
On Implicit Filter Level Sparsity in Convolutional Neural Networks

Dushyant Mehta1,3 Kwang In Kim2 Christian Theobalt1,3

1MPI For Informatics 2UNIST 3Saarland Informatics Campus

Abstract

We investigate filter level sparsity that emerges in convo-

lutional neural networks (CNNs) which employ Batch Nor-

malization and ReLU activation, and are trained with adap-

tive gradient descent techniques and L2 regularization or

weight decay. We conduct an extensive experimental study

casting our initial findings into hypotheses and conclusions

about the mechanisms underlying the emergent filter level

sparsity. This study allows new insight into the perfor-

mance gap obeserved between adapative and non-adaptive

gradient descent methods in practice. Further, analysis of

the effect of training strategies and hyperparameters on the

sparsity leads to practical suggestions in designing CNN

training strategies enabling us to explore the tradeoffs be-

tween feature selectivity, network capacity, and generaliza-

tion performance. Lastly, we show that the implicit sparsity

can be harnessed for neural network speedup at par or bet-

ter than explicit sparsification / pruning approaches, with

no modifications to the typical training pipeline required.

1. Introduction

In this work we show that filter1 level sparsity emerges in

certain types of feedforward convolutional neural networks.

In networks which employ Batch Normalization and

ReLU activation, after training, certain filters are observed

to not activate for any input. Importantly, the sparsity

emerges in the presence of non sparsity inducing regulariz-

ers such as L2 and weight decay (WD), and vanishes when

regularization is removed. We investigate how this sparsity

manifests under different hyperparameter settings, and pro-

pose an experimentally backed hypothesis for the cause of

this emergent sparsity, and the implications of our findings.

We find that adaptive flavours of SGD produce a higher

degree of sparsity than (m)SGD, both with L2 regulariza-

tion and weight decay (WD). Further, L2 regularization re-

sults in a higher degree of sparsity with adaptive methods

than weight decay. Additionally, we show that a multitude

1Filter refers to the weights and the nonlinearity associated with a par-

ticular feature, acting together as a unit. We use filter and feature inter-

changeably throughout the document.

of seemingly unrelated factors such as mini-batch size, net-

work size, and task difficulty impact the extent of sparsity.

These findings are important in light of contemporary

attempts to explain the performance gap between (m)SGD

and adaptive variants. Any theoretical and practical explo-

rations towards explaining the performance gap between

SGD and adaptive variants should account for this inad-

vertent reduction in network capacity when using adaptive

methods, which interplays with both the test accuracy and

the generalization gap. Contemporaneous work [27] has

also observed that Adam induces filter sparsity in ReLU net-

works, but lacks a thorough investigation of the causes.

Through a systematic experimental study, we hypothe-

size that the emergence of sparsity is the direct result of a

disproportionate relative influence of the regularizer (L2 or

WD) viz a viz the gradients from the primary training ob-

jective of ReLU networks. Multiple factors subtly impact

the relative influence of the regularizer in previously known

and unknown ways, and various hyperparameters and de-

sign choices for training neural networks interplay via these

factors to impact the extent of emergent sparsity.

We show that understanding the impact of these de-

sign choices yields useful and readily controllable sparsity

which can be leveraged for considerable neural network

speed up, without trading the generalization performance

and without requiring any explicit pruning [18, 13] or spar-

sification [14] steps. The implicit sparsification process can

remove 70-80% of the convolutional filters from VGG-16

on CIFAR10/100, far exceeding that for [13], and performs

comparable to [14] for VGG-11 on ImageNet.

2. Observing Filter Sparsity in CNNs

We begin with the setup for our initial experiments, and

present our primary findings. In subsequent sections we fur-

ther probe the manifestation of filter sparsity, and present an

experimentally backed hypothesis regarding the cause.

2.1. Setup and Preliminaries

Our basic setup is comprised of a 7-layer convolutional

network with 2 fully connected layers as shown in Figure 1.

This work was funded by the ERC Consolidator Grant 4DRepLy

(770784).

1520

Figure 1. BasicNet: Structure of the basic convolution network

studied in this paper. We refer to the individual convolution lay-

ers as C1-7. The fully connected head shown here is for CI-

FAR10/100 and ObjectNet3D [26] experiments, and a different

fully-connected structure is used for TinyImageNet and ImageNet.

The network structure is inspired by VGG [23], but is more

compact. We refer to this network as BasicNet in the rest

of the document. We use a variety of gradient descent ap-

proaches, a mini-batch size of 40, with a method specific

base learning rate for 250 epochs, and scale down the learn-

ing rate by 10 for an additional 75 epochs. We train on CI-

FAR10 and CIFAR 100 [12], with normalized images, and

random horizontal flips. Xavier initialization [6] is used for

the network weights, with the appropriate gain for ReLU.

The base learning rates and other hyperparameters are as

follows: Adam (1e-3, β1=0.9, β2=0.99, ǫ=1e-8), Adadelta

(1.0, ρ=0.9, ǫ=1e-6), SGD (0.1, momemtum=0.9), Adagrad

(1e-2). Pytorch [21] is used for training, and we study the

effect of varying the amount and type of regularization on

the extent of sparsity and test error in Table 1.

