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Abstract

We explore total scene capture — recording, modeling,

and rerendering a scene under varying appearance such

as season and time of day. Starting from internet photos

of a tourist landmark, we apply traditional 3D reconstruc-

tion to register the photos and approximate the scene as a

point cloud. For each photo, we render the scene points

into a deep framebuffer, and train a neural network to learn

the mapping of these initial renderings to the actual pho-

tos. This rerendering network also takes as input a latent

appearance vector and a semantic mask indicating the lo-

cation of transient objects like pedestrians. The model is

evaluated on several datasets of publicly available images

spanning a broad range of illumination conditions. We cre-

ate short videos demonstrating realistic manipulation of the

image viewpoint, appearance, and semantic labeling. We

also compare results with prior work on scene reconstruc-

tion from internet photos.

1. Introduction

Imagine spending a day sightseeing in Rome in a fully

realistic interactive experience without ever stepping on a

plane. One could visit the Pantheon in the morning, enjoy

the sunset overlooking the Colosseum, and fight through the

crowds to admire the Trevi Fountain at night time. Realiz-

ing this goal involves capturing the complete appearance

space of a scene, i.e., recording a scene under all possible

lighting conditions and transient states in which the scene

might be observed—be it crowded, rainy, snowy, sunrise,

spotlit, etc.—and then being able to summon up any view-

point of the scene under any such condition. We call this

ambitious vision total scene capture. It is extremely chal-

lenging due to the sheer diversity of appearance—scenes

can look dramatically different under night illumination,

during special events, or in extreme weather.

∗Work performed during an internship at Google.

(a) Input deep buffer (b) Output renderings

Figure 1: Our neural rerendering technique uses a large-scale in-

ternet photo collection to reconstruct a proxy 3D model and trains

a neural rerendering network that takes as input a deferred-shading

deep buffer (consisting of depth, color and semantic labeling) gen-

erated from the proxy 3D model (left), and outputs realistic ren-

derings of the scene under multiple appearances (right).

In this paper, we focus on capturing tourist landmarks

around the world using publicly available community pho-

tos as the sole input, i.e., photos in the wild. Recent ad-

vances in 3D reconstruction can generate impressive 3D

models from such photo collections [1, 39, 41], but the ren-

derings produced from the resulting point clouds or meshes

lack the realism and diversity of real-world images. Alter-

natively, one could use webcam footage to record a scene

at regular intervals but without viewpoint diversity, or use

specialized acquisition (e.g., Google Street View, aerial, or

satellite images) to snapshot the environment over a short

time window but without appearance diversity. In contrast,

community photos offer an abundant (but challenging) sam-

pling of appearances of a scene over many years.

Our approach to total scene capture has two main com-

ponents: (1) creating a factored representation of the input

images, which separates viewpoint, appearance conditions,

and transient objects such as pedestrians, and (2) rendering

realistic images from this factored representation. Unlike

recent approaches that extract implicit disentangled repre-

sentations of viewpoint and content [31, 34, 43], we employ

state-of-the-art reconstruction methods to create an explicit

intermediate 3D representation, in the form of a dense but

noisy point cloud, and use this 3D representation as a “scaf-

folding” to predict images.
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An explicit 3D representation lets us cast the rendering

problem as a multimodal image translation [15, 25, 53]. The

input is a deferred-shading framebuffer [35] in which each

rendered pixel stores albedo, depth, and other attributes, and

the outputs are realistic views under different appearances.

We train the model by generating paired datasets, using the

recovered viewpoint parameters of each input image to ren-

der a deep buffer of the scene from the same view, i.e., with

pixelwise alignment. Our model effectively learns to take an

approximate initial scene rendering and rerender a realistic

image. This is similar to recent neural rerendering frame-

works [20, 28, 44] but using uncontrolled internet images

rather than carefully captured footage.

We explore a novel strategy to train the multimodal im-

age translation model. Rather than jointly estimating an em-

bedding space for the appearance together with the render-

ing network [15, 25, 53], our system performs staged train-

ing of both. First, an appearance encoding network is pre-

trained using a proxy style-based loss [9], an efficient way

to capture the style of an image. Then, the rerendering net-

work is trained with fixed appearance embeddings from the

pretrained encoder. Finally, both the appearance encoding

and rerendering networks are jointly finetuned. This sim-

ple yet effective strategy lets us train simpler networks on

large datasets. We demonstrate experimentally how a model

trained in this fashion better captures scene appearance.

