
SIGNet: Semantic Instance Aided Unsupervised 3D Geometry Perception

Yue Meng1 Yongxi Lu1 Aman Raj1 Samuel Sunarjo1 Rui Guo2

Tara Javidi1 Gaurav Bansal2 Dinesh Bharadia1

1UC San Diego 2Toyota InfoTechnology Center

{yum107, yol070, amraj, ssunarjo, tjavidi, dineshb}@ucsd.edu

rguo@us.toyota-itc.com gauravbs@gmail.com

Abstract

Unsupervised learning for geometric perception (depth,

optical flow, etc.) is of great interest to autonomous sys-

tems. Recent works on unsupervised learning have made

considerable progress on perceiving geometry; however,

they usually ignore the coherence of objects and perform

poorly under scenarios with dark and noisy environments.

In contrast, supervised learning algorithms, which are ro-

bust, require large labeled geometric dataset. This paper

introduces SIGNet, a novel framework that provides ro-

bust geometry perception without requiring geometrically

informative labels. Specifically, SIGNet integrates seman-

tic information to make depth and flow predictions con-

sistent with objects and robust to low lighting conditions.

SIGNet is shown to improve upon the state-of-the-art unsu-

pervised learning for depth prediction by 30% (in squared

relative error). In particular, SIGNet improves the dynamic

object class performance by 39% in depth prediction and

29% in flow prediction. Our code will be made available at

https://github.com/mengyuest/SIGNet

1. Introduction

Visual perception of 3D scene geometry using a monoc-

ular camera is a fundamental problem with numerous appli-

cations, like autonomous driving and space exploration. We

focus on the ability to infer accurate geometry (depth and

flow) of static and moving objects in a 3D scene. Supervised

deep learning models have been proposed for geometry pre-

dictions, yielding “robust” and favorable results against the

traditional approaches (SfM) [38, 39, 10, 2, 1, 26]. How-

ever, supervised models require a dataset labeled with ge-

ometrically informative annotations, which is extremely

challenging as the collection of geometrically annotated

ground truth (e.g. depth, flow) requires expensive equip-

ment (e.g. LIDAR) and careful calibration procedures.

Ours State-of-the-art unsupervised
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Figure 1: On the right, state-of-the-art unsupervised learn-

ing approach relies on pixel-wise information only, while

SIGNet on the left utilizes the semantic information to en-

code the spatial constraints hence further enhances the ge-

ometry prediction.

Recent works combine the geometric-based SfM meth-

ods with end-to-end unsupervised trainable deep models

to utilize abundantly available unlabeled monocular cam-

era data. In [54, 41, 51, 9] deep models predict depth

and flow per pixel simultaneously from a short sequence of

images and typically use photo-metric reconstruction loss

of a target scene from neighboring scenes as the surro-

gate task. However, these solutions often fail when dealing

with dynamic objects1. Furthermore, the prediction quality

is negatively affected by the imperfections like Lambertian

reflectance and varying intensity which occur in the real

world. In short, no robust solution is known.

In Fig 1, we highlight the innovation of our system (on

the left) comparing to the existing unsupervised frameworks

(on the right) for geometry perception. Traditional unsu-

pervised models learn from the pixel-level feedback (i.e.

1Section 5 presents empirical results that explicitly illustrate this short-

coming of state-of-the-art unsupervised approaches.
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photo-metric reconstruction loss), whereas SIGNet relies on

the key observation that inherent spatial constraints exist in

the visual perception problem as shown in Fig 1. Specifi-

cally, we exploit the fact that pixels belonging to the same

object have additional constraints for the depth and flow

prediction.

How can those spatial constraints of the pixels be en-

coded? We leverage the semantic information as seen in

Fig 1 for unsupervised frameworks. Intuitively, seman-

tic information can be interpreted as defining boundaries

around a group of pixels whose geometry is closely related.

