation, we im-

plicitly assume summation over all pairs in dataset for all

expressions of loss functions. For each pixel p ∈ Ω of each

image I there is an associated color or intensity Ip of that

pixel. The labeling Y = (Yp|p ∈ ΩL) where ΩL ⊂ Ω
is a set of labeled pixels, each Yp ∈ {0, 1}

K is a one-hot

distribution and K is the number of labels. We consider a

regularized loss for network φθ of the following form

ℓ(Sθ, Y ) + λ ·R(Sθ) → min
θ

(4)

where Sθ ∈ [0, 1]|Ω|×K is a K-way softmax segmentation

generated by the network Sθ := φθ(I), and R(·) is a regu-

larization term, e.g. relaxed sparse Potts or dense CRF, and

ℓ(·, ·) is a partial ground-truth loss, for instance:

ℓ(Sθ, Y ) =
∑

p∈ΩL

H(Yp, Sp,θ),

where H(Yp, Sp,θ) = −
∑

k Y
k
p logSk

p,θ is the cross entropy

between predicted segmentation Sp,θ (a row of matrix Sθ

corresponding to pixel p) and ground truth labeling Yp.

3Standard ADMM [3] casts a problem minx f(x) + g(x) into

minx,y maxλ f(x) + g(y) + λT(x − y) + ρ‖x − y‖2 and alternates

updates over x, y and λ optimizing f and g in parallel. Our ADM uses a

different form of splitting and can be seen as a penalty method, see Sec. 2.

We present a general alternating direction method (ADM)

to optimize neural network regularized losses of the general

form in (4) using the following splitting of the problem:

minimize
θ,X

ℓ(Sθ, Y ) + λR(X)

subject to
∑

p∈ΩU

D(Xp|Sp,θ) = 0,

Xp = Yp ∀p ∈ ΩL

(5)

where we introduced one-hot distributions Xp ∈ {0, 1}
K

and some divergence measure D, e.g. the Kullback-Leibler

divergence. R(X) can now be a discrete classic MRF regu-

larization, e.g. (1). This equates to the following Lagrangian

min
θ,X

max
γ

ℓ(Sθ, Y ) + λR(X) + γ
∑

p∈ΩU

D(Xp|Sp,θ)

subject to Xp = Yp ∀p ∈ ΩL.

(6)

We alternate optimization over X and θ in (6). The maxi-

mization over γ increases its value at every update resulting

in a variant of simulated annealing. We have experimented

with variable multiplier γ but found no advantage compared

to fixed γ. So, we fix γ and do not optimize for it. In sum-

mary, instead of optimizing the regularization term with gra-

dient descent, our approach splits regularized-loss problem

(4) into two sub-problems. We replace the softmax outputs

Sp,θ in the regularization term by latent discrete variables

Xp and ensure consistency between both variables (i.e., Sθ

and X) by minimizing divergence D.

This is similar conceptually to the general principles of

ADMM [3, 37]. Our ADM splitting accommodates the use

of powerful and well-established discrete solvers for the

regularization loss. As we show in Sec. 3, the popular α-

expansion solver [6] significantly improves optimization of

grid CRF losses yielding state-of-the-art training quality.

Such efficient solvers guarantee global optimum in binary

problems [4] or a quality bound in multi-label case [6].

Our discrete-continuous ADM method alternates two

steps, each decreasing (6), until convergence. Given fixed

discrete latent variables Xp computed at the previous itera-

tion, the first step learns the network parameters θ by mini-

mizing the following loss via standard back-propagation and

a variant of stochastic gradient descent (SGD):

minimize
θ

ℓ(Sθ, Y ) + γ
∑

p∈ΩU

D(Xp|Sp,θ) (7)

The second step fixes the network output Sθ and finds the

next latent binary variables X by minimizing the following

objective over X via any suitable discrete solver:

minimize
X∈{0,1}|Ω|×K

λR(X) + γ
∑

p∈ΩU

D(Xp|Sp,θ)

subject to Xp = Yp ∀p ∈ ΩL.

