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Abstract

Pixel-accurate tracking of objects is a key element in

many computer vision applications, often solved by iter-

ated individual object tracking or instance segmentation

followed by object matching. Here we introduce cross-

classification clustering (3C), a technique that simultane-

ously tracks complex, interrelated objects in an image stack.

The key idea in cross-classification is to efficiently turn a

clustering problem into a classification problem by run-

ning a logarithmic number of independent classifications

per image, letting the cross-labeling of these classifications

uniquely classify each pixel to the object labels. We ap-

ply the 3C mechanism to achieve state-of-the-art accuracy

in connectomics – the nanoscale mapping of neural tissue

from electron microscopy volumes. Our reconstruction sys-

tem increases scalability by an order of magnitude over ex-

isting single-object tracking methods (such as flood-filling

networks). This scalability is important for the deployment

of connectomics pipelines, since currently the best perform-

ing techniques require computing infrastructures that are

beyond the reach of most laboratories. Our algorithm may

offer benefits in other domains that require pixel-accurate

tracking of multiple objects, such as segmentation of videos

and medical imagery.

1. Introduction

Object tracking is an important and extensively studied

component in many computer vision applications [1, 13,

14, 16, 23, 54, 57, 59]. It occurs both in video segmenta-

tion and in 3-D object reconstruction based on 2-D images.

Less attention has been given to efficient algorithms per-

forming simultaneous tracking of multiple interrelated ob-

jects [14] in order to eliminate the redundancies of tracking

multiple objects via repeated use of single-object tracking.

This problem is relevant to applications in medical imaging

[10, 11, 22, 29, 30, 38] as well as videos [12, 43, 55, 58].
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Figure 1. (a) Single-object tracking using flood-filling net-

works [21], (b) Multiple-object tracking using our cross-

classification clustering (3C) algorithm, (c) The combinatorial en-

coding of an instance segmentation by 3C. One segmented image

with 10 objects is encoded using three images, each with 4 object

classes.

The field of connectomics, the mapping of neural tissue

at the level of individual neurons and the synapses between

them, offers one of the most challenging settings for testing

algorithms to track multiple complex objects. Such synap-

tic level maps can be made only from high-resolution im-

ages taken by electron microscopes, where the sheer vol-

ume of data that needs to be processed (petabyte-size im-

43218425



Figure 2. The raw input electron microscopy (EM) full image stack

and our 3C-LSTM-UNET results in the SNEMI3D benchmark.

age stacks), the desired accuracy and speed (terabytes per

hour [33]), and the complexity of the neurons’ morphology,

present a daunting computational task. By analogy to tradi-

tional object tracking, imagine that instead of tracking a sin-

gle sheep through multiple video frames, one must track an

entire flock of sheep that intermingle as they move, change

shape, disappear and reappear, and obscure each other [32].

As a consequence of this complexity, several highly suc-

cessful tracking approaches from other domains, such as the

“detect and track” approach [14], are less immediately ap-

plicable to connectomics.

Certain salient aspects are unique to the connectomics

domain: a) All objects are of the same type (biological

cells); sub-categorizing them is difficult and has little rel-

evance to the segmentation problem. b) Most of the image

is foreground, with tens to hundreds of objects in a single

megapixel image. c) Objects have intricate, finely branched

shapes and no two are the same. d) Stitching and align-

ment of images can be imperfect, and the distance between

images (z-resolution) is often greater than between pixels

of the same image (xy-resolution), sometimes breaking the

objects’ continuity. e) Some 3-D objects are laid out par-

allel to the image stack, spanning few images in the z di-

rection and going back and forth in that limited space with

extremely large extensions in some image planes.

In this work, we introduce 3C, a technique that achieves

volumetric instance segmentation by transferring segmenta-

tion knowledge from one image to another, simultaneously

classifying the pixels of the target image(s) with the labels

of the matching objects from the source image(s). This

algorithm is optimized for the setting of connectomics, in

which objects frequently branch and come together, but is

suitable for a wide range of video-segmentation and medi-

cal imaging applications.