Our system is a first step towards addressing total scene

capture and focuses primarily on the static parts of scenes.

Transient objects (e.g., pedestrians and cars) are handled by

conditioning the rerendering network on the expected se-

mantic labeling of the output image, so that the network can

learn to ignore these objects rather than trying to halluci-

nate their locations. This semantic labeling is also effective

at discarding small or thin scene features (e.g., lampposts)

whose geometry cannot be robustly reconstructed, yet are

easily identified using image segmentation methods. Con-

ditioning our network on a semantic mask also enables the

rendering of scenes free of people if desired. Code will be

available at https://bit.ly/2UzYlWj.

In summary, our contributions include:

• A first step towards total scene capture, i.e., recording

and rerendering a scene under any appearance from in-

the-wild photo collections.

• A factorization of input images into viewpoint, appear-

ance, and semantic labeling, conditioned on an approx-

imate 3D scene proxy, from which we can rerender re-

alistic views under varying appearance.

• A more effective method to learn the appearance latent

space by pretraining the appearance embedding net-

work using a proxy loss.

• Compelling results including view and appearance in-

terpolation on five large datasets, and direct compar-

isons to previous methods [39].

2. Related work

Scene reconstruction Traditional methods for scene re-

construction first generate a sparse reconstruction using

large-scale structure-from-motion [1], then perform Multi-

View Stereo (MVS) [7, 38] or variational optimization [13]

to reconstruct dense scene models. However, most such

techniques assume a single appearance, or else simply re-

cover an average appearance of the scene. We build upon

these techniques, using dense point clouds recovered from

MVS as proxy geometry for neural rerendering.

In image-based rendering [4, 10], input images are used

to generate new viewpoints by warping input pixels into the

outputs using proxy geometry. Recently, Hedman et al. [12]

introduce a neural network to compute blending weights for

view-dependent texture mapping that reduces artifacts in

poorly reconstructed regions. However, image-based ren-

dering generally assumes the captured scene has static ap-

pearance, so it is not well-suited to our problem setup in

which the appearance varies across images.

Neural scene rendering [6] applies deep neural networks

to learn a latent scene representation that allows generation

of novel views, but is limited to simple synthetic geometry.

Appearance modeling A given scene can have dramati-

cally different appearances at different times of day, in dif-

ferent weather conditions, and can also change over the

years. Garg et al. [8] observe that for a given viewpoint,

the dimensionality of scene appearance as captured by in-

ternet photos is relatively low, with the exception of out-

liers like transient objects. One can recover illumination

models for a photo collection by estimating albedo using

cloudy images [39], retrieving the sun’s location through

timestamps and geolocation [11], estimating coherent albe-

dos across the collection [22], or assuming a fixed view-

point [42]. However, these methods assume simple light-

ing models that do not apply to nighttime scene appearance.

Radenovic et al. [33] recover independent day and night re-

constructions, but do not enable smooth appearance inter-

polations between the two.

Laffont et al. [23] assign transient attributes like “fall” or

“sunny” to each image, and learn a database of patches that

allows for editing such attributes. Other works require di-

rect supervision from lighting models estimated using 360-

degree images [14], or ground truth object geometry [48].

In contrast, we use a data-driven implicit representation of

appearance that is learned from the input image distribution

and does not require direct supervision.

Deep image synthesis The seminal work of pix2pix [16]

trains a deep neural network to translate an image from one

domain, such as a semantic labeling, into another domain,

such as a realistic image, using paired training data. Image-

to-image (I2I) translation has since been applied to many

tasks [5, 24, 32, 49, 47, 50]. Several works propose im-
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provements to stabilize training and allow for high-quality

image synthesis [18, 46, 47]. Others extend the I2I frame-

work to unpaired settings where images from two domains

are not in correspondence [21, 26, 52], multimodal outputs

where an input image can map to multiple images [46, 53],

or unpaired datasets with multimodal outputs where an im-

age in one domain is converted to another domain while

preserving the content [2, 15, 25].

Image translation techniques can be used to rerender

scenes in a more realistic domain, to enable facial expres-

sion synthesis [20], to fix artifacts in captured 3D perfor-

mances [28], or to add viewpoint-dependent effects [44].

