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Abstract

We introduce a light-weight, power efficient, and gen-

eral purpose convolutional neural network, ESPNetv2,

for modeling visual and sequential data. Our network uses

group point-wise and depth-wise dilated separable convolu-

tions to learn representations from a large effective recep-

tive field with fewer FLOPs and parameters. The perfor-

mance of our network is evaluated on four different tasks:

(1) object classification, (2) semantic segmentation, (3) ob-

ject detection, and (4) language modeling. Experiments

on these tasks, including image classification on the Ima-

geNet and language modeling on the PenTree bank dataset,

demonstrate the superior performance of our method over

the state-of-the-art methods. Our network outperforms ES-

PNet by 4-5% and has 2−4× fewer FLOPs on the PASCAL

VOC and the Cityscapes dataset. Compared to YOLOv2

on the MS-COCO object detection, ESPNetv2 delivers

4.4% higher accuracy with 6× fewer FLOPs. Our ex-

periments show that ESPNetv2 is much more power effi-

cient than existing state-of-the-art efficient methods includ-

ing ShuffleNets and MobileNets. Our code is open-source

and available at https://github.com/sacmehta/

ESPNetv2.

1. Introduction

The increasing programmability and computational

power of GPUs have accelerated the growth of deep convo-

lutional neural networks (CNNs) for modeling visual data

[16, 22, 34]. CNNs are being used in real-world visual

recognition applications such as visual scene understand-

ing [62] and bio-medical image analysis [42]. Many of

these real-world applications, such as self-driving cars and

robots, run on resource-constrained edge devices and de-

mand online processing of data with low latency.

Existing CNN-based visual recognition systems require

large amounts of computational resources, including mem-

ory and power. While they achieve high performance on

high-end GPU-based machines (e.g. with NVIDIA TitanX),

they are often too expensive for resource constrained edge

devices such as cell phones and embedded compute plat-

forms. As an example, ResNet-50 [16], one of the most well

known CNN architecture for image classification, has 25.56

million parameters (98 MB of memory) and performs 2.8

billion high precision operations to classify an image. These

numbers are even higher for deeper CNNs, e.g. ResNet-

101. These models quickly overtax the limited resources,

including compute capabilities, memory, and battery, avail-

able on edge devices. Therefore, CNNs for real-world ap-

plications running on edge devices should be light-weight

and efficient while delivering high accuracy.

Recent efforts for building light-weight networks can

be broadly classified as: (1) Network compression-based

methods remove redundancies in a pre-trained model in or-

der to be more efficient. These models are usually imple-

mented by different parameter pruning techniques [24, 55].

(2) Low-bit representation-based methods represent learned

weights using few bits instead of high precision floating

points [20, 39, 47]. These models usually do not change

the structure of the network and the convolutional opera-

tions could be implemented using logical gates to enable

fast processing on CPUs. (3) Light-weight CNNs improve

the efficiency of a network by factoring computationally ex-

pensive convolution operation [17,18,29,32,44,60]. These

models are computationally efficient by their design i.e. the

underlying model structure learns fewer parameters and has

fewer floating point operations (FLOPs).

In this paper, we introduce a light-weight architecture,

ESPNetv2, that can be easily deployed on edge devices.

The main contributions of our paper are: (1) A general pur-

pose architecture for modeling both visual and sequential

data efficiently. We demonstrate the performance of our net-

work across different tasks, ranging from object classifica-
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tion to language modeling. (2) Our proposed architecture,

ESPNetv2, extends ESPNet [32], a dilated convolution-

based segmentation network, with depth-wise separable

convolutions; an efficient form of convolutions that are

used in state-of-art efficient networks including MobileNets

[17, 44] and ShuffleNets [29, 60]. Depth-wise dilated sepa-

rable convolutions improves the accuracy of ESPNetv2 by

1.4% in comparison to depth-wise separable convolutions.

We note that ESPNetv2 achieves better accuracy (72.1 with

284 MFLOPs) with fewer FLOPs than dilated convolutions

in the ESPNet [32] (69.2 with 426 MFLOPs). (3) Our

empirical results show that ESPNetv2 delivers similar or

better performance with fewer FLOPS on different visual

recognition tasks. On the ImageNet classification task [43],

our model outperforms all of the previous efficient model

designs in terms of efficiency and accuracy, especially under

small computational budgets. For example, our model out-

performs MobileNetv2 [44] by 2% at a computational bud-

get of 28 MFLOPs. For semantic segmentation on the PAS-

CAL VOC and the Cityscapes dataset, ESPNetv2 outper-

forms ESPNet [32] by 4-5% and has 2− 4× fewer FLOPs.