L2 regularization vs. Weight Decay: We make a dis-

tinction between L2 regularization and weight decay. For a

parameter θ and regularization hyperparameter 1 > λ ≥ 0,

weight decay multiplies θ by (1 − λ) after the update step

based on the gradient from the main objective. While for

L2 regularization, λθ is added to the gradient ∇L(θ) from

the main objective, and the update step is computed using

this sum. See [16] for a detailed discussion.

Quantifying Feature Sparsity: We measure the

learned feature sparsity in two ways, by per-feature activa-

tion and by per-feature scale. For sparsity by activation, for

each feature we apply max pooling to the absolute activa-

tions over the entire feature plane, and consider the feature

inactive if this value does not exceed 10−12 over the en-

tire training corpus. For sparsity by scale, we consider the

scale γ of the learned affine transform in the Batch Norm

[8] layer. Batch normalization uses additional learned scale

γ and bias β that casts each normalized convolution output

x̂i to yi = γx̂i + β. We consider a feature inactive if |γ| for

the feature is less than 10−3. Explicitly zeroing the features

thus marked inactive does not affect the test error, which en-

sures the validity of our chosen thresholds. The thresholds

chosen are purposefully conservative, and comparable lev-

els of sparsity are observed for a higher feature activation

threshold of 10−4, and a higher |γ| threshold of 10−2.

2.2. Primary Findings

Table 1 shows the overall feature sparsity by activation

(Act.) and by scale (γ) for BasicNet. Only convolution

features are considered. The following are the key obser-

vations from the experiments and the questions they raise.

These are further discussed in Section 3.

1): The emergent sparsity relies on the strength of L2

regularization or weight decay. No sparsity is observed in

the absence of regularization, with sparsity increasing

with increasing L2 or weight decay. What does this tell us

about the cause of sparsification, and how does the sparsity

manifest across layers?

2): Regardless of the type of regularizer (L2 or weight

decay), adaptive methods (Adam, Adagrad, Adadelta)

learn sparser representations than SGD for compara-

ble levels of test error, with Adam showing the most spar-

sity and most sensitivity to the L2 regularization parameter

amongst the ones studied. Adam with L2 sees about 70%

features pruned for CIFAR10, while SGD shows no spar-

sity for a comparable performance, with a similar trend for

CIFAR100, as well as when weight decay is used. What

are the causes for this disparity in sparsity between SGD

and adaptive methods? We will focus on understanding the

disparity between SGD and Adam.

3): SGD has comparable levels of sparsity with L2 reg-

ularization and with weight decay (for higher regulariza-

tion values), while for Adam, L2 shows higher sparsity

for comparable performance than weight decay (70% vs

40% on CIFAR10, 47% vs 3% on CIFAR100). Why is there

a significant difference between the sparsity for Adam with

L2 regularization vs weight decay?

4): The extent of sparsity decreases on moving from

the simple 10 class classification problem of CIFAR10 to

the comparatively harder 100 class classification problem

of CIFAR100. What does the task dependence of the extent

of sparsity tell us about the origin of the sparsity?

3. A Detailed Look at the Emergent Sparsity

Possible Cause of Sparsity: The analysis of Table 1

in the preceding section shows that the regularizer (L2 or

weight decay) is very likely the cause of the sparsity, with

differences in the level of sparsity attributable to the par-

ticular interaction of L2 regularizer (and lack of interaction

of weight decay) with the update mechanism. The differ-

ences between adaptive gradient methods (Adam) and SGD

can additionally likely be attributed to differences in the na-

ture of the learned representations between the two. That

would explain the higher sparsity seen for Adam in the case

of weight decay.

Layer-wise Sparsity: To explore the role of the regular-

izer in the sparsification process, we start with a layer-wise

breakdown of sparsity. For each of Adam and SGD, we con-

521

Table 1. Convolutional filter sparsity in BasicNet trained on CI-

FAR10/100 for different combinations of regularization and gra-

dient descent methods. Shown are the % of non-useful / inactive

convolution filters, as measured by activation over training cor-

pus (max act. < 10
−12) and by the learned BatchNorm scale

(|γ| < 10
−03), averaged over 3 runs. The lowest test error per

optimizer is highlighted, and sparsity (green) or lack of sparsity

(red) for the best and near best configurations indicated via text

color. L2: L2 regularization, WD: Weight decay (adjusted with

the same scaling schedule as the learning rate schedule). Note that

for SGD with momentum, L2 and WD are not equivalent [16].