In our paper, we demonstrate an approach for training a

neural rerendering framework in the wild, i.e., with uncon-

trolled data instead of captures under constant lighting con-

ditions. We cast this as a multimodal image synthesis prob-

lem, where a given viewpoint can be rendered under multi-

ple appearances using a latent appearance vector, and with

editable semantics by conditioning the output on the desired

semantic labeling of the output.

3. Total scene capture

We define the problem of total scene capture as creat-

ing a generative model for all images of a given scene. We

would like such a model to:

– encode the 3D structure of the scene, enabling render-

ing from an arbitrary viewpoint,

– capture all possible appearances of the scene, e.g., all

lighting and weather conditions, and allow rendering

the scene under any of them, and

– understand the location and appearance of transient ob-

jects in the scene, e.g., pedestrians and cars, and allow

for reproducing or omitting them.

Although these goals are ambitious, we show that one can

create such a generative model given sufficient images of a

scene, such as those obtained for popular tourist landmarks.

We first describe a neural rerendering framework that we

adapt from previous work in controlled capture settings [28]

to the more challenging setting of unstructured photo col-

lections (Section 3.1). We extend this model to enable ap-

pearance capture and multimodal generation of renderings

under different appearances (Section 3.2). We further ex-

tend the model to handle transient objects in the training

data by conditioning its inputs on a semantic labeling of the

ground truth images (Section 3.3).

3.1. Neural rerendering framework

We adapt recent neural rerendering frameworks [20, 28]

to work with unstructured photo collections. Given a large

internet photo collection {Ii} of a scene, we first generate

a proxy 3D reconstruction using COLMAP [36, 37, 38],

which applies Structure-from-Motion (SfM) and Multi-

View Stereo (MVS) to create a dense colored point cloud.

Figure 2: Output frames of a standard image translation net-

work [16] trained for neural rerendering in a small dataset of 250

photos of San Marco. The network overfits the dataset and learns

to hallucinate lampposts close to their approximate location in the

scene (green), and virtual tourists (yellow), as well as memorizing

a per-viewpoint appearance matching the specific input photos.

An alternative to a point cloud is to generate a textured

mesh [19, 45]. Although meshes generate more complete

renderings, they tend to also contain pieces of misregistered

floating geometry which can occlude large regions of the

scene [39]. As we show later, our neural rerendering frame-

work can produce highly realistic images given only point-

based renderings as input.

Given the proxy 3D reconstruction, we generate an

aligned dataset of rendered images and real images by ren-

dering the 3D point cloud from the viewpoint vi of each in-

put image Ii, where vi consists of camera intrinsics and ex-

trinsics recovered via SfM. We generate a deferred-shading

deep buffer Bi for each image [35], which may contain per-

pixel albedo, normal, depth and any other derivative infor-

mation. In our case, we only use albedo and depth and ren-

der the point cloud by using point splatting with a z-buffer

with a radius of 1 pixel.

However, the image-to-image translation paradigm used

in [20, 28] is not appropriate for our use case, as it assumes

a one-to-one mapping between inputs and outputs. A scene

observed from a particular viewpoint can look very different

depending on weather, lighting conditions, color balance,

post processing filters, etc. In addition, a one-to-one map-

ping fails to explain transient objects in the scene, such as

pedestrians or cars, whose location and individual appear-

ance is impossible to predict from the static scene geometry

alone. Interestingly, if one trains a sufficiently large neural

network on this simple task on a dataset, the network learns

to (1) associate viewpoint with appearance via memoriza-

tion and (2) hallucinate the location of transient objects, as

shown in Figure 2.

3.2. Appearance modeling

To capture the one-to-many relationship between input

viewpoints (represented by their deep buffers Bi) and out-

put images Ii under different appearances, we cast the

rerendering task as multimodal image translation [53]. In

such a formulation, the goal is to learn a latent appearance

vector zai that captures variations in the output domain Ii
that cannot be inferred from the input domain Bi. We com-

pute the latent appearance vector as zai = Ea(Ii, Bi) where
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Figure 3: An aligned dataset is created using Structure from Mo-
tion (SfM) and Multi-View Stereo (MVS). Our staged approach
pre-trains the appearance encoder E

a using a triplet loss (left).
Then the rerenderer R is trained using standard reconstruction and
GAN losses (right), and finally fine-tuned together with E

a. Photo

Credits Rafael Jimenez (Creative Commons).