For object detection, ESPNetv2 outperforms YOLOv2 by

4.4% and has 6× fewer FLOPs. We also study a cyclic

learning rate scheduler with warm restarts. Our results sug-

gests that this scheduler is more effective than the standard

fixed learning rate scheduler.

2. Related Work

Efficient CNN architectures: Most state-of-the-art effi-

cient networks [17, 29, 44] use depth-wise separable con-

volutions [17] that factor a convolution into two steps to

reduce computational complexity: (1) depth-wise convolu-

tion that performs light-weight filtering by applying a sin-

gle convolutional kernel per input channel and (2) point-

wise convolution that usually expands the feature map along

channels by learning linear combinations of the input chan-

nels. Another efficient form of convolution that has been

used in efficient networks [18,60] is group convolution [22],

wherein input channels and convolutional kernels are fac-

tored into groups and each group is convolved indepen-

dently. The ESPNetv2 network extends the ESPNet net-

work [32] using these efficient forms of convolutions. To

learn representations from a large effective receptive field,

ESPNetv2 uses depth-wise “dilated” separable convolu-

tions instead of depth-wise separable convolutions.

In addition to convolutional factorization, a network’s ef-

ficiency and accuracy can be further improved using meth-

ods such as channel shuffle [29] and channel split [29].

Such methods are orthogonal to our work.

Neural architecture search: These approaches search

over a huge network space using a pre-defined dictionary

containing different parameters, including different convo-

lutional layers, different convolutional units, and different

filter sizes [4, 52, 56, 66]. Recent search-based methods

[52, 56] have shown improvements for MobileNetv2. We

believe that these methods will increase the performance of

ESPNetv2 and are complementary to our work.

Network compression: These approaches improve the

inference of a pre-trained network by pruning network con-

nections or channels [12, 13, 24, 53, 55]. These approaches

are effective, because CNNs have a substantial number of

redundant weights. The efficiency gain in most of these

approaches are due to the sparsity of parameters, and are

difficult to efficiently implement on CPUs due to the cost of

look-up and data migration operations. These approaches

are complementary to our network.

Low-bit representation: Another approach to improve

inference of a pre-trained network is low-bit representation

of network weights using quantization [1, 9, 20, 39, 47, 57,

64]. These approaches use fewer bits to represent weights of

a pre-trained network instead of 32-bit high-precision float-

ing points. Similar to network compression-based methods,

these approaches are complementary to our work.

3. ESPNetv2

This section elaborates the ESPNetv2 architecture in

detail. We first describe depth-wise dilated separable con-

volutions that enables our network to learn representations

from a large effective receptive field efficiently. We then de-

scribe the core unit of the ESPNetv2 network, the EESP

unit, which is built using group point-wise convolutions and

depth-wise dilated separable convolutions.

3.1. Depth­wise dilated separable convolution

Convolution factorization is the key principle that has

been used by many efficient architectures [17, 29, 44, 60].

The basic idea is to replace the full convolutional opera-

tion with a factorized version such as depth-wise separable

convolution [17] or group convolution [22]. In this section,

we describe depth-wise dilated separable convolutions and

compare with other similar efficient forms of convolution.

A standard convolution convolves an input X ∈
R

W×H×c with convolutional kernel K ∈ R
n×n×c×ĉ to pro-

duce an output Y ∈ R
W×H×ĉ by learning n2cĉ parameters

from an effective receptive field of n × n. In contrast to

standard convolution, depth-wise dilated separable convo-

lutions apply a light-weight filtering by factoring a standard

convolution into two layers: 1) depth-wise dilated convo-

lution per input channel with a dilation rate of r; enabling

the convolution to learn representations from an effective

receptive field of nr×nr,where nr = (n−1) ·r+1 and 2)

point-wise convolution to learn linear combinations of in-

put. This factorization reduces the computational cost by
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Figure 1: This figure visualizes the building blocks of the ESPNet, the ESP unit in (a), and the ESPNetv2, the EESP unit in (b-c). We

note that EESP units in (b-c) are equivalent in terms of computational complexity. Each convolutional layer (Conv-n: n × n standard

convolution, GConv-n: n×n group convolution, DConv-n: n×n dilated convolution, DDConv-n: n×n depth-wise dilated convolution)

is denoted by (# input channels, # output channels, and dilation rate). Point-wise convolutions in (b) or group point-wise convolutions in

(c) are applied after HFF to learn linear combinations between inputs.