(8)
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Because Xp is a discrete variable with only K possible val-

ues, the second term in (8) is a basic unary term. Similarly,

the equality constraints could be implemented as unary terms

using prohibitive values of unary potentials. Unary terms

are simplest possible energy potentials that can be handled

by any general discrete solver. On the other hand, the reg-

ularization term R(X) usually involves interactions of two

or more variables introducing new properties of solution

together with optimization complexity. In case of grid CRF

one can use graph cut [4], α-expansion [6], QPBO [2, 28],

TRWS [21], LBP [26], LSA-TR [15] etc.

In summary, our approach alternates the two steps de-

scribed above. For each minibatch we compute network

prediction, then compute hidden variables X optimizing (8),

then compute gradients of loss (7) and update the parameters

of the network using a variant of SGD. The outline of our

ADM scheme is shown in Alg. 1.

Algorithm 1 ADM for regularized loss (4).

Require: sequence of minibatches

i← 0;

initialize network parameters θ(0);

for each minibatch B do

for each image-labeling pair (I, Y ) ∈ B do

Compute segmentation prediction Sθ ← φθ(i)(I);
Solve energy (8) for X with e.g. α-expansion;

Compute gradients g w.r.t. parameters θ of (7);

end for

Compute average over the batch g(i) ← 1
|B|

∑
g;

Update network parameters θ(i+1) using gradient g(i);

i← i+ 1;

end for

3. Experimental Results

We conduct experiments for weakly supervised CNN seg-

mentation with scribbles as supervision [23]. The focus is

on regularized loss approaches [32, 34] yet we also compare

our results to proposal generation based method, e.g. Scrib-

bleSup [23]. We test both the grid CRF and dense CRF as

regularized losses. Such regularized loss can be optimized

by stochastic gradient descent (GD) or alternative direction

method (ADM), as discussed in Sec. 2. We compare three

training schemes, namely dense CRF with GD [34], grid

CRF with GD and grid CRF with ADM for weakly super-

vised CNN segmentation.

Before comparing segmentations, in Sec. 3.1 we test if

using ADM gives better regularization losses than that using

standard GD. Our plots of training losses (CRF energy) vs

training iterations show how fast the losses converge when

minimized by ADM or GD. Our experiment confirms that

first order approach like GD leads to a poor local minimum

for the grid CRF loss. There are clear improvements of

ADM over GD for minimization of the grid CRF loss. In

Sec. 3.2, rather than comparing in terms of optimization, we

compare ADM and GD in terms of segmentation quality.

We report both mIOU (mean intersection over union) and

accuracy in particular for boundary regions. In Sec. 3.3,

we also study these variants of regularized loss method in a

more challenging setting of shorter scribbles [23] or clicks in

the extreme case. With ADM as the optimizer, our approach

of grid CRF regularized loss compares favorably to dense

CRF based approach [34].

Dataset and implementation details Following recent

work [10, 23, 20, 32] on CNN semantic segmentation, we re-

port our results on PASCAL VOC 2012 segmentation dataset.

We train with scribbles from [23] on the augmented datasets

of 10,582 images and test on the val set of 1,449 images. We

report mIOU (mean intersection over union) and pixel-wise

accuracy. In particular, we are interested in how good is

the segmentation in the boundary region. So we compute

accuracy for those pixels close to the boundary, for example

within 8 or 16 pixels from semantic boundaries. Besides

mIOU and accuracy, we also measure the regularization

losses, i.e. the grid CRF. Our implementation is based on

DeepLabv24 and we show results on different networks in-

cluding deeplab-largeFOV, deeplab-msc-largeFOV, deeplab-

vgg16 and resnet-101. We do not apply any post-processing

to network output segmentation.

The networks are trained in two phases. Firstly, we train

the network to minimize partial cross entropy (pCE) loss

w.r.t scribbles. Then we train with a grid CRF or dense CRF

regularization term. To implement gradient descent for the

discrete grid CRF loss, we first take its quadratic relaxation,

〈1, Sp,θ〉+ 〈1, Sq,θ〉 − 2〈Sp,θ, Sq,θ〉. (9)

where Sp,θ, Sq,θ ∈ [0, 1]K and 〈·, ·〉 is the dot product. Then

we differentiate w.r.t. Sθ during back-propagation. While

there are ways, e.g. [11, 8], to relax discrete Pott’s model,

we focus on this simple and standard relaxation [40, 22, 34].

