
LaserNet: An Efficient Probabilistic 3D Object Detector for Autonomous Driving

Gregory P. Meyer*, Ankit Laddha*, Eric Kee, Carlos Vallespi-Gonzalez, Carl K. Wellington

Uber Advanced Technologies Group

{gmeyer,aladdha,ekee,cvallespi,cwellington}@uber.com

Abstract

In this paper, we present LaserNet, a computationally

efficient method for 3D object detection from LiDAR data

for autonomous driving. The efficiency results from pro-

cessing LiDAR data in the native range view of the sensor,

where the input data is naturally compact. Operating in

the range view involves well known challenges for learn-

ing, including occlusion and scale variation, but it also pro-

vides contextual information based on how the sensor data

was captured. Our approach uses a fully convolutional net-

work to predict a multimodal distribution over 3D boxes for

each point and then it efficiently fuses these distributions to

generate a prediction for each object. Experiments show

that modeling each detection as a distribution rather than

a single deterministic box leads to better overall detection

performance. Benchmark results show that this approach

has significantly lower runtime than other recent detectors

and that it achieves state-of-the-art performance when com-

pared on a large dataset that has enough data to overcome

the challenges of training on the range view.

1. Introduction

3D object detection is a key capability for autonomous

driving. LiDAR range sensors are commonly used for this

task because they generate accurate range measurements of

the objects of interest independent of lighting conditions.

To be used in a real-time autonomous system, it is impor-

tant that these approaches run efficiently in addition to hav-

ing high accuracy. Also, within the context of a full self-

driving system, it is beneficial to have an understanding of

the detector’s uncertainty.

LiDAR range sensors used on autonomous vehicles em-

ploy a variety of physical approaches to point one or more

range-measuring lasers in different directions (physically

spinning, raster scanning, MEMS mirrors, etc), but the data

from these sensors are all similar in that they contain range

measurements from a single location spanning some verti-

*Equal Contribution

Figure 1: Example detection results from our approach

(bottom) generated from the input range image (middle).

The camera image (top) is provided for reference. Notice

the data is dense in the range image but becomes sparse

when projected into 3D space.

cal and horizontal angular field of view. Note that this data

is quite different from full 3D point cloud data collected by

scanning an object on a turntable or through other means

to generate a consistent dense point cloud of all sides of

the object. As shown in Figure 1, the LiDAR data is inher-

ently dense from the sensor’s point of view but sparse when

the range measurements are projected into 3D space. The

density of measurements is constant in angle, so nearby ob-

jects have significantly more measurements than far away

objects. Also, only the sides of objects facing the sensor

receive measurements.

When performing 2D detection in camera images, effi-

cient and high-performing results have been achieved using

dense convolutional approaches [19, 24]. Although the sen-

12677

sor’s range data is similar in many ways to a camera image,

the desired output is an oriented bounding box in 3D space.

Therefore, 3D object detectors must transform the sensor

data in the range view (RV) into detections in the top-down

view also known as the bird’s eye view (BEV). Most exist-

ing work starts by projecting the range measurements into

3D points and then discretizing the 3D space into voxels

in order to operate directly in the output space [27, 28, 17].

These approaches have shown impressive results but require

operating on sparse input data which can be computation-

ally expensive. There has also been work operating on the

dense RV representation directly [5, 16], but these methods

have not matched the performance of the BEV approaches.

Additionally, there has been work combining both RV and

BEV representations [5].

These representations each have different advantages

and disadvantages. In the RV, the sensor data is dense, but

the perceived size of objects varies with range. In the BEV,

the data is sparse, but the size of objects remains constant

regardless of range. This consistency adds a strong prior to

the predictions making the problem easier to learn. Lastly,

the RV preserves occlusion information which is lost when

projecting the data into the BEV.