The knowledge of semantic information between different

segments of a scene could allow us to easily learn which

pixels are correlated, while the object edges could imply

sharp depth transition. Furthermore, note that this learn-

ing paradigm is practical 2 as annotations for semantic pre-

diction tasks such as semantic segmentation are relatively

cheaper and easier to acquire. To the best of our knowl-

edge, our work is the first to utilize semantic information in

the context of unsupervised learning for geometry percep-

tion.

A natural question is how do we combine semantic in-

formation with an unsupervised geometric prediction? Our

approach to combine the semantic information with RGB

input is two-fold: First, we propose a novel way to augment

RGB images with semantic information. Second, we pro-

pose new loss functions, architecture, and training method.

The two-fold approach precisely accounts for spatial con-

straints in making geometric predictions:

Feature Augmentation: We concatenate the RGB input

data with both per-pixel class predictions and instance-level

predictions. We use per pixel class predictions to define se-

mantic mask which serves as a guidance signal that eases

unsupervised geometric predictions. Moreover, we use the

instance-level prediction and split them into two inputs, in-

stance edges and object masks. Instance edges and object

masks enable the network to learn the object edges and

sharp depth transitions.

Loss Function Augmentation: Second, we augment the

loss function to include various semantic losses, which re-

duces the reliance on semantic features in the evaluation

phase. This is crucial when the environment contains less

common contextual elements (like in dessert navigation or

mining exploitation). We design and experiment with var-

ious semantic losses, such as semantic warp loss, masked

reconstruction loss, and semantic-aware edge smoothness

loss. However, manually designing a loss term which

can improve the performance over the feature augmenta-

tion technique turns out to be very difficult. The chal-

2Semantic labels can be easily curated on demand on unlabeled data.

On the contrary, geometrically informative labels such as flow and depth

require additional sensors and careful annotation at the data collection

stage.

lenge comes from the lack of understanding of error dis-

tributions because we are generally biased towards simple,

interpretable loss functions that can be sub-optimal in un-

supervised learning. Hence, we propose an alternative ap-

proach of incorporating a transfer network that learns how

to predict semantic mask via a semantic reconstruction loss

and provides feedback to improve the depth and pose esti-

mations, which shows considerable improvements in depth

and flow prediction.

We empirically evaluate the feature and loss func-

tion augmentations on KITTI dataset [14] and compare

them with the state-of-the-art unsupervised learning frame-

work [51]. In our experiments we use class-level predic-

tions from DeepLabv3+ [4] trained on Cityscapes [6] and

Mask R-CNN [18] trained on MSCOCO [27]. Our key find-

ings:

• By using semantic segmentation for both feature and

loss augmentation, our proposed algorithms improves

squared relative error in depth estimation by 28% com-

pared to the strong baseline set by state-of-the-art un-

supervised GeoNet [51].

• Feature augmentation alone, combining semantic with

instance-level information, leads to larger gains.

With both class-level and instance-level features, the

squared relative error of the depth predictions im-

proves by 30% compared to the baseline.

• Finally, as for common dynamic object classes

(e.g. vehicles) SIGNet shows 39% improvement (in

squared relative error) for depth predictions and 29%

improvement in the flow prediction, thereby showing

that semantic information is very useful for improving

the performance in the dynamic categories of objects.

Furthermore, SIGNet is robust to noise in image

intensity compared to the baseline.

2. Related Work

Deep Models for Understanding Geometry: Deep mod-

els have been widely used in supervised depth estimation

[8, 29, 36, 53, 5, 49, 50, 11, 46], tracking, and pose es-

timation [43, 47, 2, 17] , as well as optical flow predic-

tions [7, 20, 25, 40]. These models have demonstrated su-

perior accuracy and typically faster speed in modern hard-

ware platforms (especially in the case of optical flow esti-

mation) compared to traditional methods. However, achiev-

ing good performance with supervised learning requires a

large amount of geometry-related labels. The current work

addresses this challenge by adopting an unsupervised learn-

ing framework for depth, pose, and optical flow estimations.