CIFAR10 CIFAR100

% Sparsity Test % Sparsity Test

L2 by Act by γ Error by Act by γ Error

2e-03 54 54 30.9 69 69 64.8

1e-03 27 27 21.8 23 23 47.1

5e-04 9 9 16.3 4 4 42.1

2e-04 0 0 13.1 0 0 38.8

1e-04 0 0 11.8 0 0 37.4

1e-05 0 0 10.5 0 0 39.0

S
G

D

0 0 0 11.3 0 0 40.1

1e-02 82 85 21.3 87 85 69.7

2e-03 88 86 14.7 82 81 42.7

1e-03 85 83 13.1 77 76 39.0

1e-04 71 70 10.5 47 47 36.6

1e-05 48 48 10.7 5 5 40.6

1e-06 24 24 10.9 0 0 40.5

A
d
am

[1
1
]

0 3 0 11.0 0 0 40.3

1e-02 97 97 36.8 98 98 84.1

2e-03 92 92 20.6 89 89 53.2

1e-03 89 89 16.7 82 82 46.3

5e-04 82 82 13.6 61 61 39.1

2e-04 40 40 11.3 3 3 35.4

A
d
ad

el
ta

[2
9
]

1e-04 1 1 10.2 1 1 35.9

2e-02 75 75 11.3 88 88 63.3

1e-02 65 65 11.2 59 59 37.2

5e-03 56 56 11.3 24 25 35.9

1e-03 27 28 11.9 1 1 37.3

A
d
ag

ra
d

[5
]

1e-04 0 0 13.6 0 0 42.1

CIFAR10 CIFAR100

% Sparsity Test % Sparsity Test

WD by Act by γ Error by Act by γ Error

1e-02 100 100 90.0 100 100 99.0

1e-03 27 27 21.6 23 23 47.6

5e-04 8 8 15.8 4 4 41.9

2e-04 0 0 13.3 0 0 39.4S
G

D

1e-04 0 0 12.4 0 0 37.7

1e-02 100 100 82.3 100 100 98.0

1e-03 90 90 27.8 81 81 55.3

5e-04 81 81 18.1 59 59 43.3

2e-04 60 60 13.4 16 16 37.3

A
d
am

[1
1
]

1e-04 40 40 11.2 3 3 36.2

sider both L2 regularization and weight decay in Table 2 for

CIFAR100. The table shows sparsity by scale (|γ| < 10−3)

for each convolution layer. For both optimizer-regularizer

pairings we pick the configurations from Table 1 with the

lowest test errors that also produce sparse features. For

SGD, the extent of sparsity is higher for earlier layers, and

decreases for later layers. The trend holds for both L2 and

weight decay, from C1-C6. Note that the higher sparsity

seen for C7 might be due to its interaction with the fully

connected layers that follow. Sparsity for Adam shows a

similar decreasing trend from early to middle layers, and

increasing sparsity from middle to later layers.

Surprising Similarities to Explicit Feature Sparsifica-

tion: In the case of Adam, the trend of layerwise sparsity

exhibited is similar to that seen in explicit feature sparsifi-

cation approaches (See Table 8 in [15] for Network Slim-

ming [14]). If we explicitly prune out features meeting the

|γ| < 10−3 sparsity criteria, we still see a relatively high

performance on the test set even with 90% of the convo-

lutional parameters pruned. Network Slimming [14] uses

explicit sparsity constraints on BatchNorm scales (γ). The

similarity in the trend of Adam’s emergent layer-wise spar-

sity to that of explicit scale sparsification motivates us to

examine the distribution of the learned scales (γ) and biases

(β) of the BatchNorm layer in our network. We consider

layer C6, and in Figure 2 show the evolution of the distribu-

tion of the learned bias and scales as training progresses on

CIFAR100. We consider a low L2 regularization value of

1e-5 and a higher L2 regularization value of 1e-4 for Adam,

and also show the same for SGD with L2 regularization of

5e-4. The lower regularization values, which do not induce

sparsity, would help shed light at the underlying processes

without interference from the sparsification process.

Feature Selectivity Hypothesis: From Figure 2 the dif-

ferences between the nature of features learned by Adam

and SGD become clearer. For zero mean, unit variance

BatchNorm outputs {x̂i}
N

i=1
of a particular convolutional

kernel, where N is the size of the training corpus, due to the

use of ReLU, a gradient is only seen for those datapoints for

which x̂i > −β/γ. Both SGD and Adam (L2: 1e-5) learn

positive γs for layer C6, however βs are negative for Adam,

while for SGD some of the biases are positive. This im-

plies that all features learned for Adam (L2: 1e-5) in this

layer activate for ≤ half the activations from the training

corpus, while SGD has a significant number of features ac-

tivate for more than half of the training corpus, i.e., Adam

learns more selective features in this layer. Features which

activate only for a small subset of the training corpus, and

consequently see gradient updates from the main objective

less frequently, continue to be acted upon by the regularizer.

If the regularization is strong enough (Adam with L2: 1e-4

in Fig. 2), or the gradient updates infrequent enough (fea-

ture too selective), the feature may be pruned away entirely.

The propensity of later layers to learn more selective fea-

522

Table 2. Layerwise % filters pruned from BasicNet trained on CIFAR100, based on the |γ| < 10
−3 criteria. Also shown are pre-pruning

and post-pruning test error, and the % of convolutional parameters pruned. C1-C7 indicate Convolution layer 1-7, and the numbers in

parantheses indicate the total number of features per layer. Average of 3 runs. Color and highlighting indicates high and low sparsity for

best and near best test errors, as in Table 1. Refer to the supplementary document for the corresponding table for CIFAR10.

% Sparsity by γ or % Filters Pruned % Param

Train Test Test C1 C2 C3 C4 C5 C6 C7 Total Pruned Pruned

Loss Loss Err (64) (128) (128) (256) (256) (512) (512) (1856) (4649664) Test Err.