For our proposed ADM algorithm, which requires infer-

ence in the grid CRF, we use a public implementation of

α-expansion5. The CRF inference and loss are implemented

and integrated as Caffe [16] layers. We run α-expansion

for five iterations, which in most cases gives convergence.

Our dense CRF loss does not include the Gaussian kernel on

locations XY , since ignoring this term does not change the

mIOU measure [22]. The bandwidth for the dense Gaussian

kernel on RGBXY is validated to give the best mIOU. For

the grid CRF, the kernel bandwidth selection in (2) follows

4https://bitbucket.org/aquariusjay/deeplab-public-ver2
5http://mouse.cs.uwaterloo.ca/code/gco-v3.0.zip
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network
training set† validation set

GD ADM GD ADM

Deeplab-LargeFOV 2.52 2.41 2.51 2.33

Deeplab-MSc-largeFOV 2.51 2.40 2.49 2.33

Deeplab-VGG16 2.37 2.10 2.42 2.14

Resnet-101 2.66 2.49 2.61 2.42

Table 1. ADM gives better grid CRF losses than gradient descend

(GD). †We randomly selected 1,000 training examples.

standard Boykov-Jolly [4]

σ2 =
1

|N |

∑

pq∈N

‖Ip − Iq‖
2.

In general, our ADM optimization for regularized loss is

slower than GD due to the inference of grid CRF. However,

for inference algorithms, e.g. α-expansion, that cannot be

easily parallelized, we utilize simple multi-core paralleliza-

tion for all images in a batch to accelerate training. Note that

we do not use CRF inference during testing.

3.1. Loss Minimization

In this section, we show that for grid CRF losses the ADM

approach employing α-expansion [6], a powerful discrete

optimization method, outperforms common gradient descend

methods for regularized losses [32, 34] in terms of finding

a lower minimum of regularization loss. Tab. 1 shows the

grid CRF losses on both training and validation sets for

different network architectures. Fig. 3(a) shows the evolution

of the grid CRF loss over the number of iterations of training.

ADM requires fewer iterations to achieve the same CRF loss.

The networks trained using ADM scheme give lower CRF

losses for both training and validation sets.

The gradients with respect to the soft-max layer’s input

of the network are visualized in Fig. 4. Clearly, our ADM

approach with the grid CRF enforces better edge alignment.

Despite different formulations of regularized losses and their

optimization, the gradients of either (4) or (7) w.r.t. network

output Sθ are the driving force for training. In most of

the cases, GD produces significant gradient values only in

the vicinity of the current model prediction boundary as in

Fig. 4(c,d). If the actual object boundary is sufficiently dis-

tant the gradient methods fail to detect it due to the sparsity

of the grid CRF model, see Fig. 1 for an illustrative “toy”

example. On the other hand, the ADM method is able to pre-

dict a good latent segmentation allowing gradients leading

to a good solution more effectively, see Fig. 4(e).

Thus, in the context of grid CRFs, the ADM approach

coupled with α-expansion shows drastic improvement in the

optimization quality. In the next section, we further compare

ADM with GD to see which gives better segmentation.

Figure 3. Training progress of ADM and gradient descend (GD) on

Deeplab-MSc-largeFOV. Our ADM for the grid CRF loss with α-

expansion significantly improves convergence and achieves lower

training loss. For example, first 1,000 iterations of ADM give grid

CRF loss lower than GD’s best result.

3.2. Segmentation Quality

The quantitative measures for segmentation by different

methods are summarized in Tab. 2 and Tab. 3. The mIOU and

segmentation accuracy on the val set of PASCAL 2012 [12]

are reported for various networks. The supervision is scrib-

bles [23]. The quality of weakly supervised segmentation is

bounded by that with full supervision and we are interested

in the gap for different weakly supervised approaches.