Deep Models for Semantic Predictions: Deep models are

widely applied in semantic prediction tasks, such as image

classification [24], semantic segmentation [4], and instance
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segmentation [18]. In this work, we utilize the effectiveness

of the semantic predictions provided by DeepLab v3+ [4]

and Mask R-CNN [18] in encoding spatial constraints to ac-

curately predict geometric attributes such as depth and flow.

While we particularly choose [4] and [18] for our SIGNet,

similar gains can be obtained by using other state-of-the-art

semantic prediction methods.

Unsupervised Deep Models for Understanding Geome-

try: Several recent methods propose to use unsupervised

learning for geometry understanding. In particular, Garg

et al. [13] uses a warping method based on Taylor expan-

sion. In the context of unsupervised flow prediction, Yu et

al. [21] and Ren et al. [37] introduce image reconstruction

loss with spatial smoothness constraints. Similar methods

are used in Zhou et al. [54] for learning depth and camera

ego-motions by ignoring object motions. This is partially

addressed by Vijayanarasimhan et al. [41], despite the fact,

we note, that the modeling of motion is difficult without

introducing semantic information. This framework is fur-

ther improved with better modeling of the geometry. Ge-

ometric consistency loss is introduced to handle occluded

regions, in binocular depth learning [16], flow prediction

[32] and joint depth, ego-motion and optical flow learning

[51]. Mahjourian et al. [31] focuses on improved geometric

constraints, Godard et al. [15] proposes several architectural

and loss innovations, while Zhan et al. [52] uses reconstruc-

tion in the feature space rather than the image space. In con-

trast, the current work explores using semantic information

to resolve ambiguities that are difficult for pure geometric

modeling. Methods proposed in the current work are com-

plementary to these recent methods, but we choose to vali-

date our approach on a state-of-the-art framework known as

GeoNet [51].

Multi-Task Learning for Semantic and Depth: Multi-

task learning [3] achieves better generalization by allowing

the system to learn features that are robust across different

tasks. Recent methods focus on designing efficient archi-

tectures that can predict related tasks using shared features

while avoiding negative transfers [35, 19, 30, 34, 23, 12].

In this context, several prior works report promising results

combining scene geometry with semantics. For instance,

similar to our method Liu et al. [28] uses semantic predic-

tions to provide depth. However, this work is fully super-

vised and only uses sub-optimal traditional methods. Wang

et al. [44], Cross-Stitching [35], UberNet [23] and NDDR-

CNN [12] all report improved performance over single-task

baselines. But they have not addressed outdoor scenes and

unsupervised geometry understanding. Our work is also re-

lated to PAD-Net [48]. PAD-Net reports improvements by

combining intermediate tasks as inputs to final depth and

segmentation tasks. Our method of using semantic input

similarly introduces an intermediate prediction task as input

to the depth and pose predictions, but we tackle the problem

setting where depth labels are not provided.

3. State-of-the-art Unsupervised Geometry

Prediction

Prior to presenting our technical approach, we provide

a brief overview of state-of-the-art unsupervised depth and

motion estimation framework, which is based on image re-

construction from geometric predictions [54, 51]. It trains

the geometric prediction models through the reconstruc-

tions of a target image from source images. The target and

source images are neighboring frames in a video sequence.

Note that such a reconstruction is possible only when cer-

tain elements of the 3D geometry of the scene are under-

stood: (1) The relative 3D location (and thus the distance)

between the camera and each pixel. (2) The camera ego-

motion. (3) The motion of pixels. Thus this framework can

be used to train a depth estimator and an ego-motion esti-

mator, as well as a optical flow predictor.

Technically, each training sample I = {Ii}
n
i=1 consists

of n contiguous video frames Ii ∈ R
H×W×3 where the cen-

ter frame It is the “target frame” and the other frames serve

as the “source frame”. In training, a differentiable warping

function ft→s is constructed from the geometry predictions.

The warping function is used to reconstruct the target frame

Ĩs ∈ R
H×W×3 from source frame Is via bilinear sampling.