In this work, we present an efficient method for learn-

ing a probabilistic 3D object detector in an end-to-end fash-

ion. When there is sufficient training data, we achieve state-

of-the-art detection performance with a significantly lower

runtime. Our approach is efficient because we use a small

and dense range image instead of a large and sparse bird’s

eye view image. Our proposed method produces not only

a class probability for each detection but also a probability

distribution over detection bounding boxes. To our knowl-

edge, our proposed method is the first to capture the uncer-

tainty of a detection by modeling the distribution of bound-

ing box corners. By estimating the accuracy of a detection,

our approach enables downstream components in a full self-

driving system to behave differently around objects with

varying levels of uncertainty.

2. Related Work

2.1. 3D Object Detection

Multiple deep learning based methods have been pro-

posed for 3D object detection for autonomous driving.

VeloFCN [16] and MV3D [5] proposed methods using a

range view representation. Both methods construct the RV

by discretizing the azimuth and elevation angles. In this

paper, we propose a different RV representation using the

configuration of the LiDAR, and demonstrate that it leads

to better performance.

VoxelNet [30] computes PointNet [23] style features

from the LiDAR points for each 3D voxel. Afterwards,

they run 3D convolutions over these voxels to produce de-

tections. Instead of voxelizing the input, our approach op-

erates directly on the raw range data and aggregates predic-

tions from LiDAR points through mean shift clustering to

generate the detections.

Similar to 2D image detection, 3D methods can be

grouped into two meta frameworks: region proposal meth-

ods [24] and single shot methods [19]. Region proposal

based methods [5, 15, 22] have two stages: the first stage

proposes plausible regions containing objects, and the sec-

ond stage extracts features from the proposed regions and

uses them to produce detections. Single shot based meth-

ods [1, 16, 28, 30] produce detections with a single stage

network. In this work, we use a single shot approach since

region proposal networks are often computationally expen-

sive and minimizing latency is critical for a real-time au-

tonomous system.

In addition to using LiDAR data, several previous works

use images [5, 15, 22, 17, 26, 21, 9] or high definition maps

[27] to improve detections. In this paper, we only utilize

LiDAR data and leave sensor fusion as future work. Some

approaches [4, 3, 20, 25] have tried to tackle 3D detection

without using range data from LiDAR. However, the ac-

curacy of these methods do not reach the performance of

LiDAR based methods.

2.2. Probabilistic Object Detection

Most of the state-of-the-art 2D [24, 19] and 3D [5, 15,

27, 17] object detection methods produce a single box

with a probability score for each detection. While this

probability encompasses the existence and semantic uncer-

tainty, it does not accurately measure the localization un-

certainty. Recently, [12] proposed to explicitly predict the

intersection-over-union (IoU) of each 2D detection with the

ground truth label. They use the predicted IoU to refine and

score the detections. Estimating the IoU provides a measure

of the detection’s localization error. In this paper, we esti-

mate a probability distribution over box detections instead

of only the mean, and the variance of the predicted distri-

bution indicates the amount of uncertainty in the position of

the box corners.

The seminal work in [13] studies Bayesian deep net-

works for multiple computer vision tasks. Based on this

work, [6, 7] produce and analyze epistemic and aleatoric

uncertainties in 3D object detection. However, they do not

use the predicted uncertainties to significantly improve the

performance of the detector. In this paper, we focus on es-

timating the aleatoric uncertainty by way of predicting a

probability distribution over box detections, and we lever-

age the predicted distribution to combine and refine our de-

tections. The epistemic uncertainty is not estimated by our

method since it currently cannot be computed efficiently.

12678

CNN Mean
Shift

Clustering
+

Adaptive
NMS

Per Point Decoded Boxes Per Instance Mean BoxInput Channels (5) Class Probability

...

Box Corner Variance

Sensor Range View (Per Point Data) Output Top-Down View

Box Parameters (6)

R
a
n
g
e

In
te

n
s
it
y

H
e
ig

h
t

...