The baseline approach is to train the network using pro-

posals generated by GrabCut style interactive segmentation

with such scribbles. Besides the baseline (train w/ proposals),

here we compare variants of regularized losses optimized

by gradient descent or ADM. The regularized loss is com-

prised of the partial cross entropy (pCE) w.r.t. scribbles and

grid/dense CRF. Other losses e.g. normalized cut [30, 32]

may give better segmentation, but the focus is to compare

gradient descent vs ADM optimization for the grid CRF.

It is common to apply dense CRF post-processing [10] to

the network’s output during testing. However, for the sake

of clear comparison, we show results without it.

As shown in Tab. 2, all regularized approaches work better

than the non-regularized approach that only minimizes the

partial cross entropy. Also, the regularized loss approaches

are much better than proposal generation based method since

erroneous proposals may mislead training.

Among regularized loss approaches, grid CRF with GD

performs the worst due to the fact that a first-order method

like gradient descent leads to the poor local minimum for the

grid CRF in the context of energy minimization. Our ADM

for the grid CRF gives much better segmentation competitive

with the dense CRF with GD. The alternative grid CRF based

method gives good quality segmentation approaching that for
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(a) input (b) prediction (c) Dense GD[34] (d) Grid GD (e) Grid ADM
Figure 4. The gradients with respect to scores of the deeplab_largeFOV network with the dense CRF (c) and grid CRF (d and e for using

either the plain stochastic gradient descent or our ADM scheme). Latent segmentation in ADM with the grid CRF loss produces gradients

more directly pointing to a good solution (e). Note, the object boundaries are more prominent in (e).

full supervision. Tab. 3 shows accuracy of different methods

for pixels close to the semantic boundaries. Such measure

tells the quality of segmentation in boundary regions.

Fig. 5 shows a few qualitative segmentation results.

3.3. Shortened Scribbles

Following the evaluation protocol in ScribbleSup [23],

we also test our regularized loss approaches training with

shortened scribbles. We shorten the scribbles from the two

ends at certain ratios of length. In the extreme case, scribbles

degenerate to clicks for semantic objects. We are interested

in how the weakly-supervised segmentation methods de-

grade as we reduce the length of the scribbles. We report

both mIOU and pixel-wise accuracy. As shown in Fig. 6,

our ADM for the grid CRF loss outperforms all competitors

giving significantly better mIOU and accuracy than GD for

the grid CRF loss. ADM degrades more gracefully than the

dense CRF as the supervision weakens.

The grid CRF has been overlooked in regularized CNN

segmentation currently dominated by the dense CRF as ei-

ther post-processing or trainable layers. We show that for

weakly supervised CNN segmentation, the grid CRF as the

regularized loss can give segmentation at least as good as

that with the dense CRF. The key to minimizing the grid

CRF loss is better optimization via ADM rather than gradi-

ent descent. Such competitive results for the grid CRF loss

confirm that it has been underestimated as a loss regularizer

for neural network training, as discussed in Sec. 1.

It has not been obvious whether the grid CRF as a loss is

beneficial for CNN segmentation. We show that straightfor-

ward gradient descent for the grid CRF does not work well.

Our technical contribution on optimization helps to reveal

the limitation and advantage of the grid CRF vs dense CRF

models. The weaker regularization properties, as discussed

in Sec. 1.1, of the dense CRF and our experiments favors the

grid CRF regularizer compared to the dense CRF.
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Weak supervision

Network Full sup. train w/

proposals

pCE

loss

+dense CRF loss +grid CRF loss

GD [34] GD ADM

Deeplab-largeFOV 63.0 54.8 55.8 62.2 60.4 61.7

Deeplab-MSc-largeFOV 64.1 55.5 56 63.1 61.2 62.9

Deeplab-VGG16 68.8 59.0 60.4 64.4 63.3 65.2

ResNet-101 75.6 64.0 69.5 72.9 71.7 72.8

Table 2. Weakly supervised segmentation results for different choices of network architecture, regularized losses and optimization via

gradient descent or ADM. We show mIOU on val set of PASCAL 2012. ADM consistently improves over GD for different networks for grid

CRF. Our grid CRF with ADM is competitive to previous state-of-the-art dense CRF (with GD) [34].