Convolution type Parameters Eff. receptive field

Standard n2cĉ n× n

Group n2cĉ
g

n× n

Depth-wise separable n2c+ cĉ n× n

Depth-wise dilated separable n2c+ cĉ nr × nr

Table 1: Comparison between different type of convolutions.

Here, n×n is the kernel size, nr = (n−1) ·r+1, r is the dilation

rate, c and ĉ are the input and output channels respectively, and g

is the number of groups.

a factor of n2cĉ
n2c+cĉ

. A comparison between different types

of convolutions is provided in Table 1. Depth-wise dilated

separable convolutions are efficient and can learn represen-

tations from large effective receptive fields.

3.2. EESP unit

Taking advantage of depth-wise dilated separable and

group point-wise convolutions, we introduce a new unit

EESP, Extremely Efficient Spatial Pyramid of Depth-wise

Dilated Separable Convolutions, which is specifically de-

signed for edge devices. The design of our network is mo-

tivated by the ESPNet architecture [32], a state-of-the-art

efficient segmentation network. The basic building block

of the ESPNet architecture is the ESP module, shown in

Figure 1a. It is based on a reduce-split-transform-merge

strategy. The ESP unit first projects the high-dimensional

input feature maps into low-dimensional space using point-

wise convolutions and then learn the representations in par-

allel using dilated convolutions with different dilation rates.

Different dilation rates in each branch allow the ESP unit

to learn the representations from a large effective receptive

field. This factorization, especially learning the representa-

tions in a low-dimensional space, allows the ESP unit to be

efficient.

To make the ESP module even more computationally ef-

ficient, we first replace point-wise convolutions with group

point-wise convolutions. We then replace computationally

expensive 3× 3 dilated convolutions with their economical

counterparts i.e. depth-wise dilated separable convolutions.

To remove the gridding artifacts caused by dilated convo-

lutions, we fuse the feature maps using the computation-

ally efficient hierarchical feature fusion (HFF) method [32].

This method additively fuses the feature maps learned us-

ing dilated convolutions in a hierarchical fashion; feature

maps from the branch with lowest receptive field are com-

bined with the feature maps from the branch with next high-

est receptive field at each level of the hierarchy1. The

resultant unit is shown in Figure 1b. With group point-

wise and depth-wise dilated separable convolutions, the to-

tal complexity of the ESP block is reduced by a factor of
Md+n2d2K

Md
g

+(n2+d)dK
, where K is the number of parallel branches

and g is the number of groups in group point-wise convolu-

tion. For example, the EESP unit learns 7× fewer parame-

ters than the ESP unit when M=240, g=K=4, and d=M
K

=60.

We note that computing K point-wise (or 1× 1) convo-

lutions in Figure 1b independently is equivalent to a single

group point-wise convolution with K groups in terms of

complexity; however, group point-wise convolution is more

efficient in terms of implementation, because it launches

one convolutional kernel rather than K point-wise convo-

lutional kernels. Therefore, we replace these K point-wise

convolutions with a group point-wise convolution, as shown

in Figure 1c. We will refer to this unit as EESP.

1Other existing works [54,59] add more convolutional layers with small

dilation rates to remove gridding artifacts. This increases the computa-

tional complexity of the unit or network.
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Layer
Output Kernel size