L2: 1e-3 1.06 1.41 39.0 56 47 43 68 72 91 85 76 95 39.3

L2: 1e-4 0.10 1.98 36.6 41 20 9 33 34 67 55 47 74 36.6

WD: 2e-4 0.34 1.56 37.3 55 20 3 4 2 16 26 16 27 37.3A
d

am

WD: 1e-4 0.08 1.76 36.2 38 4 0 0 0 0 5 3 4 36.2

L2: 1e-3 1.49 1.78 47.1 82 41 33 29 33 6 18 23 34 47.1

L2: 5e-4 0.89 1.69 42.1 64 3 3 3 2 0 2 4 4 42.1

WD: 1e-3 1.49 1.79 47.6 82 43 31 28 33 6 17 23 34 47.6S
G

D

WD: 5e-4 0.89 1.69 41.9 66 2 1 4 2 0 1 4 4 41.9

Figure 2. Emergence of Feature Selectivity with Adam The evolution of the learned scales (γ, top row) and biases (β, bottom row) for

layer C6 of BasicNet for Adam and SGD as training progresses. Adam has distinctly negative biases, while SGD sees both positive and

negative biases. For positive scale values, as seen for both Adam and SGD, this translates to greater feature selectivity in the case of Adam,

which translates to a higher degree of sparsification when stronger regularization is used. Note the similarity of the final scale distribution

for Adam L2:1e-4 to the scale distributions shown in Figure 4 in [14]

tures with Adam would explain the higher degree of spar-

sity seen for later layers as compared to SGD. Understand-

ing the reasons for emergence of higher feature selectivity

in Adam than SGD, and verifying if other adaptive gradi-

ent descent flavours also exhibit higher feature selectivity

remains open for future investigation.

Quantifying Feature Selectivity: Similar to feature

sparsity by activation, we apply max pooling to a feature’s

absolute activations over the entire feature plane. For a par-

ticular feature, we consider these pooled activations over the

entire training corpus and normalize them by the max of the

pooled activations over the entire training corpus. We then

consider the percentage of the training corpus for which this

normalized pooled value exceeds a threshold of 10−3. We

refer to this percentage as the feature’s universality. A fea-

ture’s selectivity is then defined as 100-universality. Unlike

the selectivity metrics employed in literature [19], ours is

class agnostic. In Figure 3, we compare the ‘universal-

ity’ of features learned with Adam and SGD per layer on

CIFAR100, for both low and higher regularization values.

For the low regularization case, we see that in C6 and C7

both Adam and SGD learn selective features, with Adam

showing visibly ‘more selectivity for C6 (blue bars shifted

left). The disproportionately stronger regularization effect

of L2 coupled with Adam becomes clearer when moving

to a higher regularization value. The selectivity for SGD

in C6 remains mostly unaffected, while Adam sees a large

fraction (64%) of the features inactivated (0% universality).

523

Figure 3. Layer-wise Feature Selectivity Feature universality for CIFAR 100, with Adam and SGD. X-axis shows the universality and

Y-axis (×10) shows the fraction of features with that level of universality. For later layers, Adam tends to learn less universal features than

SGD, which get pruned by the regularizer. Please be mindful of the differences in Y-axis scales between plots. Refer to the supplementary

document for a similar analysis for CIFAR10

Similarly for C7, the selectivity pattern remains the same on

moving from lower regularization to higher regularization,

but Adam sees more severe feature inactivation.

Interaction of L2 Regularizer with Adam: Next, we

consider the role of the L2 regularizer vs. weight decay.

We study the behaviour of L2 regularization in the low gra-

dient regime for different optimizers. Figure 4 shows that

coupling of L2 regularization with ADAM update equation

yields a faster decay than weight decay, or L2 regulariza-

tion with SGD, even for smaller regularizer values. This is

an additional source of regularization disparity between pa-

rameters which see frequent updates and those which don’t

see frequent updates or see lower magnitude gradients. It

manifests for certain adaptive gradient descent approaches.

Task ‘Difficulty’ Dependence: As per the hypothesis

developed thus far, as the task becomes more difficult, for

a given network capacity, we expect the fraction of features

pruned to decrease corresponding to a decrease in selectiv-

ity of the learned features [30]. This is indeed observed in

Table 1 for BasicNet for all gradient descent methods on

moving from CIFAR10 to CIFAR100. For Adam with L2

regularization, 70% sparsity on CIFAR10 decreases to 47%

on CIFAR 100, and completely vanishes on ImageNet (See

Table 5). A similar trend is evident for VGG-16 in Tables 7

and 8. In Figure 5 note the distinct shift towards less selec-

tive features in BasicNet with increasing task difficulty.

Since the task difficulty cannot be cleanly decoupled

from the number of classes, we devise a synthetic exper-

iment based on grayscale renderings of 30 object classes

from ObjectNet3D [26]. We construct 2 identical sets of

≈ 50k 64×64 pixel renderings, one with a clean back-

ground (BG) and the other with a cluttered BG. We train

BasicNet with a mini-batch size of 40, and see that as ex-

pected there is a much higher sparsity (70%) with the clean

BG set than with the more difficult cluttered set (57%). See

the supplemental document for representative images and a

list of the object classes selected.