Ea is an appearance encoder that takes as input both the out-

put image Ii and the deep buffer Bi. We argue that having

the appearance encoder Ea observe the input Bi allows it to

learn more complex appearance models by correlating the

lighting in Ii with scene geometry in Bi. Finally, a reren-

dering network R generates a scene rendering conditioned

on both viewpoint Bi and the latent appearance vector za.

Figure 3 shows an overview of the overall process.

To train the appearance encoder Ea and rendering net-

work R, we first adopted elements from recent methods in

multimodal synthesis [15, 25, 53] to find a combination that

is most effective in our scenario. However, this combination

still has shortcomings as it is unable to model infrequent

appearances well. For instance, it does not reliably capture

night appearances for scenes in our datasets. We hypoth-

esize that the appearance encoder (which is jointly trained

with the rendering network) is not expressive enough to cap-

ture the large variability in the data.

To improve the model expressiveness, our approach is

to stabilize the joint training of R and Ea by pretraining

the appearance network Ea independently on a proxy task.

We then employ a staged training approach in which the

rendering network R is first trained using fixed appearance

embeddings, and finally we jointly fine-tune both networks.

This staged training regime allows for a simpler model that

captures more complex appearances.

We present our baseline approach, which adapts state-

of-the-art multimodal synthesis techniques, and then our

staged training strategy, which pretrains the appearance en-

coder on a proxy task.

Baseline Our baseline uses BicycleGAN [53] with two

main adaptations. First, our appearance encoder also takes

as input the buffer Bi, as described above. Second, we

add a cross-cycle consistency loss similar to [15, 25] to en-

courage appearance transfer across viewpoints. Let za
1
=

Ea(I1, B1) be the captured appearance of an input im-

age I1. We apply a reconstruction loss between image I1
and cross-cycle reconstruction Î1 = R(B1, ẑ

a
1
), where ẑa

1

is computed through a cross-cycle with a second image

(I2, B2), i.e. ẑa
1

= Ea(R(B2, z
a
1
)), B2). We also apply

a GAN loss on the intermediate appearance transfer output

R(B2, z
a
1
) as in [15, 25].

Staged appearance training The key to our staged train-

ing approach is the appearance pretraining stage, where

we pretrain the appearance encoder Ea independently on

a proxy task. We then train the rendering network R while

fixing the weights of Ea, allowing R to find the correlations

between output images and the embedding produced by the

proxy task. Finally, we fine-tune both Ea and R jointly.

This staged approach simplifies and stabilizes the train-

ing of R, enabling training of a simpler network with fewer

regularization terms. In particular, we remove the cycle and

cross-cycle consistency losses, the latent vector reconstruc-

tion loss, and the KL-divergence loss, leaving only a direct

reconstruction loss and a GAN loss. We show experimen-

tally in Section 4 that this approach results in better appear-

ance capture and rerenderings than the baseline model.

Appearance pretraining To pretrain the appearance en-

coder Ea, we choose a proxy task that optimizes an embed-

ding of the input images into the appearance latent space

using a suitable distance metric between input images. This

training encourages embeddings such that if two images

are close under the distance metric, then their appearance

embeddings should also be close in the appearance latent

space. Ideally the distance metric we choose should ignore

the content or viewpoint of Ii and Bi, as our goal is to en-

code a latent space that is independent of viewpoint. Ex-

perimentally we find that the style loss employed in neural

style-transfer work [9] has such a property; it largely ig-

nores content and focuses on more abstract properties.

To train the embedding, we use a triplet loss, where for

each image Ii, we find the set of k closest and furthest

neighbor images given by the style loss, from which we

can sample a positive sample Ip and negative sample In,

respectively. The loss is then:

L(Ii, Ip, In) =
∑

j

max
(

‖gji −gjp‖
2 − ‖gji −gjn‖

2 + α, 0
)

where g
j
i is the Gram matrix of activations at the jth layer of

a VGG network of image Ii, and α is a separation margin.