The level of success in this reconstruction provides training

signals through backpropagation to the various ConvNets in

the system. A standard loss function to measure reconstruc-

tion success is as follows:

Lrw = α
1− SSIM(It, Ĩs)

2
+ (1− α)||It − Ĩs||1 (1)

where SSIM denotes the structural similarity index [45] and

α is set to 0.85 in [51].

To filter out erroneous predictions while preserving

sharp details, the standard practice is to include an edge-

aware depth smoothness loss Lds weighted by image gradi-

ents

Lds =
∑

pt

|∇D(pt)| · (e
−|∇I(pt)|)T (2)

where | · | denotes element-wise absolute operation, ∇ is the

vector differential operator, and T denotes transpose of gra-

dients. These losses are usually computed from a pyramid

of multi-scale predictions. The sum is used as the training

target.

While the reconstruction of RGB images is an effective

surrogate task for unsupervised learning, it is limited by the

lack of semantic information as supervision signals. For ex-

ample, the system cannot learn the difference between the

car and the road if they have similar colors or two neighbor-

ing cars with similar colors. When object motion is consid-

ered in the models, the learning can mistakenly assign mo-

tion to non-moving objects as the geometric constraints are
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Figure 2: Our unsupervised architecture contains DepthNet, PoseNet and ResFlowNet to predict depth, poses and motion

using semantic-level and instance-level segmentation concatenated along the input channel dimension.

ill-posed. We augment and improve this system by leverag-

ing semantic information.

4. Methods

In this section, we present solutions to enhance geome-

try predictions with semantic information. Semantic labels

can provide rich information on 3D scene geometry. Impor-

tant details such as 3D location of pixels and their move-

ments can be inferred from a dense representation of the

scene semantics. The proposed methods are applicable to

a wide variety of recently proposed unsupervised geometry

learning frameworks based on photometric reconstruction

[54, 16, 51] represented by our baseline framework intro-

duced in Section 3. Our complemented pipeline in test time

is illustrated in Fig 2.

4.1. Semantic Input Augmentation

Semantic predictions can improve geometry prediction

models when serving as input features. Unlike RGB im-

ages, semantic predictions mark objects and contiguous

structures with consistent blobs, which provide important

information for the learning problem. However, it is un-

certain that using semantic labels as input could indeed im-

prove depth and flow predictions since training labels are

not available. Semantic information could be lost or dis-

torted, which would end up being a noisy training signal.

An important finding of our work is that using semantic

predictions as inputs significantly improves the accuracy in

geometry predictions, despite the presence of noisy training

signal. Input representation and the type of semantic la-

bels have a large impact on the performance of the system.

We further illustrate this by Fig 3, where we show various

semantic labels (semantic segmentation, instance segmen-

tation, and instance edge) that we use to augment the input.

This imposes additional constraints such as depth of the pix-

els belonging to a particular object (e.g. a vehicle) which

helps the learning process. Furthermore, sudden changes
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Figure 3: Top to bottom: RGB image, semantic segmen-

tation, instance class segmentation and instance edge map.

They are used for the full prediction architecture. The se-

mantic segmentation provides accurate segments grouped

by classes, but it fails to differentiate neighboring cars.

in the depth predictions can be inferred from the boundary

of vehicles. The semantic labels of the pixels can provide

important information to associate pixels across frames.

Encoding Pixel-wise Class Labels: We explored two in-

put encoding techniques for class labels: dense encoding

and one-hot encoding. In dense encoding, dense class la-

bels are concatenated along the input channel dimension.

The added semantic features are centralized to the range of

[−1, 1] to be consistent with RGB inputs. In the case of
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one-hot encoding, the class-level semantic predictions are

first expanded to one-hot encoding and then concatenated

along the input channel dimension. The labels are repre-

sented as one-hot sparse vectors. In this variant, semantic

features are not normalized since they have similar value

range as the RGB inputs,

Encoding Instance-level Semantic Information: Both

dense and one-hot encoding are natural to class-level se-

mantic prediction, where each pixel is only assigned a class

label rather than an instance label. Our conjecture is that

instance-level semantic information is particular well-suited

to improve unsupervised geometric predictions, as it pro-

vides accurate information on the boundary between indi-

vidual objects of the same type. Unlike class-level label, the

instance label itself does not have a well-defined meaning.