The main advantage of our solution is its ability, unlike

prior single-object tracking methods for connectomics [21,

37], to simultaneously and jointly segment neighboring, in-

termingled objects, thereby avoiding redundant computa-

tion. In addition, instead of extending single masks, our

detectors perform clustering by taking into account infor-

mation on all visible objects.

The efficiency and accuracy of 3C are demonstrated on

four connectomics datasets: the public SNEMI3D bench-

mark dataset, shown in Figure 2, the widely studied mouse

somatosensory cortex dataset [24] (S1), a Lichtman Lab

dataset of the V1 region of the rat brain (ECS), and a newly

aligned mouse peripheral nervous system dataset (PNS),

where possible, comparing to other competitive results in

the field of connectomics.

1.1. Related Work

A variety of techniques from the past decade have ad-

dressed the task of neuron segmentation from electron mi-

croscopy volumes. An increasing effort has been dedicated

to the problem of densely segmenting all pixels of a volume

according to foreground object instances (nerve and support

cells), known as saturated reconstruction. Note that unlike

everyday images, a typical megapixel electron microscopy

image may contain hundreds of object instances, with very

little background (<10%). Below, we briefly survey the sat-

urated reconstruction pipelines that seem to us most influ-

ential and related to the approach undertaken here.

Algorithms for saturated reconstruction of connectomics

data have proved most accurate when they combine many

different machine learning techniques [6, 31]. Many of

these techniques use the hierarchical approach of Andres

et al. [2] that employs the well-known hierarchical im-

age segmentation framework [3, 15, 39, 47]. This is still

the most common approach in connectomics segmentation

pipelines: first detecting object borders in 2-D/3-D and then

gradually agglomerating information to form the final ob-

jects [6, 9, 20, 27, 31, 34, 35, 52]. The elevation maps

obtained from the border detectors are treated as estima-

tors of the true border probabilities [9], which are used to

define an over-segmentation of the image, foreground con-

nected components on top of a background canvas. The

assumption is that each of the connected components strad-

dles at most a single true object. Therefore it may need to

be agglomerated with other connected components (heuris-

tically [17, 18, 26] or based on learned weights of hand-

crafted features [2, 27, 40, 41]), but it should not be broken

down into smaller segments. Numerous 3-D reconstruction

systems follow this bottom-up design [6, 7, 27, 31, 35, 40,

41, 44]. A heavily engineered implementation of hierar-

chical segmentation [31] still occupies the leading entry in

the (still active) classical SNEMI3D connectomics contest

of 2013 [5], evaluated in terms of the uniform instance seg-

mentation correctness metrics (normalized Rand-Error [53]

and Variation of Information [36]).

A promising new approach was recently taken with
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the introduction of flood-filling networks (FFN; [21]) by

Januszewski et al. and concurrently and independently

of MaskExtend [37] by Meirovitch et al. As seen in

Figure 1(a), these algorithms take a mask defining the object

prediction on a source image(s), and then use a fully con-

volutional network (FCN) to classify which pixels in the

target image(s) belong to the singly masked object of the

source image(s). This process is repeated throughout the

image stack in different directions, segmenting and track-

ing a single object each time, while gradually filling the

3-D shape of complex objects. This provides accuracy im-

provements on several benchmarks and potentially tracks

objects for longer distances [21] compared to previous hi-

erarchical segmentation algorithms (e.g., [6]). However,

these single-object trackers are not readily deployable for

large-scale applications, especially when objects are tightly

packed and intermingled with each other, because then in-

dividual tracking becomes highly redundant, forcing the al-

gorithm to revisit pixels of related image contexts many

times1. Furthermore, the existing single-object detectors

in connectomics [21, 37] and in other biomedical domains

(e.g. [4, 8, 19, 48]) do not take advantage of the multi-object

scene to better understand the spatial correlation between

different 3-D objects. The approach taken here generalizes

the single-object approach in connectomics to achieve sim-

pler and more effective instance segmentation of the entire

volume.

1.2. Contribution

We provides a scalable framework for 3-D instance seg-

mentation and multi-object tracking applications, with the

following contributions:

• We propose a simple FCN approach, tackling the less

studied problem of mapping an instance segmentation

between two related images. Our algorithm jointly

predicts the shapes of several objects partially ob-

served in the input.