Repeat Output channels for different ESPNetv2 models
Size / Stride

Convolution 112 × 112 3 × 3 / 2 1 16 32 32 32 32 32

Strided EESP (Fig. 2) 56 × 56 1 32 64 80 96 112 128

Strided EESP (Fig. 2) 28 × 28 1 64 128 160 192 224 256

EESP (Fig. 1c) 28 × 28 3 64 128 160 192 224 256

Strided EESP (Fig. 2) 14 × 14 1 128 256 320 384 448 512

EESP (Fig. 1c) 14 × 14 7 128 256 320 384 448 512

Strided EESP (Fig. 2) 7 × 7 1 256 512 640 768 896 1024

EESP (Fig. 1c) 7 × 7 3 256 512 640 768 896 1024

Depth-wise convolution 7 × 7 3 × 3 256 512 640 768 896 1024

Group convolution 7 × 7 1 × 1 1024 1024 1024 1024 1280 1280

Global avg. pool 1 × 1 7 × 7

Fully connected 1000 1000 1000 1000 1000 1000

Complexity 28 M 86 M 123 M 169 M 224 M 284 M

Parameters 1.24 M 1.67 M 1.97 M 2.31 M 3.03 M 3.49 M

Table 2: The ESPNetv2 network at different computational complexities for classifying a 224 × 224 input into 1000 classes in the

ImageNet dataset [43]. Network’s complexity is evaluated in terms of total number of multiplication-addition operations (or FLOPs).

Strided EESP with shortcut connection to an input

image: To learn representations efficiently at multiple

scales, we make following changes to the EESP block in

Figure 1c: 1) depth-wise dilated convolutions are replaced

with their strided counterpart, 2) an average pooling oper-

ation is added instead of an identity connection, and 3) the

element-wise addition operation is replaced with a concate-

nation operation, which helps in expanding the dimensions

of feature maps efficiently [60].

Spatial information is lost during down-sampling and

convolution (filtering) operations. To better encode spatial

relationships and learn representations efficiently, we add
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Figure 2: Strided EESP unit with shortcut connection to an input

image (highlighted in red) for down-sampling. The average pool-

ing operation is repeated P× to match the spatial dimensions of

an input image and feature maps.

an efficient long-range shortcut connection between the in-

put image and the current down-sampling unit. This con-

nection first down-samples the image to the same size as

that of the feature map and then learns the representations

using a stack of two convolutions. The first convolution is a

standard 3 × 3 convolution that learns the spatial represen-

tations while the second convolution is a point-wise con-

volution that learns linear combinations between the input,

and projects it to a high-dimensional space. The resultant

EESP unit with long-range shortcut connection to the input

is shown in Figure 2.

3.3. Network architecture

The ESPNetv2 network is built using EESP units. At

each spatial level, the ESPNetv2 repeats the EESP units

several times to increase the depth of the network. In

the EESP unit (Figure 1c), we use batch normalization

[21] and PReLU [15] after every convolutional layer with

an exception to the last group-wise convolutional layer

where PReLU is applied after element-wise sum opera-

tion. To maintain the same computational complexity at

each spatial-level, the feature maps are doubled after every

down-sampling operation [16, 46].

In our experiments, we set the dilation rate r propor-

tional to the number of branches in the EESP unit (K).

The effective receptive field of the EESP unit grows with

K. Some of the kernels, especially at low spatial lev-

els such as 7 × 7, might have a larger effective receptive

field than the size of the feature map. Therefore, such

kernels might not contribute to learning. In order to have

meaningful kernels, we limit the effective receptive field

at each spatial level l with spatial dimension W l × H l as:
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(a) (b)

Network # Params FLOPs Top-1

MobileNetv1 [17] 2.59 M 325 M 68.4

CondenseNet [18] – 274 M 71.0

IGCV3 [49] – 318 M 72.2

Xception† [7] – 305 M 70.6

DenseNet† [19] – 295 M 60.1

ShuffleNetv1 [60] 3.46 M 292 M 71.5

MobileNetv2 [44]
3.47 M 300 M 71.8

6.9 M 585 M 74.7

ShuffleNetv2 [29]
3.5 M 299 M 72.6

7.4 M 591 M 74.9

ESPNetv2 (Ours)
3.49 M 284 M 72.1

5.9 M 602 M 74.9

(c)

Figure 3: Performance comparison of different efficient networks on the ImageNet validation set: (a) ESPNetv2 vs. ShuffleNetv1 [60],

(b) ESPNetv2 vs. efficient models at different network complexities, and (c) ESPNetv2 vs. state-of-the-art for a computational budget

of approximately 300 million FLOPs. We count the total number of multiplication-addition operations (FLOPs) for an input image of size

224× 224. Here, † represents that the performance of these networks is reported in [29]. Best viewed in color.

nld(Z
l) = 5 + Zl

7 , Zl ∈ {W l, H l} with the effective recep-

tive field (nd×nd) corresponding to the lowest spatial level

(i.e. 7×7) as 5×5. Following [32], we set K = 4 in our ex-

periments. Furthermore, in order to have a homogeneous ar-

chitecture, we set the number of groups in group point-wise

convolutions equal to number of parallel branches (g = K).