Figure 2: An overview of our approach to 3D object detection. We use the inherent range view representation of the sensor

to build a dense input image (Section 3.1). The image is passed through a fully-convolutional network to produce a set of

predictions (Section 3.2). For each LiDAR point in the image, we predict a class probability, and we regress a probability

distribution over bounding boxes in the top-down view (Section 3.3). These per-point distributions are combined through

mean shift clustering to reduce the noise in the individual predictions (Section 3.4). The entire detector is trained end-to-end

with the loss defined on the box corners (Section 3.5). At inference, we leverage a novel adaptive non-maximum suppression

(NMS) algorithm to remove duplicate box distributions (Section 3.6).

3. Proposed Method

An overview of our proposed method is shown in Figure

2. In the following sections each step is described in detail.

3.1. Input Representation

The LiDAR produces a cylindrical range image as it

sweeps over the environment with a set of lasers. The hor-

izontal resolution of the image is determined by the rota-

tion speed and laser pulse rate, and the vertical resolution

is determined by the number of lasers. The Velodyne 64E

LiDAR contains a set of 64 lasers with a non-uniform verti-

cal spacing of approximately 0.4◦ and has a horizontal an-

gular resolution of approximately 0.2◦. For each point in

the sweep, the sensor provides a range r, reflectance e, az-

imuth θ, and laser id m, which corresponds to a known el-

evation angle. Using the range, azimuth, and elevation, we

can compute the corresponding 3D point (x, y, z) in the sen-

sor frame. We build an input image by directly mapping the

laser id m to rows and discretizing azimuth θ into columns.

If more than one point occupies the same cell in the image,

we keep the closest point.

For each cell coordinate in the image, we collect a set of

input channels from its corresponding point: range r, height

z, azimuth angle θ, intensity e, and a flag indicating whether

the cell contains a point. The result is a five channel image

that forms the input to our network (see Figure 2).

3.2. Network Architecture

Our image contains objects at a wide range of distances,

and the size of an object can vary from several thousand

points to a single point. We leverage the deep layer ag-

gregation network architecture [29] to effectively extract

and combine multi-scale features. Our network is fully-

convolutional and consists of three hierarchical levels as

shown in Figure 3. The size of convolutional kernels at each

level is 64, 64, 128 respectively.

Each level contains a feature extraction module and

some number of feature aggregation modules. The structure

of these modules is depicted in Figure 4. Since the horizon-

tal resolution of the image is significantly larger than the

vertical resolution, we keep the vertical resolution constant

and only perform downsampling and upsampling along the

horizontal dimension. A final 1 × 1 convolutional layer is

used to transform the resulting feature map to our encoded

predictions.

3.3. Predictions

Our network is trained to predict a set of class prob-

abilities for each point in the image. Given a point lies

on an object, the network predicts a probability distribu-

tion over bounding boxes that could encapsulate the ob-

ject. The probability distribution can be multimodal when

the observed data is incomplete, which often occurs at long

range, when points are sparse, and when there are occlu-

sions. Therefore, we model the probability distribution with

a mixture model, and train the network to predict a set of

means with corresponding variances and mixture weights.

The distribution learned by the network is defined by the

loss function, which is discussed in Section 3.5.

For the application of autonomous driving, we assume

all objects lie on the same ground plane; therefore, we can

characterize a bounding box by its four corners in the x-y
plane. The 3D bounding boxes depicted in Figure 1 are pro-

12679

Figure 3: Our deep layer aggregation network architecture.

The columns indicate different resolution levels, and the

rows indicate aggregation stages.

Figure 4: Our feature extraction module (left) and feature

aggregation module (right). The modules are residual net-

works [11]. Dashed lines indicate a convolution is per-

formed to reshape the feature map.

duced using an assumed ground plane and a fixed height.