3.3. Semantic conditioning

To account for transient objects in the scene, we condi-

tion the rerendering network on a semantic labeling Si of

image Ii that depicts the location of transient objects such

as pedestrians. Specifically, we concatenate the semantic

labeling Si to the deep buffer Bi wherever the deep buffer

was previously used. This discourages the network from

encoding variations caused by the location of transient ob-

jects in the appearance vector, or associating such transient

objects with specific viewpoints, as shown in Figure 2.
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Input Segmentation I2I +Sem +Sem+BaseApp +Sem+StagedApp Ground Truth

Figure 4: Example visual results of our ablative study in Table 1. From left to right, input color render, segmentation mask from the
corresponding ground truth images, result using an image-to-image baseline (I2I), with semantic conditioning (+Sem), and with semantic
conditioning and a baseline appearance modeling based on [53] (+Sem+BaseApp), with semantic conditioning and staged appearance
training (+Sem+StagedApp). Photo Credits: Flickr users Gary Campbell-Hall, Steve Collis, and Tahbepet (Creative Commons).

A separate benefit of semantic labeling is that it allows

the rerendering network to reason about static objects in the

scene not captured in the 3D reconstruction, such as lamp-

posts in San Marco Square. This prevents the network from

haphazardly introducing such objects, and instead lets them

appear where they are detected in the semantic labeling,

which is a significantly simpler task. In addition, by adding

the segmentation labeling to the deep buffer, we allow the

appearance encoder to reason about semantic categories like

sky or ground when computing the appearance latent vector.

We compute “ground truth” semantic segmentations

on the input images Ii using DeepLab [3] trained on

ADE20K [51]. ADE20K contains 150 classes, which we

map to a 3-channel color image. We find that the quality of

the semantic labeling is poor on the landmarks themselves,

as they contain unique buildings and features, but is reason-

able on transient objects.

Using semantic conditioning, the rerendering network

takes as input a semantic labeling of the scene. In order

to rerender virtual camera paths, we need to synthesize se-

mantic labelings for each frame in the virtual camera path.

To do so, we train a separate semantic labeling network that

takes as input the deep buffer Bi, instead of the output im-

age Ii, and estimates a “plausible” semantic labeling Ŝi for

that viewpoint given the rendered deep buffer Bi. For sim-

plicity, we train a network with the same architecture as the

rendering network (minus the injected appearance vector)

on samples (Bi, Si) from the aligned dataset, and we mod-

ify the semantic labelings of the ground truth images Si and

mask out the loss on pixels labeled as transient as defined

by a curated list of transient object categories in ADE20K.

4. Evaluation

Here we provide an extensive evaluation of our system.

Please also refer to the supplementary video to best appreci-

ate the quality of the results, available in the project website:

https://bit.ly/2UzYlWj.

Implementation details Our rerendering network is a

symmetric encoder-decoder with skip connections, where

the generator is adopted from [18] without using progres-

sive growing. We use a multiscale-patchGAN discrimina-

tor [46] with 3 scales and employ a LSGAN [27] loss. As

a reconstruction loss, we use the perceptual loss [17] evalu-

ated at convi,2 for i ∈ [1, 5] of VGG [40]. The appearance

encoder architecture is adopted from [25], and we use a la-

tent appearance vector za ∈ R
8. We train on 8 GPUs for

∼ 40 epochs using 256×256 crops of input images, but we

show compelling results on up to 600×900 at test time. The

generator runtime for the staged training network is 330 ms

for a 512x512 frame on a TitanV without fp16 optimiza-

tions. Architecture and training details can be found in the

supplementary material.

Datasets We evaluate our method on five datasets recon-

structed with COLMAP [36] from public images, summa-

rized in Table 1. A separate model is trained for each

dataset. We create aligned datasets by rendering the recon-

structed point clouds with a minimum dimension of 600

pixels, and throw away sparse renderings (>85% empty

pixels), and small images (<450 pixels across). We ran-

domly select a validation set of 100 images per dataset.