The overall ESPNetv2 architectures at different computa-

tional complexities are shown in Table 2.

4. Experiments

To showcase the power of the ESPNetv2 network, we

evaluate and compare the performance with state-of-the-art

methods on four different tasks: (1) object classification,

(2) semantic segmentation, (3) object detection, and (3) lan-

guage modeling.

4.1. Image classification

Dataset: We evaluate the performance of the

ESPNetv2 on the ImageNet 1000-way classification

dataset [43] that contains 1.28M images for training and

50K images for validation. We evaluate the performance

of our network using the single crop top-1 classification

accuracy, i.e. we compute the accuracy on the center

cropped view of size 224× 224.

Training: The ESPNetv2 networks are trained using the

PyTorch deep learning framework [38] with CUDA 9.0 and

cuDNN as the back-ends. For optimization, we use SGD

[50] with warm restarts. At each epoch t, we compute the

learning rate ηt as:

ηt = ηmax − (t mod T ) · ηmin (1)

where ηmax and ηmin are the ranges for the learning rate

and T is the cycle length after which learning rate will

restart. Figure 4 visualizes the learning rate policy for three

Figure 4: Cyclic learning rate policy (see Eq.1) with linear learn-

ing rate decay and warm restarts.

cycles. This learning rate scheme can be seen as a vari-

ant of the cosine learning policy [28], wherein the learning

rate is decayed as a function of cosine before warm restart.

In our experiment, we set ηmin = 0.1, ηmax = 0.5, and

T = 5. We train our networks with a batch size of 512

for 300 epochs by optimizing the cross-entropy loss. For

faster convergence, we decay the learning rate by a factor

of two at the following epoch intervals: {50, 100, 130, 160,

190, 220, 250, 280}. We use a standard data augmenta-

tion strategy [16, 51] with an exception to color-based nor-

malization. This is in contrast to recent efficient architec-

tures that uses less scale augmentation to prevent under-

fitting [29, 60]. The weights of our networks are initialized

using the method described in [15].

Results: Figure 3 provides a performance comparison

between ESPNetv2 and state-of-the-art efficient net-

works. We observe that: (1) Like ShuffleNetv1 [60],

ESPNetv2 also uses group point-wise convolutions. How-

ever, ESPNetv2 does not use any channel shuffle which

was found to be very effective in ShuffleNetv1 and deliv-

ers better performance than ShuffleNetv1. (2) Compared to

MobileNets, ESPNetv2 delivers better performance espe-

cially under small computational budgets. With 28 million

FLOPs, ESPNetv2 outperforms MobileNetv1 [17] (34
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(a) Inference time vs. batch size (1080 Ti) (b) Power vs. batch size (1080 Ti) (c) Power consumption on TX2

Figure 5: Performance analysis of different efficient networks (computational budget ≈ 300 million FLOPs). Inference time and power

consumption are averaged over 100 iterations for a 224 × 224 input on a NVIDIA GTX 1080 Ti GPU and NVIDIA Jetson TX2. We do

not report execution time on TX2 because there is not much substantial difference. Best viewed in color.

million FLOPs) and MobileNetv2 [44] (30 million FLOPs)

by 10% and 2% respectively. (3) ESPNetv2 delivers com-

parable accuracy to ShuffleNetv2 [29] without any chan-

nel split, which enables ShuffleNetv2 to deliver better per-

formance than ShuffleNetv1. We believe that such func-

tionalities (channel split and channel shuffle) are orthog-

onal to ESPNetv2 and can be used to further improve

its efficiency and accuracy. (4) Compared to other effi-

cient networks at a computational budget of about 300 mil-

lion FLOPs, ESPNetv2 delivered better performance (e.g.

1.1% more accurate than the CondenseNet [18]).