4. Related Work

Effect of L2 regularization vs. Weight Decay for

Adam: Prior work [16] has indicated that Adam with

L2 regularization leads to parameters with frequent and/or

large magnitude gradients from the main objective being

regularized less than the ones which see infrequent and/or

small magnitude gradients. Though weight decay is pro-

posed as a supposed fix, we show that there are rather two

different aspects to consider. The first is the disparity in

effective regularization due to the frequency of updates. Pa-

rameters which update less frequently would see more reg-

ularization steps per actual update than those which are up-

dated more frequently. This disparity would persist even

with weight decay due to Adam’s propensity for learning

more selective features, as detailed in the preceding section.

The second aspect is the additional disparity in regulariza-

tion for features which see low/infrequent gradient, due to

the coupling of L2 regularization with Adam.

Attributes of Generalizable Neural Network Fea-

tures: Dinh et al. [4] show that the geometry of minima is

not invariant to reparameterization, and thus the flatness of

the minima may not be indicative of generalization perfor-

mance [9], or may require other metrics which are invariant

to reparameterization. Morcos et al. [19] suggest based on

extensive experimental evaluation that good generalization

ability is linked to reduced selectivity of learned features.

They further suggest that individual selective units do not

play a strong role in the overall performance on the task

as compared to the less selective ones. They connect the

ablation of selective features to the heuristics employed in

neural network feature pruning literature which prune fea-

524

Figure 4. The action of regularization on a scalar value, for a range of regularization values in the presence of simulated low gradients

drawn from a mean=0, std=10−5 normal distribution. The gradients for the first 100 iterations are drawn from a mean=0, std=10−3 normal

distribution to emulate a transition into low gradient regime rather than directly starting in a low gradient regime. The learning rate for

SGD(momentum=0.9) is 0.1, and the learning rate for ADAM is 1e-3. We show similar plots for other adaptive gradient descent approaches

in the supplementary document.

tures whose removal does not impact the overall accuracy

significantly [18, 13]. The findings of Zhou et al. [30] con-

cur regarding the link between emergence of feature selec-

tivity and poor generalization performance. They further

show that ablation of class specific features does not influ-

ence the overall accuracy significantly, however the specific

class may suffer significantly. We show that the emergence

of selective features in Adam, and the increased propensity

for pruning the said selective features when using L2 regu-

larization presents a direct tradeoff between generalization

performance and network capacity which practitioners us-

ing Adam must be aware of.

Observations on Adaptive Gradient Descent: Several

works have noted the poorer generalization performance of

adaptive gradient descent approaches over SGD. Keskar et

al. [10] propose to leverage the faster initial convergence of

ADAM and the better generalization performance of SGD,

by switching from ADAM to SGD while training. Reddi

et al. [22] point out that exponential moving average of

past squared gradients, which is used for all adaptive gradi-

ent approaches, is problematic for convergence, particularly

with features which see infrequent updates. This short term

memory is likely the cause of accelerated pruning of selec-

tive features seen for Adam in Figure 4(and other adaptive

gradient approaches), and the extent of sparsity observed

would be expected to go down with AMSGrad which tracks

the long term history of squared gradients.

Feature Pruning/Sparsification: Among the various

explicit filter level sparsification heuristics and approaches

[13, 24, 7, 25, 18, 20, 14, 28], some [28, 14] make use of

the learned scale parameter γ in Batch Norm for enforcing

sparsity on the filters. Ye et al. [28] argue that BatchNorm

makes feature importance less susceptible to scaling repa-

rameterization, and the learned scale parameters (γ) can be

used as indicators of feature importance. We find that Adam

with L2 regularization, owing to its implicit pruning of fea-

tures based on feature selectivity, makes it an attractive al-

ternative to explicit sparsification/pruning approaches. The

link between ablation of selective features and explicit fea-

ture pruning is also established in prior work [19, 30].

5. Further Experiments

We conduct additional experiments on various datasets

and network architectures to show that the intuition devel-

oped in the preceding sections generalizes. Further, we pro-

vide additional support by analysing the effect of various

hyperparameters on the extent of sparsity. We also com-

pare the emergent sparsity for different networks on various

datasets to that of explicit sparsification approaches.

Datasets: In addition to CIFAR10 and CIFAR100, we

also consider TinyImageNet [2] which is a 200 class sub-

set of ImageNet [3] with images resized to 64×64 pixels.

The same training augmentation scheme is used for Tiny-

ImageNet as for CIFAR10/100. We also conduct exten-

sive experiments on ImageNet. The images are resized to

256×256 pixels. and random crops of size 224×224 pixels

used while training, combined with random horizontal flips.

For testing, no augmentation is used, and 1-crop evaluation

protocol is followed.

Network Architectures: The convolution structure

for BasicNet stays the same across tasks, while the fully-

connected (fc) structure changes across task. We will use

‘[n]’ to indicate an fc layer with n nodes. Batch Norm and

ReLU are used in between fc layers. For CIFAR10/100 we

use Global Average Pooling (GAP) after the last convolu-

tion layer and the fc structure is [256][10]/[256][100], as

shown in Figure 1. For TinyImagenet we again use GAP

followed by [512][256][200]. On ImageNet we use average

pooling with a kernel size of 5 and a stride of 4, followed

by [4096][2048][1000]. For VGG-11/16, on CIFAR10/100

we use [512][10]/[512][100]. For TinyImageNet we use

[512][256][200], and for ImageNet we use the structure

in [23]. For VGG-19, on CIFAR10/100, we use an fc struc-

ture identical to [14]. Unless explicitly stated, we will be

using Adam with L2 regularization of 1e-4, and a batch size

of 40. When comparing different batch sizes, we ensure the

same number of training iterations.