Ablative study We perform an ablative study of our sys-

tem and compare the proposed methods in Figure 4. The
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I2I +Sem +Sem+BaseApp +Sem+StagedApp

Dataset #Images #Points VGG L1 PSNR VGG L1 PSNR VGG L1 PSNR VGG L1 PSNR

Sacre Coeur 1165 33M 70.78 39.98 14.36 66.17 34.78 15.62 60.06 21.58 18.98 61.23 25.22 17.81

Trevi 3006 35M 86.52 42.95 14.14 81.82 36.46 15.57 79.10 28.12 17.37 75.55 25.00 18.19

Pantheon 4972 9M 68.28 39.77 14.50 67.47 36.27 15.13 64.06 28.85 16.76 60.66 23.77 17.95

Dubrovnik 5891 33M 78.42 40.60 14.21 78.58 39.88 14.51 76.61 34.57 15.38 71.65 27.48 17.01

San Marco 7711 7M 80.18 44.04 13.97 78.36 39.34 14.58 70.35 26.24 17.87 68.96 23.11 18.32

Table 1: Dataset statistics (number of registered images and size of reconstructed point cloud) and average error on the validation set using

VGG/perceptual loss (lower is better), L1 loss (lower is better), and PSNR (higher is better), for four methods: an image-to-image baseline

(I2I), with semantic conditioning (+Sem), with semantic conditioning and a baseline appearance modeling based on [53] (+Sem+BaseApp),

and with semantic conditioning and staged appearance training (+Sem+StagedApp).
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Figure 5: Examples of appearance interpolation for a fixed viewpoint. The left- and rightmost appearances are captured from real images,

and the intermediate frames are generated by linearly interpolating the appearances in the latent space. Notice how the baseline method is

unable to capture complex scenes, like the sunset and night scene, and its interpolations are rather linear, as can be appreciated in the street

lamps (top). The staged training method performs better, but generates twilight artifacts in the sky when interpolating between day and

night appearances (bottom).

results of the image-to-image translation baseline method

contain additional blurry artifacts near the ground because

it hallucinates the locations of pedestrians. Using semantic

conditioning, the results improve slightly in those regions.

Finally, encoding the appearance of the input photo allows

the network to match the appearance. The staged training

recovers a closer appearance in San Marco and Pantheon

datasets (two bottom rows). However, in Sacre Coeur (top

row), the smallest dataset, the baseline appearance model

is able to better capture the general appearance of the im-

age, although the staged training model reproduces the di-

rectionality of the lighting with more fidelity.

Reconstruction metrics We report image reconstruction

errors in the validation set using several metrics: perceptual

loss [17], L1 loss, and PSNR. We use the ground truth se-

mantic mask from the source image, and we extract the ap-

pearance latent vector using the appearance encoder. Staged

training of the appearance fares better than the baseline for

all but the smallest dataset (Sacre Coeur), where the staged

training overfits to the training data and is unable to gener-

alize. The baseline method assumes a prior distribution of

the latent space and is less prone to overfitting at the cost of

poorer modeling of appearance.

Appearance interpolation The rerendering network al-

lows for interpolating the appearance of two images by in-

terpolating their latent appearance vectors. Figure 5 depicts

two examples, showing that the staged training approach

is able to generate more complex appearance changes, al-

though its generated interpolations lack realism when tran-

sitioning between day and night. In the following, we only

show results for the staged training model.

Appearance transfer Figure 6 demonstrates how our full

model can transfer the appearance of a given photo to oth-

ers. It shows realistic renderings of the Trevi fountain from

five different viewpoints under four different appearances

obtained from other photos. Note the sunny highlights

and the spotlit night illumination appearance of the stat-

ues. However, these details can flicker when synthesizing

a smooth camera path or smoothly interpolating the appear-

ance in the latent space, as seen in the supplementary video.
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Figure 6: We capture the appearance of the original images in the left column, and rerender several viewpoints under them. The last column
is a detail of the previous one. The top row shows the renderings part of the input to the rerenderer, that exhibit artifacts like incomplete
features in the statue, and an inconsistent mix of day and night appearances. Note the hallucinated twilight scene in the sky using the last
appearance. Image credits: Flickr users William Warby, Neil Rickards, Rafael Jimenez, acme401 (Creative Commons).

Photo Frame 0 Frame 20 Frame 40 Frame 60 Frame 80 Frame 100 Photo

Figure 7: Frames from a synthesized camera path that smoothly transitions from the photo on the left to the photo on the right by smoothly
interpolating both viewpoint and the latent appearance vectors. Please see the supplementary video. Photo Credits: Allie Caulfield, Tahbepet,

Till Westermayer, Elliott Brown (Creative Commons).