• We propose a novel technique that turns a clustering

problem into a classification problem by running a log-

arithmic number of independent classifications on the

pixels of an image with N objects (for possibly large

N , bounded only by the number of pixels).

• We show empirically that the simultaneous tracking

ability of our algorithm is more efficient than indepen-

dently tracking all objects.

• We conduct extensive experimentation with four con-

nectomics datasets, under different evaluation criteria

and a performance analysis, to show the efficacy and

efficiency of our technique on the problem of neuronal

reconstruction.

1Such approaches thus take time linear in the number of objects and

in the number of pixels, with a large constant that depends on the object

density.

Figure 3. A high level view of our 3-D instance segmentation

pipeline.

2. Methodology

We present cross-classification clustering (henceforth

3C), a technique that extends single object classification ap-

proaches, simultaneously and efficiently classifying all ob-

jects in a given image based on a proposed instance seg-

mentation of a context-related image. One can think of the

context-related image and its segmentation as a collection

of labeled masks to be simultaneously remapped together

to the new target image, as in Figure 1(b). The immediate

difficulty of such simultaneous settings is that this general-

ization is a clustering problem: unlike FFNs and MaskEx-

tend (shown in Figure 1(a)), that produce a binary output

(“YES” for extending the object and otherwise “NO”), in

any volume, we really do not know how many classification

labels we might need to capture all the objects, or more im-

portantly how to represent those instances in ways usable

for supervised learning. Overcoming this difficulty is a key

contribution of 3C.

Cross-Classification Clustering: We begin by explain-

ing the main idea behind 3C and differentiating it from

single-object methods such a FFNs. We then provide a

top-down sketch of our pipeline and describe how it can

be adapted to other domains.

Our goal is to extend a single-object classification from

one image to the next so as to simultaneously classify pix-

els for an a priori unknown set of object labels. More

formally, suppose that we have images Xprev and Xnext,

where Xprev has been segmented and Xnext must be seg-

mented consistent with Xprev . Given two such images, we

seek a classification function f that takes as input a voxel

v of Xnext and a segmentation s of Xprev (an integer ma-

trix representing object labels) and outputs a decision label.

The function f outputs a label if and only if v belongs to

the object with that label in s. If s is allowed to be an over-

segmentation (i.e., several labels representing the same ob-

ject) then the output of f should be one of the compatible

labels.

For simplicity, let us assume that the input segmenta-

tion s has entries from the label set {1, · · · , N}. We de-
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fine a new space of labels, the length-k strings over a pre-

determined alphabet A (here represented by colors), where

|A| = l and n=|A|k ≥ N is an upper bound on the number

of objects we expect in a classification. We use an arbi-

trary encoding function, χ, that maps labels in {1, · · · , N}
to distinct random strings over A of length k. In the ex-

ample in Figure 1(c), A is represented by l=4 colors, and

k=3, so we have a total of 43=64 possible strings of length

3 to which the N=10 objects can be mapped. Thus, for

example, object 5 is mapped to the string (Green, Purple,

Orange) and object 1 is (Green, Green, Purple). We can

define the classification function f on string labels as the

product of k traditional classifications, each with an input

segmentation of labels in A, and an output of labels in A.

Slightly abusing notation, let the direct product of images

χ(s) = χ1(s)×· · ·×χk(s) be the relabeling of the segmen-

tation s where each image (or tensor) χi(s) is the projection

of χ(s) in the i-th location (a single coloring of the segmen-

tation) and × is the concatenation operation on labels in A.

Then we can re-define f on χ(s) as

f(v, χ(s)) = f ′(v, χ1(s))× · · · × f ′(v, χk(s)), (1)

where each f ′(χk(s)) is a traditional classification function.

The key idea is that f ′ is a classification of v based on an

instance segmentation with l predetermined labels. In the

example in Figure 1(c), even though in the map representing

the most significant digit of the original objects 5 and 1,

they are both Green, when we perform the classification and

take the cross labeling of all three maps, the two objects are

classified into distinct labels.