525

Figure 5. Feature Selectivity For Different Mini-Batch Sizes for

Different Datasets Feature universality (1 - selectivity) plotted for

layers C4-C7 of BasicNet for CIFAR10, CIFAR100 and TinyIm-

agenet. Batch sizes of 40/160 considered for CIFAR, and 40/120

for TinyImagenet.

5.1. Analysis of Hyperparameters

Having established in Section 3 (Figures 3 and 2) that

with Adam, the emergence of sparsity is correlated with

feature selectivity, we investigate the impact of various hy-

perparameters on the emergent sparsity.

Effect of Mini-Batch Size: Figure 5 shows the ex-

tent of feature selectivity for C4-C7 of BasicNet on CIFAR

and TinyImageNet for different mini-batch sizes. For each

dataset, note the apparant increase in selective features with

increasing batch size. However, a larger mini-batch size

is not promoting feature selectivity, and rather preventing

the selective features from being pruned away by provid-

ing more frequent updates. This makes the mini-batch size

a key knob to control tradeoffs between network capacity

(how many features get pruned, which affects the speed and

performance) and generalization ability (how many selec-

tive features are kept, which can be used to control over-

fitting). We see across datasets and networks that increas-

ing the mini-batch size leads to a decrease in sparsity (Ta-

bles 3, 4, 5, 7, 8, 9, 10).

Network Capacity: Task ‘difficulty’ is relative to the

network’s learning capacity. In the preceding section we

directly manipulated the task difficulty, and here we con-

sider variations of BasicNet in Table 6 to study the comple-

mentary effect of network capacity. We indicate the archi-

tecture presented in Figure 1 as ‘64-1x’, and consider two

variants: ‘64-0.5x’ which has 64 features in the first con-

volution layer, and half the features of BasicNet in the re-

maining convolution layers, and ‘32-0.25x’ with 32 features

in the first channel and a quarter of the features in the re-

maining layers. The fc-head remains unchanged. We see a

consistent decrease in the extent of sparsity with decreasing

network width in Table 6. Additionally note the decrease in

sparsity in moving from CIFAR10 to CIFAR100.

Table 3. BasicNet sparsity variation on CIFAR10/100 trained with

Adam and L2 regularization.

CIFAR 10 CIFAR 100

Batch Train Test Test %Spar. Train Test Test %Spar.

Size Loss Loss Err by γ Loss Loss Err by γ
20 0.43 0.45 15.2 82 1.62 1.63 45.3 79

40 0.29 0.41 13.1 83 1.06 1.41 39.0 76

L
2

:
1

e-
3

80 0.18 0.40 12.2 80 0.53 1.48 37.1 67

20 0.17 0.36 11.1 70 0.69 1.39 35.2 57

40 0.06 0.43 10.5 70 0.10 1.98 36.6 46

80 0.02 0.50 10.1 66 0.02 2.21 41.1 35

L
2

:
1

e-
4

160 0.01 0.55 10.6 61 0.01 2.32 44.3 29

Table 4. Convolutional filter sparsity for BasicNet trained on Tiny-

ImageNet, with different mini-batch sizes.

Batch Train Val Top 1 Top 5 % Spar.

Size Loss Loss Val Err. Val Err. by γ
SGD 40 0.02 2.63 45.0 22.7 0

20 1.05 2.13 47.7 22.8 63

40 0.16 2.96 48.4 24.7 48Adam

120 0.01 2.48 48.8 27.4 26

Table 5. Convolutional filter sparsity of BasicNet on ImageNet.

Batch Train Val Top 1 Top 5 % Sparsity

Size Loss Loss Val Err. Val Err. by γ
64 2.05 1.58 38.0 15.9 0.2

256 1.63 1.35 32.9 12.5 0.0

Table 6. Effect of varying the number of features in BasicNet.

CIFAR 10 CIFAR 100

Net Train Test Test %Spar. Train Test Test %Spar.

Cfg. Loss Loss Err by γ Loss Loss Err by γ
64-1x 0.06 0.43 10.5 70 0.10 1.98 36.6 46

64-0.5x 0.10 0.41 11.0 51 0.11 2.19 39.8 10

32-0.25x 0.22 0.44 13.4 23 0.51 2.05 43.4 0

5.2. Comparison With Explicit Feature Sparsifica­
tion / Pruning Approaches

For VGG-16, we compare the network trained on

CIFAR-10 with Adam using different mini-batch sizes

against the handcrafted approach of Li et al. [13]. Similar

to tuning the explicit sparsification hyperparameter in [14],

the mini-batch size can be varied to find the sparsest repre-

sentation with an acceptable level of test performance. We

see from Table 7 that when trained with a batch size of 160,

83% of the features can be pruned away and leads to a better

performance that the 37% of the features pruned for [13].