Instead of regressing the four corners directly, we predict

a relative center (dx, dy), a relative orientation (ωx, ωy) =
(cosω, sinω), and the dimensions (l, w) of the box. We

compute the box’s absolute center bc and absolute orienta-

tion φ as follows:

bc = [x, y]
T
+Rθ [dx, dy]

T

φ = θ + atan2 (ωy, ωx)
(1)

where (x, y) and θ is the 2D position and azimuth angle of

the LiDAR point, and Rθ is the rotation matrix parameter-

ized by θ. Subsequently, we can calculate the four corners

of the bounding box,

b1 = bc +
1

2
Rφ [l, w]

T

b3 = bc +
1

2
Rφ [−l,−w]

T

b2 = bc +
1

2
Rφ [l,−w]

T

b4 = bc +
1

2
Rφ [−l, w]

T

(2)

where Rφ is the rotation matrix parameterized by φ. For

convenience, we concatenate the four corners into a single

vector, b = [b1, b2, b3, b4].

To simplify the predict probability distribution, we as-

sume a uniform variance across both the x and y dimen-

sions, and we share the variance across all four corners of

the bounding box. As in [13], we train the network to pre-

dict the log of the standard deviation s = log σ.

Altogether, for each point in the image, our network

predicts a set of class probabilities {pc}
C

c=1, where C
is the number of object classes in addition to a back-

ground class. For each point and class of object,

the network predicts a set of bounding box parameters

{dx,k, dy,k, ωx,k, ωy,k, lk, wk}
K

k=1, a set of log standard de-

viations {sk}
K

k=1, and a set of mixture weights {αk}
K

k=1,

where K is the number of components in the mixture

model.

3.4. Mean Shift Clustering

Each point independently predicts the distribution of

bounding boxes; however, points on the same object should

predict a similar distribution. Naturally, the individual pre-

dictions will contain some amount of noise. We can reduce

this noise by combining the per-point predictions through

mean shift clustering. Since our predicted distribution is

class dependent and multimodal, we perform mean shift on

each object class and each component of the mixture model

separately. For efficiency, mean shift is performed over box

centers instead of box corners, which reduces the dimen-

sionality of the problem. Additionally, we propose a fast

approximation of the mean shift algorithm when operating

in two dimensions.

Our approximate algorithm begins by discretizing the

top-down view into bins of size ∆x by ∆y. For each bin

i, which contains one or more box centers, we create an ini-

tial mean mi by averaging over all the centers in that bin.

In addition, we record the set of points Si whose box cen-

ters fall inside the bin. We iteratively update the means as

follows:

mi ←

∑

j∈i∪N(i) Ki,j (mj · |Sj |)
∑

j∈i∪N(i) Ki,j |Sj |
(3)

where

Ki,j = exp

(

−
‖mi −mj‖

2

∆x2 +∆y2

)

(4)

and N(i) is the set of eight bins neighboring the ith bin.

After the update, if the ith mean now falls into the jth bin,

12680

we merge i into j,

mj ←
mi · |Si|+mj · |Sj |

|Si|+ |Sj |
Sj ← Si ∪ Sj (5)

and invalidate mi ← 0 and Si ← ∅.
Equation (3) can be computed efficiently by exploiting

the regular structure of the bins. By constructing a tensor of

bins and generating shifted versions of this tensor, we can

update all the means simultaneously using only element-

wise operators. This type of computation is well suited for

a graphics processing unit (GPU).

After performing a fixed number of mean shift iterations,

per-point box distributions that are assigned to the same

cluster are combined. Specifically, we model the cluster

bounding box distribution as the product of the per-point

distributions. The mean and variance of the cluster proba-

bility distribution is

b̂i =

∑

j∈Si
wjbj

∑

j∈Si
wj

σ̂2
i =

(

∑

j∈Si

1

σ2
j

)−1

(6)

where w = 1/σ2. Each point’s predicted bounding box and

variance is replaced by the bounding box and variance of its

cluster. For our experiments, we perform three iterations of

mean shift with ∆x = ∆y = 0.5 meters.

3.5. Endtoend Training

Mapping from box parameters to box corners, equations

(1) and (2), and merging the bounding boxes distributions,

equation (6), are differentiable; therefore, we are able to

train the network in an end-to-end fashion.