3-D reconstruction system: Our 3-D reconstruction

system consists of the following steps (shown in Figure 3):

1) Seeding and labeling the volume with an initial imper-

fect 2-D/3-D instance segmentation that overlaps all objects

except for their boundaries (over-segmentation).

2) Encoding the labeled seeds into a new space using the

3C rule χ.

3) Applying a fully convolutional network log(N) times

to transfer the projected labeled seeds from the source im-

age to the target images, and then take their cross labeling.

4) Decoding the set of network outputs to the original

label space using the inverse 3C rule χ−1.

5) Agglomerating the labels into 3-D consistent objects

based on the overlap of the original seeding and the seg-

ments predicted from other sections.

To initially seed and label the volume (Step 1), we com-

pute and label 2-D masks that over-segment all objects. For

this we follow common practice in connectomics, comput-

ing object borders with FCNs and searching for local min-

ima in 2-D on the border elevation maps. Subsequently

(Step 2), we use χ to encode the seeds of each section, re-

sulting in a k-tuple over the l-color alphabet for each seed

(k=5 and l=4 in Figure 4).

Figure 4. The instance segmentation transfer mechanism of 3C:

Encoding the seeded image as k l-color images using the encod-

ing rule χ (k= log(N); here k=5 and l=4). Applying a fully

convolutional network k times to transfer each of the seed images

to a respective target. Decoding the set of k predicted seed images

using the decoding rule χ−1.

Figure 5. A schematic view of a global merge decision. The edge

weight between seed i and seed j at sections Z and Z+W , respec-

tively. e
ij

Z+W |Z is calculated by the ratio of the overlapping areas

of seed j and the 3C prediction of seed i from images Z to Z+W .

Seeds that over-segment a common object tend to get merged due

to a path of strong edges.

A fully convolutional neural network then predicts the

correct label mapping between interrelated images of sec-

tions Z and Z±W , which determines which pixels in target

image Z±W belong to which seeds in source image Z (step
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Figure 6. A schematic view of the 3C networks. The input layers have 3 channels of the raw image, seed mask and border probability, for

2W+1 consecutive sections (images). The output is a feature map of seed predictions in section Z ± W (binary or labeled). Top: 3C-

LSTM-UNET. Network architecture was implemented for the SNEMI3D dataset to optimize for accuracy. The inputs are processed with

three consecutive Conv-LSTM modules, followed by a symmetric Residual U-Net structure. Bottom: 3C-Maxout. Network architecture

was implemented for the Harvard Rodent Cortex and PNS datasets to optimize for speed.

3). All seeds here are represented by a fixed number l of

colors, and prediction is done log(N) times based on Equa-

tion 1. For decoding, all log(N) predictions are aggregated

for each pixel to determine the original label of the seed

using χ−1 (Step 4). For training, we use saturated ground

truth of the 3-D consistent objects. This approach allows us

to formalize the reconstruction problem as a tracking prob-

lem between independent images, and to deal with the ten-

dency of objects to disappear/appear in different portions of

an enormous 3-D dataset.

We now describe how the 3C seed transfers are utilized

to agglomerate the 2-D masks (as shown in Figure 5). For

agglomeration (Step 5), the FCN for 3C is applied from

all source images to their target images, which are at most

W image sections apart from each other across the image

stack (along the z dimension). We collect overlaps be-

tween all co-occurring segments, namely, those occurring

by the original 2-D seeding, and those by the 3C seed trans-

fer from source to target images. This leaves 2W+1 in-

stance segmentation cases for each image (including the ini-

tial seeding), which directly link seeds of different sections.

Formally, the overlaps of different labels define a graph

whose nodes are the 2-D seed mask labels and the directed

weighted edges are their overlap ratio from the source to

the target. Instead of optimizing this structure (as in the

Fusion approach of [25]), we found that agglomerating all

masks of sufficient overlap delivers adequate accuracy even

for a small W . We do however make forced linking on

lower probability edges to avoid “orphan” objects that are

too small, which is biologically implausible. We provide

further details in the Supplementary Materials.

We note that 3C does not attempt to correct potential

merge errors in the initial seeding. These can be addressed

post-hoc by learning morphological features [49, 60] or

global constraints [34].