Across different frames, the same label could refer to differ-

ent object instances. To efficiently represent the instance-

level information, we compute the gradient map of a dense

instance map and use it as an additional feature channel con-

catenating to the class label input (dense/one-hot encoding).

Direct Input versus Residual Correction: Complemen-

tary to the choice of encoding, we also experiment with dif-

ferent architectures to feed semantic information to the ge-

ometry prediction model. In particular, we make a residual

prediction using a separate branch that takes in only seman-

tic inputs. Notably, using residual depth prediction leads

to further improvement on top of the gains from the direct

input methods.

4.2. Semantic Guided Loss Functions

The information from semantic predictions could be di-

minished due to noisy semantic labels and very deep archi-

tectures. Hence, we design training loss functions that are

guided by semantic information. In such design, the se-

mantic predictions provide additional loss constraints to the

network. In this subsection, we introduce a set of seman-

tic guided loss functions to improve depth and flow predic-

tions.

Semantic Warp Loss: Semantic predictions can help learn

scenarios where reconstruction of the RGB image is cor-

rect in terms of pixel values but violates obvious semantic

correspondences, e.g. matching pixels to incorrect seman-

tic classes and/or instances. In light of this, we propose to

reconstruct the semantic predictions in addition of doing so

for RGB images. We call this “semantic warping loss” as it

is based on warping of the semantic predictions from source

frames to the target frame. Let Ss be the source frame se-

mantic prediction and S̃rig
s be the warped semantic image,

we define semantic warp loss as:

Lsem = ||S̃rig
s − St||2 (3)

The warped loss is added to the baseline framework using a

hyper-tuned value of the weight w.

Masking of Reconstruction Loss via Semantics: As de-

scribed in Section 3, the ambiguity in object motion can

lead to sub-optimal learning. Semantic labels can par-

tially resolve this by separating each class of region. Moti-

vated by this observation, we mask the foreground region

out to form a set of new images Jk
t,c = It,c ⊙ St,k for

c = 0, 1, 2 and k = 0, ...,K − 1 where c represents the

RGB-channel index, ⊙ is the element-wise multiplication

operator and Ss,k is the k-th channel of the binary semantic

segmentation (K classes in total). Similarly we can obtain

J̃rig,k
s,c = Ĩrigs,c ⊙ St,k for c = 0, 1, 2 and k = 0, ...,K − 1.

Finally, the image similarity loss is defined as:

L′
rw =

K−1∑

k=0

α
1− SSIM(Jk

t , J̃
rig,k
s )

2
+(1−α)||Jk

t −J̃rig,k
s ||1

(4)

DepthNet

PoseNet

VGG16

Image Loss

depth

pose
Semantic 

Maps

*Optional

RGB

Total Loss⊕

Semantic 

Loss

predicted semantic 

maps

Concat

Figure 4: Infer semantic labels from depth predictions. The

transfer function uses RGB and predicted depth as input.

We experimented the variants with and without semantic

input.

Semantic-Aware Edge Smoothness Loss: Equation 2 uses

RGB to infer edge locations when enforcing smooth re-

gions of depth. This could be improved by including an

edge map computed from semantic predictions. Given a se-

mantic segmentation result St, we define a weight matrix

Mt ∈ [0, 1]H×W where the weight is low (close to zero)

on class boundary regions and high (close to one) on other

regions. We propose a new image similarity loss as:

L′′
rw =

K−1∑

k=0

α
1− SSIM(It ⊙Mt, Ĩ

rig
s ⊙Mt)

2

+ (1− α)||It ⊙Mt − Ĩrigs ⊙Mt||1

(5)

Semantic Loss by Transfer Network: Motivated by the

observation that high-quality depth maps usually depict ob-

ject classes and background region, we designed a novel

transfer network architecture. As shown in Fig 4 the trans-

fer network block receives predicted depth maps along

with the original RGB images and outputs semantic labels.