Multi-label classification: To evaluate the generalizabil-

ity for transfer learning, we evaluate our model on the

MSCOCO multi-object classification task [25]. The dataset

consists of 82,783 images, which are categorized into 80

classes with 2.9 object labels per image. Following [65],

we evaluated our method on the validation set (40,504 im-

ages) using class-wise and overall F1 score. We finetune

ESPNetv2 (284 million FLOPs) and Shufflenetv2 [29]

(299 million FLOPs) for 100 epochs using the same data

augmentation and training settings as for the ImageNet

dataset, except ηmax=0.005, ηmin=0.001 and learning rate

is decayed by two at the 50th and 80th epochs. We use bi-

nary cross entropy loss for optimization. Results are shown

in Figure 6. ESPNetv2 outperforms ShuffleNetv2 by a

large margin, especially when tested at image resolution of

896× 896; suggesting large effective receptive fields of the

EESP unit help ESPNetv2 learn better representations.

Performance analysis: Edge devices have limited com-

putational resources and restrictive energy overhead. An ef-

ficient network for such devices should consume less power

and have low latency with a high accuracy. We measure

the efficiency of our network, ESPNetv2, along with other

state-of-the-art networks (MobileNets [17, 44] and Shuf-

fleNets [29, 60]) on two different devices: 1) a high-end

graphics card (NVIDIA GTX 1080 Ti) and 2) an embed-

ded device (NVIDIA Jetson TX2). For a fair comparison,

we use PyTorch as a deep-learning framework. Figure 5

compares the inference time and power consumption while

Figure 6: Performance improvement in F1-score of

ESPNetv2 over ShuffleNetv2 on MS-COCO multi-object

classification task when tested at different image resolutions.

Class-wise/overall F1-scores for ESPNetv2 and ShuffleNetv2

for an input of 224 × 224 on the validation set are 63.41/69.23

and 60.42/67.58 respectively.

networks complexity along with their accuracy are com-

pared in Figure 3. The inference speed of ESPNetv2 is

slightly lower than the fastest network (ShuffleNetv2 [29])

on both devices, however, it is much more power efficient

while delivering similar accuracy on the ImageNet dataset.

This suggests that ESPNetv2 network has a good trade-off

between accuracy, power consumption, and latency; a much

desirable property for any network running on edge devices.

4.2. Semantic segmentation

Dataset: We evaluate the performance of the

ESPNetv2 on two datasets: (1) the Cityscapes [8]

and (2) the PASCAL VOC 2012 dataset [10]. The

Cityscapes dataset consists of 5,000 finely annotated

images (training/validation/test: 2,975/500/1,525). The

task is to segment an image into 19 classes that belongs

to 7 categories. The PASCAL VOC 2012 dataset provide

annotations for 20 foreground objects and has 1.4K train-

ing, 1.4K validation, and 1.4K test images. Following a

standard convention [5, 63], we also use additional images

from [14, 25] for training our networks.

Training: We train our network in two stages. In the first

stage, we use a smaller image resolution for training (256×
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256 for the PASCAL VOC 2012 dataset and 512 × 256
for the CityScapes dataset). We train ESPNetv2 for 100

epochs using SGD with an initial learning rate of 0.007. In

the second stage, we increase the image resolution (384 ×
384 for the PASCAL VOC 2012 and 1024 × 512 for the

Cityscapes dataset) and then finetune the ESPNetv2 from

first stage for 100 epochs using SGD with initial learning

rate of 0.003. For both these stages, we use cyclic learning

schedule discussed in Section 4.1. For the first 50 epochs,

we use a cycle length of 5 while for the remaining epochs,

we use a cycle length of 50 i.e. for the last 50 epochs, we

decay the learning rate linearly. We evaluate the accuracy in

terms of mean Intersection over Union (mIOU) on the pri-

vate test set using online evaluation server. For evaluation,

we up-sample segmented masks to the same size as of the

input image using nearest neighbour interpolation.

Results: Figure 7 compares the performance of

ESPNetv2 with state-of-the-methods on both the

Cityscapes and the PASCAL VOC 2012 dataset. We can

see that ESPNetv2 delivers a competitive performance to

existing methods while being very efficient. Under the sim-

ilar computational constraints, ESPNetv2 outerperforms

existing methods like ENet and ESPNet by large margin.

Notably, ESPNetv2 is 2-3% less accurate than other

efficient networks such as ICNet, ERFNet, and ContextNet,

but has 9− 12× fewer FLOPs.