Adaptation to other domains: To leverage 3C for

multi-object tracking in videos, a domain-specific seeder

should precede cross classification (e.g. with deep color-

ing [28]). Natural images are likely to introduce spatially

consistent object splits across frames and hence a dedicated

agglomerating procedure should follow. The 3C technique

can be readily applied to other medical imaging tasks, with

seed transfers across different axes for isotropic settings.

3. Experiments

The SNEMI3D challenge is a widely used benchmark

for connectomic segmentation algorithms dealing with

anisotropic EM image stacks [5]. Although the competi-

tion ended in 2014, several leading labs recently submit-

ted new results on this dataset, improving the state-of-the-

art. Recently Plaza et al. suggested that benchmarking con-

nectomics accuracy on small datasets as SNEMI3D is mis-

leading as large-scale “catastrophic errors” are hard to as-

sess [44, 45]. Moreover, the clustering metrics such as Vari-

ation of Information [36] and Rand Error [53] are inappro-

priate since they are not centered around the connectomics

goal of unraveling neuron shape and inter-neuron connec-

tivity. We therefore conduct experiments on three additional

datasets and show the Rand-Error results only on the canon-

ical SNEMI3D dataset. To assess the quality of 3C at large

scale, we demonstrate results on the widely studied dataset

by Kasthuri et al. [24] (S1 Dataset). To further assess our

results in terms of the end-goal of connectomics, neuronal

connectivity, we evaluate the synaptic connectivity of the
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3C objects using the NRI metric [46] (ECS Dataset). In

the final experiment we focus on the tracking ability of 3C

(PNS Dataset).

3.1. SNEMI3D Dataset

In order to implement 3C on the SNEMI3D dataset, we

first created an initial set of 2-D labeled seeds over the en-

tire volume. These were generated based on the regional

2-D minima of the border probability map. This map was

generated by a Residual U-Net, which is known for its ex-

cellent average pixel accuracy in border detection [31, 50].

Next, the 3C algorithm was used to transfer 2-D labeled

seeds through the volume, as shown in Figure 4. Finally,

the original 2-D labeled seeds and transferred labeled seeds

were agglomerated if their overlap ratio exceeded 0.1. We

found that W=2 delivers adequate accuracy. All orphans

were greedily agglomerated to their best match. In order

to achieve better accuracy, we tested 3C with various net-

work architectures, and evaluated their accuracy. To date,

convolutional LSTMs (ConvLSTM) have shown good per-

formance for sequential image data [56]. In order to adapt

these methods to the high pixel-accuracy required for con-

nectomics, we combined both ConvLSTM and U-Net. The

network is trained to learn an instance segmentation of

one image based on the proposed instance segmentation of

a nearby image with similar context. We found that the

LSTM-UNET architecture has validation accuracy of 0.961,

which outperforms other commonly used architectures. A

schematic view of our architecture is given in Figure 6. De-

tails are provided in the Supplementary Materials.

In order to illustrate the accuracy of 3C, we submitted

our result to the public SNEMI3D challenge website along-

side two common baseline models, the 3-D watershed trans-

form (a region-growing technique) and Neuroproof agglom-

eration [41]. Our watershed code was adopted from [35].

Similar to other traditional agglomerating-techniques, Neu-

roproof trains a random forest on merge decisions of neigh-

boring objects [40, 41, 42]. These baseline methods were

fed with the same high-quality border maps used in our 3C

reconstruction system. The comparisons of 2-D results with

ground truth (section Z=30) are shown in Figure 7. Our re-

sult has fewer merge- and split-errors, and outperforms the

two baselines by a large margin. Furthermore, 3C compares

favorably to other state of art works recently published in

Nature Methods [6, 21]. In the SNEMI3D challenge leader-

board the Rand-Error of 3C was 0.041, compared with the

0.06 achieved by a human annotator. Our accuracy (ranked

3rd) outperforms most of the traditional pipelines many by

a large margin, and is slightly behind the slower neuron-

by-neuron FFN segmentation for this volume. The leading

entry is a UNET-based model learning short and long range

affinities [31]. The results are summarized in Table 1.