The transfer network introduces a semantic reconstruction

loss term to the objective function to force the predicted

depth maps to be richer in contextual sense, hence refines
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the depth estimation. For implementation, we choose the

ResNet-50 as the backbone and alter the dimensions for the

input and output convolutional layers to be consistent with

the segmentation task. The network generates one-hot en-

coded heatmaps and use cross-entropy as the semantic sim-

ilarity measure.

5. Experiments

To quantify the benefits that semantic information brings

to geometry-based learning, we designed experiments sim-

ilar to [51]. First, we showed our model’s depth predic-

tion performance on KITTI dataset [14], which outper-

formed state-of-the-art unsupervised and supervised mod-

els. Then we designed ablation studies to analyze each in-

dividual component’s contribution. Finally, we presented

improvements in flow predictions and revisited the perfor-

mance gains using a category-specific evaluation.

5.1. Implementation Details

To make a fair comparison with state-of-the-art models

[8, 54, 51], we divided KITTI 2015 dataset into train set

(40238 images) and test set (697 images) according to the

rules from Eigen et al [8]. We used DeepLabv3+ [4] (pre-

trained on [6]) for semantic segmentation and Mask-RCNN

[18] (pretrained on [27]) for instance segmentation. Similar

to the hyper-parameter settings in [51], we used Adam opti-

mizer [22] with initial learning rate as 2e-4, set batch size to

4 per GPU and trained our modified DepthNet and PoseNet

modules for 250000 iterations with random shuffling and

data augmentation (random scaling, cropping and RGB per-

turbation). The training took 10 hours on two GTX1080Ti.

5.2. Monocular Depth Evaluation on KITTI

We augmented the image sequences with corresponding

semantic and instance segmentation sequences and adopted

the scale normalization suggested in [42]. In the evalua-

tion stage, the ground truth depth maps were generated by

projecting 3D Velodyne LiDAR points to the image plane.

Followed by [51], we clipped our depth predictions within

0.001m to 80m and calibrated the scale by the medium num-

ber of the ground truth. The evaluation results are shown in

Table 1, where all the metrics are introduced in [8]. Our

model benefits significantly from feature augmentation and

surpasses the state-of-the-art methods substantially in both

supervised and unsupervised fields.

Moreover, we found a correlation between the improve-

ment region and object classes. We visualized the absolute

relative error (AbsRel) among image plane from our model

and from the baseline. As shown in Fig 5, most of the im-

provements come from regions containing objects. This in-

dicates that the network is able to learn the concept of ob-

jects to improve the depth prediction by rendering extra se-

mantic information.

Figure 5: Comparisons of depth evaluations on KITTI. Top

to bottom: Input RGB image, AbsRel error map of [51],

AbsRel error map of ours, and improvements of ours on Ab-

sRel map compared to [51]. The ground truth is interpolated

to enhance visualization. Lighter color in those heatmaps

corresponds to larger errors or improvements.

5.3. Ablation Studies

Here we took a deeper look of our model, testified its ro-

bustness under noise from observations, and presented vari-

ations of our framework to show promising explorations for

future researchers. In the following experiments, we kept all

the other parameters the same in [51] and applied the same

training/evaluation strategies mentioned in Section 5.2

How much gain from various feature augmentation?

We tried out different combinations and forms of

semantic/instance-level inputs based on “Yin et al” [51]

with scale normalization. From Table 2, our first conclusion

is that any meaningful form of extra input can ameliorate the

model, which is straightforward. Secondly, when we use

“Semantic” and “Instance class” for feature augmentation,

one-hot encoding tends to outperform the dense map form.

Conceivably one-hot encoding stores richer information in

its structural formation, whereas dense map only contains

discrete labels which may be more difficult for learning.