Image interpolation Figure 7 shows sets of two images

and frames of smooth image interpolations between them,

where both viewpoint and appearance transition smoothly

between them. Note how the illumination of the scene can

transition smoothly from night to day. The quality of the

results is best appreciated in the supplementary video.

Semantic consistency Figure 8 shows the output of the

staged training model with ground truth and predicted seg-

mentation masks. Using the predicted masks, the network

produces similar results on the building and renders a scene

free of people. Note however how the network depicts

pedestrians as black, ghostly figures when they appear in

the segmentation mask.

(a) w/ GT segmentation (b) w/ predicted segmentations

Figure 8: Example semantic labelings and output renders when

using the “ground truth” segmentation mask computed from the

corresponding real image (from the validation set) and the pre-

dicted one from the associated deep buffer. Note the artifacts on

the bottom right where the ground is misclassified as building.
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(a) [39] (b) ours (c) original images

Figure 9: Comparison of [39] and our approach. Rows 1 & 3:
original photos. Rows 2 & 4: detailed crops. Image credits: Graeme

Churchard, Sarah-Rose (Creative Commons).

Comparison to 3D reconstruction methods We evalu-

ated our technique against the one of Shan et al. [39] on the

Colosseum, which contains 3K images, 10M color vertices

and 48M triangles and was generated from Flickr, Google

Street View, and aerial images. Their 3D representation

is a dense vertex-colored mesh, where the albedo and ver-

tex normals are jointly recovered together with a simple 8-

dimensional lighting model (diffuse, plus directional light-

ing) for each image in the photo collection.

Figure 9 compares both methods and the original ground

truth image. Their method suffers from floating white ge-

ometry on the top edge of the Colosseum, and has less de-

tail, although it recovers the lighting better than our method,

thanks to its explicit lighting reasoning. Note that both mod-

els are accessing the test image to compute lighting coeffi-

cients and appearance latent vectors, with dimension 8 in

both cases, and that we use the predicted segmentation la-

belings from Bi.

We ran a randomized user study on 20 random sets of

output images that do not contain close-ups of people or

cars, and were not in our training set. For each viewpoint,

200 participants chose “which image looks most real?” be-

tween an output of their system and ours (without seeing

the original). Respondents preferred images generated by

our system a 69.9% of the time, with our technique being

preferred on all but one of the images. We show the 20 ran-

dom sets of the user study in the supplementary material.

5. Discussion

Our system’s limitations are significantly different from

those of traditional 3D reconstruction pipelines:

(a) Neural artifacts

(b) Sparse reconstructions (c) Segmentations artifacts

Figure 10: Limitations of the current system.

Segmentation Our model relies heavily on the segmenta-

tion mask to synthesize parts of the image not modeled in

the proxy geometry, like the ground or sky regions. Thus

our results are very sensitive to errors in the segmentation

network, like in the sky region in Figure 10c or an appear-

ing “ghost pole” artifact in San Marco (frame 40 of bottom

row in Figure 7, best seen in video). Jointly training the

neural rerenderer together with the segmentation network

could reduce such artifacts.

Neural artifacts Neural networks are known to produce

screendoor patterns [30] and other intriguing artifacts [29].

We observe such artifacts in repeated structures, like the

patterns on the floor of San Marco, which in our renderings

are misaligned as if hand-painted. Similarly, the inscription

above the Trevi fountain is reproduced with a distorted font

(see Figure 10a).

Incomplete reconstructions Sometimes an image con-

tains partially reconstructed parts of the 3D model, creat-

ing large holes in the rendered Bi. This forces the network

to hallucinate the incomplete regions, generally leading to

blurry outputs (see Figure 10b).

Temporal artifacts When smoothly varying the view-

point, sometimes the appearance of the scene can flicker

considerably, especially under complex appearance, such

as when the sun hits the Trevi Fountain, creating complex

highlights and cast shadows. Please see the supplementary

video for an example.

In summary, we present a first attempt at solving the total

scene capture problem. Using unstructured internet photos,

we can train a neural rerendering network that is able to

produce highly realistic scenes under different illumination

conditions. We propose a novel staged training approach

that better captures the appearance of the scene as seen in

internet photos. Finally, we evaluate our system on five

challenging datasets and against state-of-the-art 3D recon-

struction methods.
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