Model Rand VI VIsplit VImerge Complexity

Watershed 0.113 0.67 0.55 0.12 -

Neuroproof 0.104 0.55 0.42 0.13 -

Multicuts 0.068 0.41 0.34 0.07 -

3C 0.041 0.31 0.19 0.12 O(V logN )

FFN 0.029 - - - O(V N )

Human val. 0.060 - - - -

Table 1. Comparison of Watershed, Neuroproof [41], Multicut [6],

human values, 3C and FFN [21] on the SNEMI3D dataset for

Rand-Error, Variation of Information VI, VI split, VI merge. Time

Complexity: N is the number of objects and V is number of pix-

els. For empirical comparison see the performance section. We do

not have access to the FFN and human outputs and hence their VI

metric is missing.

3.2. Harvard Rodent Cortex Datasets (ECS, S1)

We describe two additional tests: (1) 3C on datasets with

known synaptic connectivity (subsets of ECS and S1), and

(2) a lightweight agglomeration-free reconstruction applied

to a large-scale dataset (S1).

Connectivity-based test: Following [45], which re-

cently advocated connectivity-based evaluation of connec-

tomics, the accuracy of the pipeline was evaluated using the

NRI metric [46]. In a nutshell, the NRI ranges between 0
and 1, measuring how well a given neuronal segmentation

preserves the object connectivity between neural synapses

(1 being optimal).

For the first test, we used a lightweight yet successful

FCN model [35] (Maxout) (for border and 3C computa-

tions), reconstructing the test set of [24] (S1) (3C with FOV

of 109 pixels). Maxout is currently the fastest border de-

tector in connectomics, which was previously successfully

used for single-object tracking [37]. Details of architecture

and training are presented in the Supplementary Materials.

The NRI score of the 3C-Maxout segmentation was 0.54,

compared to 0.41 of a traditional agglomeration pipeline

[35]. For the second test, we were granted permission to re-

construct a recently collected rat cortex dataset of the Licht-

man group at Harvard (ECS). This test allowed the compar-

ison of 3C to the excellent agglomerative approach of [42]

(4th on SNEMI3D), while using exactly their U-Net [50]

border predictions as inputs to our 3C network. On the test

set our NRI score was 0.86, compared to 0.73 for the ag-

glomeration pipeline.

Large-scale reconstruction (S1): We also ran a fast ver-

sion of 3C on the entire S1 dataset (90 gigavoxels: 1840

slices, 6 nm x 6 nm x 30 nm per voxel). In this experiment,

we omitted the agglomeration step of the reconstruction al-

gorithm to achieve better scalability and let 3C run on 3-D

masks computed by local minima of the border probability

maps. This implementation is highly scalable since it has

no agglomeration step, while the 3C masks are updated on-
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Figure 7. SNEMI3D: The 3C-LSTM-UNET Results compared with baseline techniques: Watershed, Neuroproof, and ground truth.

Figure 8. Results on Kasthuri et al. [24] S1. Fast lightweight 3C-

Maxout operating on 3-D seeds, without agglomeration. Back-

ground: Segmented section. Foreground: five 3-D reconstructed

objects.

Figure 9. 3C-Maxout results of recursively tracking all objects (ax-

ons) directly from the PNS raw images (no post-processing).

the-fly in a streaming fashion every 100 slices. The Maxout

implementation is attractive for large-scale systems because

it is efficiently parallelized on multi-core systems with ex-

cellent cache behavior on CPUs [35]. Figure 8 shows five

objects that span the whole volume of S1.

3.3. Peripheral Nervous System (PNS) Dataset

Next, we tested the ability of the 3C framework to track

objects recursively based on raw images in a streaming

mode, that is, independently of any agglomerating or post-

processing steps.

We chose a previously unpublished motor nerve bundle

from a (newborn) mouse contributed by the Lichtman lab

at Harvard for this purpose because it is a closed system

in which all objects are visible in the first and last image

sections of the 915-images dataset. This dataset is important

to neurobiologists since it contains the entire neural input

(21 axons) of a complete muscle.

Again, we applied the 3C algorithm using the

lightweight FCN Maxout architecture of [35]. 3C was able

to track all objects without erroneous merges; results are

shown in Figure 9. Out of the 21 axons, 20 were recursively

reconstructed to their full extent (split errors in only one ob-

ject). One extremely thin axon disappeared from the image

and reappeared after 7 sections and was not reconstructed.