For VGG-11 on ImageNet (Table 9), by simply varying the

mini-batch size from 90 to 60, the number of convolutional

526

Table 7. Layerwise % Sparsity by γ for VGG-16 on CIFAR10 and

100. Also shown is the handcrafted sparse structure of [13]
CIFAR 10 CIFAR 100

Conv #Conv Adam, L2:1e-4 Li et Adam, L2:1e-4

Layer Feat. B: 40 B: 80 B: 160 al.[13] B: 40 B: 80 B: 160

C1 64 64 0 0 50 49 1 58

C2 64 18 0 0 0 4 0 8

C3 128 50 47 51 0 29 40 54

C4 128 12 5 6 0 0 0 3

C5 256 46 40 36 0 10 5 27

C6 256 71 66 63 0 26 5 7

C7 256 82 80 79 0 44 12 0

C8 512 95 96 96 50 86 74 55

C9 512 97 97 97 50 95 90 94

C10 512 97 97 96 50 96 93 93

C11 512 98 98 98 50 98 97 96

C12 512 99 99 98 50 98 98 99

C13 512 99 99 99 50 98 98 96

%Feat. Pruned 86 84 83 37 76 69 69

Test Err 7.2 7.0 6.5 6.6 29.2 28.1 27.8

Table 8. Sparsity by γ on VGG-16, trained on TinyImageNet, and

on ImageNet. Also shown are the pre- and post-pruning top-1/top-

5 single crop validation errors. Pruning using |γ| < 10
−3 criteria.

Conv Pre-pruning Post-pruning

TinyImageNet Feat. Pruned top1 top5 top1 top5

L2: 1e-4, B: 20 3016 (71%) 45.1 21.4 45.1 21.4

L2: 1e-4, B: 40 2571 (61%) 46.7 24.4 46.7 24.4

ImageNet

L2: 1e-4, B: 40 292 29.93 10.41 29.91 10.41

Table 9. Effect of different mini-batch sizes on sparsity (by γ) in

VGG-11, trained on ImageNet. Same network structure employed

as [14]. * indicates finetuning after pruning
Conv Pre-pruning Post-pruning

Feat. Pruned top1 top5 top1 top5

Adam, L2: 1e-4, B: 90 71 30.50 10.65 30.47 10.64

Adam, L2: 1e-4, B: 60 140 31.76 11.53 31.73 11.51

Liu et al. [14] from [15] 85 29.16 31.38* -

Table 10. Sparsity by γ on VGG-19, trained on CIFAR10/100.

Also shown are the post-pruning test error. Compared with explicit

sparsification approach of Liu et al. [14]

CIFAR 10 CIFAR 100

Adam, L2:1e-4 Liu et Adam, L2:1e-4 Liu et

B: 64 B: 512 al.[14] B: 64 B: 512 al.[14]

%Feat. Pruned 85 81 70 75 62 50

Test Err 7.1 6.9 6.3 29.9 28.8 26.7

features pruned goes from 71 to 140. This is in the same

range as the number of features pruned by the explicit spar-

sification approach of [13], and gives a comparable top-1

and top-5 validation error. For VGG-19 on CIFAR10 and

CIFAR100 (Table 10), we see again that varying the mini-

batch size controls the extent of sparsity. For the mini-batch

sizes we considered, the extent of sparsity is much higher

than that of [14], with consequently slightly worse perfor-

mance. The mini-batch size or other hyper-parameters can

be tweaked to further tradeoff sparsity for accuracy, and

reach a comparable sparsity-accuracy point as [14].

6. Discussion and Future Work

Our findings relate to the anecdotally known and poorly

understood ‘dying ReLU’ phenomenon [1], wherein some

features in ReLU networks get cut off while training, lead-

ing to a reduced effective learning capacity of the network.

Ameliorating it with Leaky ReLU [17] is ineffective be-

cause it does not address the root cause. BasicNet with

Leaky ReLU (negative slope of 0.01) on CIFAR-100 only

marginally reduces the extent of sparsity in the case of

Adam with L2: 10−4 (41% feature sparsity vs. 47% with

ReLU). Reducing the learning rate of BN parameter γ is

much more effective (33% sparsity). See Tables 2, 3 in the

supplemental document.

Our work opens several avenues of future investigation.

Understanding why features learned with Adam (and per-

haps other adaptive methods) are more selective than with

(m)SGD can further shed light on the practical differences

between adaptive methods and SGD. Also, our insights will

lead practitioners to be more aware of the implicit tradeoffs

between network capacity and generalization being made

below the surface, while changing hyperparameters such

as mini-batch size, which are seemingly unrelated to net-

work capacity. Also, we show that Adam with L2 regular-

ization works out of the box for speeding up neural net-

works and is a strong baseline for future efforts towards

filter-sparsification-for-speedup approaches.