Moreover, using both “Semantic” and “Instance class” can

provide further gain, possibly due to the different label dis-

tributions of the two datasets. Labels from Cityscape [6]

cover both background and foreground concepts, while the

COCO dataset [27] focuses more on objects. At last, when

we combined one-hot encoded “Semantic” and “Instance

class” along with “Instance id” edge features, the network

exploited the most from scene understanding, hence greatly

enhanced the performance.

Can our model survive under low lighting conditions?

To testify our model’s robustness for varied lighting condi-

tions, we multiplied a scalar between 0 and 1 to RGB inputs
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Method Supervised
Error-related metrics Accuracy-related metrics

Abs Rel Sq Rel RSME RSME log δ < 1.25 δ < 1.252 δ < 1.253

Eigen et al. [8] Coarse Depth 0.214 1.605 6.653 0.292 0.673 0.884 0.957

Eigen et al. [8] Fine Depth 0.203 1.548 6.307 0.282 0.702 0.890 0.957

Liu et al. [29] Depth 0.202 1.614 6.523 0.275 0.678 0.895 0.965

Godard et al. [16] Pose 0.148 1.344 5.927 0.247 0.803 0.922 0.964

Zhou et al. [54] updated No 0.183 1.595 6.709 0.270 0.734 0.902 0.959

Yin et al. [51] No 0.155 1.296 5.857 0.233 0.793 0.931 0.973

Ours
No

0.133 0.905 5.181 0.208 0.825 0.947 0.981

(improved by) 14.04% 30.19% 11.55% 10.85% 3.14% 1.53% 0.80%

Table 1: Monocular depth results on KITTI 2015 [33] by the split of Eigen et al. [8] (Our model used scale normalization.)

Semantic
Instance Instance Error-related metrics Accuracy-related metrics

class id Abs Rel Sq Rel RSME RSME log δ < 1.25 δ < 1.252 δ < 1.253

0.149 1.060 5.567 0.226 0.796 0.935 0.975

Dense 0.142 0.991 5.309 0.216 0.814 0.943 0.980

One-hot 0.139 0.949 5.227 0.214 0.818 0.945 0.980

Dense 0.142 0.986 5.325 0.218 0.812 0.943 0.978

One-hot 0.141 0.976 5.272 0.215 0.811 0.942 0.979

Edge 0.145 1.037 5.314 0.217 0.807 0.943 0.978

Dense Edge 0.142 0.969 5.447 0.219 0.808 0.941 0.978

One-hot One-hot Edge 0.133 0.905 5.181 0.208 0.825 0.947 0.981

Table 2: Depth prediction performance gains due to different semantic sources and forms. (Scale normalization was used.)

in the evaluation. Fig 6 showed that our model still holds

equal performance to [51] when the intensity drops to 30%.

(a) Observations under decreased light condition (left to right)

0.0 0.2 0.4 0.6 0.8 1.0
Darkness = 1 - Intensity
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r Test under Varied Light Conditions
Yin et al
Ours

(b) Robustness under decreased light condition

Figure 6: The abs errs change as lighting condition drops.

Our model can still be better than baseline even if the light-

ing intensity drops to 0.30 of the original ones.

Which module needs extra information the most?

We fed semantics to only DepthNet or PoseNet to see the

difference in their performance gain. From Table 3 we can

see that compared to DepthNet, PoseNet learns little from

the semantics to help depth prediction. Therefore we tried

to feed the semantics to a new PoseNet with the same struc-

ture as the original one and compute the predicted poses by

taking the sum from two different PoseNets, which led to

performance gain; however, performance gain was not ob-

served from applying the same method to DepthNet.

How to be “semantic-free” in evaluation?

Though semantic helps depth prediction, this idea relies on

semantic features during the evaluation phase. If semantic

is only utilized in the loss, it would not be needed in evalua-

tion. We attempted to introduce a handcrafted semantic loss

term as a weight guidance among image plane but it didn’t

work well. Also we designed a transfer network which uses

the predicted depth to predict semantic maps along with a

reconstruction error to help in the training stage. The result

in Table 4 shows a better result can be obtained by training

from pretrained models.