The axon run-length for all reconstructed axons was above

70 microns (and > 900 sections) until all of these exited the

volume on the last slice in the image stack.

This benchmark demonstrates: a) 3C-Maxout performs

well in a tracking task directly from raw images, even in the

difficult connectomics regime, and b) our training proce-

dures display satisfactory generalization abilities, learning

from a relatively small number of examples.

4. Scalability Comparisons

In this section, we compare the relative scalability of 3C

to FFN and MaskExtend, as far as possible without having

access to the full FFN pipeline. 3C is a generalization of the

FFN and MaskExtend techniques [21, 37], which augment

the (pixel) support set of each object, one at a time. The 3C

technique simultaneously augments all the objects from its

input image(s) after a logarithmic number of iterations (see

Figure 4). This allows us directly to compare the two types

of approaches based on the number of iterations required,

ignoring details of implementation.

FFN: We compare the number of FCNs calls in FFN

and 3C assuming both algorithms reconstruct all objects

flawlessly. We assume both algorithms use the same FCN

model. Although 3C and FFN invoke FCNs a logarithmic

versus a linear number of times, respectively, FFN runs on
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Figure 10. Compute cost per pixel using FFN-Style segmentation.

We computed the number of times a pixel is participating in object

detection (red) for two public datasets (SNEMI3D, FlyEM), and

compared to the number of classification calls in 3C.

smaller inputs, centered around small regions of interest.

At each iteration, FFN will output an entire 3-D mask of

the object around the center pixel. We assume that a frac-

tion of those pixels will require revisiting (zero for best-case

scenario). Figure 10 depicts the number of FCN calls and

their ratio for FlyEM [51] and SNEMI3D [5] for FFN and

3C. In 3C, each pixel participates in an FCN call a number

of times logarithmic in the number of objects visible in the

field of view (the FCN calls for FFN are color-coded red

in the data cubes of Figure 10). The y-axis depicts the ratio

between the FCN calls by 3C to that for FFN, for several ra-

tios of object pixels found per FCN call. A zero ratio means

that no pixels are found for the object in a single FCN call,

whereas 1 means that all object pixels are found and require

no further revisiting. We can see from the plot that, assum-

ing error-free reconstruction, 3C is more efficient than FFN

when there is a fraction of object pixels that require revis-

iting after a single call of the FCN. The revisiting of some

pixels is also reported by [21], as the 3-D output has greater

uncertainty far from the initial pixels. For a revisit ratio of

0.5, 3C is more than 10x faster than FFN on FlyEM.

MaskExtend: Figure 11 repeats the above procedure

with MaskExtend [37], comparing its FCN calls with 3C.

MaskExtend is more wasteful than 3C, propagating some

pixels into its FCN model 23 times. The instruction and cy-

cle counts as well as the L1 Cache pressure are larger for

MaskExtend (equal multi-core infrastructure and inference

framework [35]).

5. Conclusion

In this paper, we have presented cross-classification clus-

tering (3C), an algorithm that tracks multiple objects simul-

taneously, transferring a segmentation from one image to

Figure 11. Compute cost per pixel with single-object tracking

methods [37]. The number of calls per pixel is color-coded in

purple. For the highly dense areas 23 calls of the object detector

are required. The table depicts the performance counter statistics

for the execution of [37] and the 3C-Maxout FCN on a stack of

100 images.

the next by composing simpler segmentations. We have

demonstrated the power of 3C in the domain of connec-

tomics, which presents an especially difficult task for im-

age segmentation. Within the space of connectomics al-

gorithms, 3C provides an end-to-end approach with fewer

“moving parts,” improving on the accuracy of many lead-

ing connectomics systems. Our solution is computation-

ally cheap, can be achieved with lightweight FCNs, and

is at least an order of magnitude faster than its relative,

flood-filling networks. Although the main theme of this pa-

per was tackling neuronal reconstruction, our approach also

promises scalable, effective algorithms for broader applica-

tions in medical imaging and video tracking.
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