4.3. Object detection

Dataset and training details: For object detection, we

replace VGG with ESPNetv2 in single shot object detec-

tor. We evaluate the performance on two datasets: (1) the

PASCAL VOC 2007 and (2) the MS-COCO dataset. For the

PASCAL VOC 2007 dataset, we also use additional images

from the PASCAL VOC 2012 dataset. We evaluate the per-

formance in terms of mean Average Precision (mAP). For

Network FLOPs mIOU

SegNet [2] 82 B 57.0

ContextNet [37] 33 B 66.1

ICNet [61] 31 B 69.5

ERFNet [41] 26 B 69.7

MobileNetv2⋆⋆ [44] 21 B 70.7

RTSeg- MobileNet [45] 13.8 B 61.5

RTSeg-ShuffleNet [45] 6.2 B 58.3

ESPNet [32] 4.5 B 60.3

ENet [36] 3.8 B 58.3

ESPNetv2-val (Ours) 2.7 B 66.4

ESPNetv2-test (Ours) 2.7 B 66.2

(a) Cityscapes

Network FLOPs mIOU

FCN-8s [27] 181 B 62.2

DeepLabv3 [6] 81 B 80.49

SegNet [2] 31 B 59.1

MobileNetv1 [17] 14 B 75.29

MobileNetv2 [44] 5.8 B 75.7

ESPNet [32] 2.2 B 63.01

ESPNetv2 - val 0.76 B 67.0

ESPNetv2 - test 0.76 B 68.0

(b) PASCAL VOC 2012

Figure 7: Semantic segmentation results on (a) the Cityscapes

dataset and (b) the PASCAL VOC 2012 dataset. For a fair com-

parison, we report FLOPs at the same image resolution which is

used for computing the accuracy.
⋆⋆ [44] uses additional data from [25]

Network
VOC07 COCO

FLOPs mAP FLOPs mAP

SSD-512 [26] 90.2 B 74.9 99.5 B 26.8

SSD-300 [26] 31.3 B 72.4 35.2 B 23.2

YOLOv2 [40] 6.8 B 69.0 17.5 B 21.6

MobileNetv1-320 [17] – – 1.3 B 22.2

MobileNetv2-320 [44] – – 0.8 B 22.1

ESPNetv2-512 (Ours) 2.5 B 68.2 2.8 B 26.0

ESPNetv2-384 (Ours) 1.4 B 65.6 1.6 B 23.2

ESPNetv2-256 (Ours) 0.6 B 63.8 0.7 B 21.9

Table 3: Object detection results on the PASCAL VOC 2007 and

the MS-COCO dataset.

the COCO dataset, we report mAP @ IoU of 0.50:0.95. For

training, we use the same learning policy as in Section 4.2.

Results: Table 3 compares the performance of

ESPNetv2 with existing methods. ESPNetv2 pro-

vides a good trade-off between accuracy and efficiency.

Notably, ESPNetv2 delivers the same performance as

YOLOv2, but has 25× fewer FLOPs. Compared to SSD,

ESPNetv2 delivers a very competitive performance while

being very efficient.

4.4. Language modeling

Dataset: The performance of our unit, the EESP, is eval-

uated on the Penn Treebank (PTB) dataset [30] as prepared

by [35]. For training and evaluation, we follow the same

splits of training, validation, and test data as in [34].

Language Model: We extend LSTM-based language

models by replacing linear transforms for processing the in-

put vector with the EESP unit inside the LSTM cell2. We

call this model ERU (Efficient Recurrent Unit). Our model

uses 3-layers of ERU with an embedding size of 400. We

use standard dropout [48] with probability of 0.5 after em-

bedding layer, the output between ERU layers, and the out-

put of final ERU layer. We train the network using the same

learning policy as [34]. We evaluate the performance in

terms of perplexity; a lower value of perplexity is desirable.

Results: Language modeling results are provided in Table

4. ERUs achieve similar or better performance than state-

of-the-art methods while learning fewer parameters. With

similar hyper-parameter settings such as dropout, ERUs de-

liver similar (only 1 point less than PRU [32]) or better

performance than state-of-the-art recurrent networks while

learning fewer parameters; suggesting that the introduced

EESP unit (Figure 1c) is efficient and powerful, and can

be applied across different sequence modeling tasks such

as question answering and machine translation. We note

that our smallest language model with 7 million param-

eters outperforms most of state-of-the-art language mod-

els (e.g. [3, 11, 58]). We believe that the performance of

2We replace 2D convolutions with 1D convolutions in the EESP unit.