7. Conclusion

We show through extensive experiments that the root

cause for the emergence of filter level sparsity in CNNs is

likely the disproportionate regularization (L2 or weight de-

cay) of the parameters in comparison to the gradient from

the primary objective. We identify how various factors in-

fluence the extent of sparsity by interacting in subtle ways

with the regularization process. We show that adaptive gra-

dient updates play a crucial role in the emergent sparsity (in

contrast to SGD), and Adam not only shows a higher degree

of sparsity but the extent of sparsity also has a strong depen-

dence on the mini-batch size. We show that this is caused

by the propensity of Adam to learn more selective features,

and the added acceleration of L2 regularization interacting

with the adaptive updates in low gradient regime.

Due to its targeting of selective features, the emergent

sparsity can be used to trade off between network capacity,

performance and generalization ability as per the task set-

ting, and common hyperparameters such as mini-batch size

allow direct control over it. We leverage this finegrained

control and show that Adam with L2 regularization can be

an attractive alternative to explicit network slimming ap-

proaches for speeding up test time performance of CNNs,

without any tooling changes to the traditional neural net-

work training pipeline supported by popular frameworks.

527

References

[1] CS231n convolutional neural networks for visual

recognition. http://cs231n.github.io/

neural-networks-1/.

[2] Tiny imagenet visual recognition challenge. https://

tiny-imagenet.herokuapp.com/.

[3] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In

CVPR09, 2009.

[4] Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua

Bengio. Sharp minima can generalize for deep nets. In

ICML, 2017.

[5] John Duchi, Elad Hazan, and Yoram Singer. Adaptive sub-

gradient methods for online learning and stochastic opti-

mization. volume 12, pages 2121–2159, 2011.

[6] Xavier Glorot and Yoshua Bengio. Understanding the diffi-

culty of training deep feedforward neural networks. In Pro-

ceedings of the thirteenth international conference on artifi-

cial intelligence and statistics, pages 249–256, 2010.

[7] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung

Tang. Network trimming: A data-driven neuron pruning ap-

proach towards efficient deep architectures. arXiv preprint

arXiv:1607.03250, 2016.

[8] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In Proc. ICML, volume 32, 2015.

[9] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal,

Mikhail Smelyanskiy, and Ping Tak Peter Tang. On large-

batch training for deep learning: Generalization gap and

sharp minima. In ICLR, 2017.

[10] Nitish Shirish Keskar and Richard Socher. Improving gener-

alization performance by switching from adam to sgd. arXiv

preprint arXiv:1712.07628, 2017.

[11] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[12] Alex Krizhevsky and Geoffrey Hinton. Learning multiple

layers of features from tiny images. 2009.

[13] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets. In

ICLR, 2017.

[14] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang,

Shoumeng Yan, and Changshui Zhang. Learning efficient

convolutional networks through network slimming. In Com-

puter Vision (ICCV), 2017 IEEE International Conference

on, pages 2755–2763. IEEE, 2017.

[15] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and

Trevor Darrell. Rethinking the value of network pruning. In

ICLR, 2019.

[16] Ilya Loshchilov and Frank Hutter. Fixing weight decay reg-

ularization in adam. arXiv preprint arXiv:1711.05101, 2017.

[17] Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Recti-

fier nonlinearities improve neural network acoustic models.

In Proc. ICML, volume 30, page 3, 2013.

[18] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila,

and Jan Kautz. Pruning convolutional neural networks for

resource efficient inference. 2017.

[19] Ari S Morcos, David GT Barrett, Neil C Rabinowitz, and

Matthew Botvinick. On the importance of single directions

for generalization. 2018.

[20] Michael C Mozer and Paul Smolensky. Skeletonization: A

technique for trimming the fat from a network via relevance

assessment. In Advances in neural information processing

systems, pages 107–115, 1989.

[21] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in pytorch. In NIPS-W, 2017.

[22] Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the

convergence of adam and beyond. In ICLR, 2018.

[23] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[24] Suraj Srinivas and R Venkatesh Babu. Data-free parameter

pruning for deep neural networks. In BMVC, 2016.

[25] Lucas Theis, Iryna Korshunova, Alykhan Tejani, and Fer-

enc Huszár. Faster gaze prediction with dense networks and

fisher pruning. In ICLR, 2017.

[26] Yu Xiang, Wonhui Kim, Wei Chen, Jingwei Ji, Christopher

Choy, Hao Su, Roozbeh Mottaghi, Leonidas Guibas, and Sil-

vio Savarese. Objectnet3d: A large scale database for 3d ob-

ject recognition. In European Conference Computer Vision

(ECCV). 2016.

[27] Atsushi Yaguchi, Taiji Suzuki, Wataru Asano, Shuhei Nitta,

Yukinobu Sakata, and Akiyuki Tanizawa. Adam induces im-

plicit weight sparsity in rectifier neural networks. In 2018

17th IEEE International Conference on Machine Learning

and Applications (ICMLA), pages 318–325. IEEE, 2018.

[28] Jianbo Ye, Xin Lu, Zhe Lin, and James Z Wang. Rethink-

ing the smaller-norm-less-informative assumption in channel

pruning of convolution layers. In ICLR, 2018.

[29] Matthew D Zeiler. Adadelta: an adaptive learning rate

method. arXiv preprint arXiv:1212.5701, 2012.

[30] Bolei Zhou, Yiyou Sun, David Bau, and Antonio Torralba.

Revisiting the importance of individual units in cnns via ab-

lation. arXiv preprint arXiv:1806.02891, 2018.

528