Weak supervision

Network Full sup. train w/

proposals

pCE

loss

+dense CRF loss +grid CRF loss

GD [34] GD ADM

al
l

p
ix

el
s Deeplab-MSc-largeFOV 90.9 86.4 86.5 90.6 89.9 90.5

Deeplab-VGG16 91.6 88.6 88.9 91.1 90.5 91.3

ResNet-101 94.5 90.2 92 93.1 92.9 93.4

tr
im

ap

1
6

p
ix

el
s Deeplab-MSc-largeFOV 80.1 73.9 66.7 77.8 74.8 76.7

Deeplab-VGG16 81.9 75.5 70.9 77.8 75.6 78.1

ResNet-101 85.7 78.4 77.7 82.0 80.6 82.2

tr
im

ap

8
p

ix
el

s Deeplab-MSc-largeFOV 75.0 69.5 60.3 72.5 68.4 71.4

Deeplab-VGG16 76.9 70.4 64.1 72.0 69.0 72.4

ResNet-101 81.5 73.8 71.2 76.7 74.6 77.0

Table 3. Pixel-wise accuracy on val set of PASCAL 2012. Top 3 rows: accuracy over all pixels. Middle 3 rows: accuracy for pixels within 16

pixels away from semantic boundaries. Bottom 3 rows: accuracy for pixels within 8 pixels aways from semantic boundaries. Pixels closer to

boundaries are more likely to be mislabeled. Our ADM scheme improves over GD for grid CRF loss consistently for different networks.

Note that weak supervision with our approach is almost as good as full supervision.

4. Conclusion

Gradient descent (GD) is the default method for training

neural networks. Often, loss functions and network architec-

tures are designed to be amenable to GD. The top-performing

weakly-supervised CNN segmentation [32, 34] is trained via

regularized losses, as common in weakly-supervised deep

learning [38, 14]. In general, GD allows any differentiable

regularizers. However, in shallow image segmentation it is

know that generic GD is a substandard optimizer for (relax-

ations of) standard robust regularizers, e.g. grid CRF.

Here we propose a general splitting technique, ADM, for

optimizing regularized losses. It can take advantage of many

existing efficient regularization solvers known in shallow seg-

mentation. In particular, for grid CRF our ADM approach

using α-expansion solver achieves significantly better opti-

mization quality compared to GD. With such ADM optimiza-

tion, training with grid CRF loss achieves the-state-of-the-art

in weakly supervised CNN segmentation. We systematically

compare grid CRF and dense CRF losses from modeling and

optimization perspectives. Using ADM optimization, the

grid CRF loss achieves CNN training favourably comparable

to the best results with the dense CRF loss. Our work sug-

gests that in the context of network training more attention

should be paid to optimization methods beyond GD.

In general, our ADM approach applies to many regu-

larized losses, as long as there are efficient solvers for the

corresponding regularizers. This work is focused on ADM in

the context of common pairwise regularizers. Interesting fu-

ture work is to investigate losses with non-Gaussian pairwise

CRF potentials and higher-order segmentation regularizers,

e.g. Pn Potts model [19], curvature [25], and kernel cluster-

ing [30, 33]. Also with ADM framework, we can explore

other optimization methods [17] besides α-expansion for var-

ious kinds of regularized losses in segmentation. Our work

bridges optimization method in "shallow" segmentation and

loss minimization in deep CNN segmentation.

10193



(a) input (b) Dense GD (c) Grid GD (d) Grid ADM (e) ground truth
Figure 5. Example segmentations (Deeplab-MSc-largeFOV) by variants of regularized loss approaches. Gradient descent (GD) for grid CRF

gives segmentation of poor boundary alignment though grid CRF is part of the regularized loss. ADM for grid CRF significantly improves

edge alignment and compares favorably to dense CRF based method.

Figure 6. Experiment results of training with shorter scribbles with variants of regularized loss approaches. The results are for Deeplab-MSc-

largeFOV. We report mIOU (left) and pixel-wise accuracy (right).
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