9196



Language Model # Params Perplexity

Variational LSTM [11] 20 M 78.6

SRU [23] 24 M 60.3

Quantized LSTM [58] – 89.8

QRNN [3] 18 M 78.3

Skip-connection LSTM [33] 24 M 58.3

AWD-LSTM [34] 24 M 57.3

PRU [31] (with standard dropout [48]) 19 M 62.42

AWD-PRU [31] (with weight dropout [34]) 19 M 56.56

ERU-Ours (with standard dropout [48])
7 M 73.63

15 M 63.47

Table 4: This table compares single model word-level perplexity

of our model with state-of-the-art on test set of the Penn Treebank

dataset. Lower perplexity value represents better performance.

ERU can be further improved by rigorous hyper-parameter

search [33] and advanced dropouts [11, 34].

5. Ablation Studies on the ImageNet Dataset

This section elaborate on various choices that helped

make ESPNetv2 efficient and accurate.

Impact of different convolutions: Table 5 summarizes

the impact of different convolutions. Clearly, depth-wise di-

lated separable convolutions are more effective than dilated

and depth-wise convolutions.

Impact of hierarchical feature fusion (HFF): In [32],

HFF is introduced to remove gridding artifacts caused by

dilated convolutions. Here, we study their influence on ob-

ject classification. The performance of the ESPNetv2 net-

work with and without HFF are shown in Table 6 (see R1

and R2). HFF improves classification performance by about

1.5% while having no impact on the network’s complexity.

This suggests that the role of HFF is dual purpose. First,

it removes gridding artifacts caused by dilated convolutions

(as noted by [32]). Second, it enables sharing of information

between different branches of the EESP unit (see Figure 1c)

that allows it to learn rich and strong representations.

Impact of long-range shortcut connections with the in-

put: To see the influence of shortcut connections with the

input image, we train the ESPNetv2 network with and

without shortcut connection. Results are shown in Table

6 (see R2 and R3). Clearly, these connections are effective

and efficient, improving the performance by about 1% with

a little (or negligible) impact on network’s complexity.

Convolution FLOPs top-1

Dilated (standard) 478 M 69.2

Depth-wise separable 123 M 66.5

Depth-wise dilated separable 123 M 67.9

Table 5: ESPNetv2 with different convolutions. ESPNetv2 with

standard dilated convolutions is the same as ESPNet.

Network properties Learning schedule Performance

HFF LRSC Fixed Cyclic # Params FLOPs Top-1

R1 ✗ ✗ ✓ ✗ 1.66 M 84 M 58.94

R2 ✓ ✗ ✓ ✗ 1.66 M 84 M 60.07

R3 ✓ ✓ ✓ ✗ 1.67 M 86 M 61.20

R4 ✓ ✓ ✗ ✓ 1.67 M 86 M 62.17

R5† ✓ ✓ ✗ ✓ 1.67 M 86 M 66.10

Table 6: Performance of ESPNetv2 under different settings.

Here, HFF represents hierarchical feature fusion and LRSC rep-

resents long-range shortcut connection with an input image. We

train ESPNetv2 for 90 epochs and decay the learning rate by 10

after every 30 epochs. For fixed learning rate schedule, we initial-

ize learning rate with 0.1 while for cyclic, we set ηmin and ηmax

to 0.1 and 0.5 in Eq. 1 respectively. Here, † represents that the

learning rate schedule is the same as in Section 4.1.

Fixed vs cyclic learning schedule: A comparison be-

tween fixed and cyclic learning schedule is shown in Ta-

ble 6 (R3 and R4). With cyclic learning schedule, the

ESPNetv2 network achieves about 1% higher top-1 val-

idation accuracy on the ImageNet dataset; suggesting that

cyclic learning schedule allows to find a better local min-

ima than fixed learning schedule. Further, when we trained

ESPNetv2 network for longer (300 epochs) using the

learning schedule outlined in Section 4.1, performance im-

proved by about 4% (see R4 and R5 in Table 6).

6. Conclusion

We introduce a light-weight and power efficient network,

ESPNetv2, which better encode the spatial information in

images by learning representations from a large effective

receptive field. Our network is a general purpose network

with good generalization abilities and can be used across a

wide range of tasks, including sequence modeling. Our net-

work delivered state-of-the-art performance across different

tasks such as object classification, detection, segmentation,

and language modeling while being more power efficient.
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