5.4. Optical Flow Estimation on KITTI

Using our best model for DepthNet and PoseNet in Sec-

tion 5.2, we conducted rigid flow and full flow evaluation

on KITTI [14]. We generated the rigid flow from estimated

depth and pose, and compared with [51]. Our model per-

formed better in all the metrics shown in Table 5.
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DepthNet PoseNet
Error-related metrics Accuracy-related metrics

Abs Rel Sq Rel RSME RSME log δ < 1.25 δ < 1.252 δ < 1.253

0.149 1.060 5.567 0.226 0.796 0.935 0.975

Channel 0.145 0.957 5.291 0.216 0.805 0.943 0.980

Channel 0.147 1.076 5.385 0.223 0.808 0.938 0.975

Channel Channel 0.139 0.949 5.227 0.214 0.818 0.945 0.980

Extra Net Channel 0.147 1.036 5.593 0.226 0.803 0.937 0.975

Channel Extra Net 0.135 0.932 5.241 0.211 0.821 0.945 0.980

Table 3: Each module’s contribution toward performance gain from semantics. (Scale normalization was used.)

Checkpoint
Transfer Error-related metrics Accuracy-related metrics

Network Abs Rel Sq Rel RSME RSME log δ < 1.25 δ < 1.252 δ < 1.253

Yin et al. [51] 0.155 1.296 5.857 0.233 0.793 0.931 0.973

Yin et al. [51] Yes 0.150 1.141 5.709 0.231 0.792 0.934 0.974

Yin et al. [51] +sn 0.149 1.060 5.567 0.226 0.796 0.935 0.975

Yin et al. [51] +sn Yes 0.145 0.994 5.422 0.222 0.806 0.939 0.976

Table 4: Gains in depth prediction using our proposed Transfer Network. (+sn: “using scale normalization”.)

Method
End Point Error Accuracy

Noc All Noc All

Yin et al. [51] 23.5683 29.2295 0.2345 0.2237

Ours 22.3819 26.8465 0.2519 0.2376

Table 5: Rigid flow prediction from first stage on KITTI on

non-occluded regions(Noc) and overall regions(All).

Method
End Point Error

Noc All

DirFlowNetS 6.77 12.21

Yin et al. [51] 8.05 10.81

Ours 7.66 13.91

Table 6: Full flow prediction on KITTI 2015 on non-

occluded regions(Noc) and overall regions(All). Results

from DirFlowNetS are shown in [51]

We further appended the semantic warping loss intro-

duced in Section 4.2 to ResFlowNet in [51] and trained our

model on KITTI stereo for 1600000 iterations. As demon-

strated in Table 6, flow prediction got improved in non-

occluded region compared to [51] and our model produced

comparable results in overall regions.

5.5. CategorySpecific Metrics Evaluation

This section will present the improvements by seman-

tic categories. As shown in the bar-chart in Fig 7, most

improvements were shown in “Vehicle” and “Dynamic”

classes3, where errors are generally large. Our network did

not improve much for other less frequent categories, such

3For “Dynamic” classes, we choose “person”, “rider”, “car”, “truck”,

“bus”, “train”, “motorcycle” and “bicycle” classes as defined in [6]
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Figure 7: Performance gains in depth (left) and flow (right)

among different classes of dynamic objects.

as “Motorcycle”, which are generally more difficult to seg-

ment in images.

6. Conclusion

In SIGNet, we strive to achieve robust performance

for depth and flow perception without using geometric

labels. To achieve this goal, SIGNet utilizes semantic

and instance segmentation to create spatial constraints on

the geometric attributes of the pixels. We present novel

methods of feature augmentation and loss augmentation to

include semantic labels in the geometry predictions. This

work presents a first of a kind approach which moves away

from pixel-level to object-level depth and flow predictions.

Most notably, our method significantly surpasses the

state-of-the-art solution for monocular depth estimation. In

the future, we would like to extend our SIGNet to various

sensor modalities (IMU, LiDAR or thermal).
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