For each point in the image, we use the multi-class cross

entropy loss Lprob to learn the class probabilities {pc}
C

c=1.

To handle class imbalance, we employ focal loss [18],

which is a modified version of the cross entropy loss. The

classification loss for the entire image is defined as follows:

Lcls =
1

P

∑

i

Lprob,i (7)

where Lprob,i is the loss for the ith point in the image, and

P is the total number of points in the image.

For each point on an object, we learn the parameters of

the object’s mixture model by first identifying which com-

ponent best matches the ground truth,

k∗ = argmin
k
‖b̂k − b

gt‖ (8)

where b̂k is the kth mean component of the mixture model

and b
gt is the corresponding ground truth bounding box. Af-

terwards, we update the parameters of the k∗ component

following the approach proposed in [13],

Lbox =
∑

n

1

σ̂k∗

∣

∣

∣
b̂n,k∗ − bgt

n

∣

∣

∣
+ log σ̂k∗ (9)

where b̂n,k∗ is the nth element of b̂k∗ , and bgt
n is the cor-

responding ground truth value. As discussed in [13], this

loss imposes a Laplacian prior on the learned distribution.

Next, we update the mixture weights {αk}
K

k=1 again using

the multi-class cross entropy loss Lmix, where the positive

label corresponds to the k∗ component. The idea of only up-

dating the prediction that best matches the ground truth was

originally proposed in [10] as the hindsight loss for multiple

choice learning. The regression loss for the entire image is

defined as follows:

Lreg =
1

N

∑

i

Lbox,i + λLmix,i

ni

(10)

where Lbox,i and Lmix,i are the losses for the ith point in the

image which is on an object, ni is the total number of points

that lie on the same object as i, N is the total instances of

objects in the image, and λ is the relative weighting of the

two losses. We set λ = 0.25 for all our experiments. The

total loss for the image is Ltotal = Lcls + Lreg.

3.6. Adaptive NonMaximum Suppression

At inference, we identify the points that belong to an

object class by thresholding the predicted class probability

pc, and we use a threshold of 1/C in all our experiments.

As described previously, each point on an object predicts

a probability distribution over bounding boxes. For each

predicted distribution, we extract a set of bounding boxes

which correspond to the means of the mixture model.

Typically non-maximum suppression (NMS) is per-

formed to remove redundant bounding boxes. The standard

procedure is to identify boxes with an intersection-over-

union (IoU) greater than a fixed threshold and remove the

box with the lower class probability. This strategy is inap-

propriate for our method for two reasons. First, it does not

consider the predicted variance of the bounding boxes. Sec-

ond, the class probability in our case does not indicate the

quality of the bounding box. For example, it is relatively

easy to classify the front of a semi-truck as a vehicle, but it

is difficult to accurately predict its extents.

Alternatively, we propose an adaptive NMS algorithm,

which uses the predicted variance to determine an appro-

priate IoU threshold for a pair of boxes. In addition, we

utilize the likelihood of the box as its score. Since we use

the means of the mixture model, the likelihood of the box

corresponding to the kth component of the mixture model

reduces to αk/2σ̂k.

In the top-down view, bounding boxes should not over-

lap; however, due to the uncertainty in the predictions, some

amount of overlap is expected. For each pair of overlap-

ping bounding boxes from the same class, we calculate the

upper-bound on the IoU given their predicted variances. We

accomplish this by assuming the worst-case scenario, which

12681

Figure 5: An illustration of our adaptive NMS technique.

Consider a pair of vehicles positioned side-by-side. The

dashed outlines on the left depict a possible set of predic-

tions produced by our method. To determine whether the

bounding boxes encapsulate unique objects, we utilize the

predicted variances (shown in the center) to estimate the

worst-case overlap as shown on the right. In this example,

both bounding boxes would be preserved because the actual

overlap is less than the estimated worst-case overlap.

occurs when two objects of the same dimensions are side-

by-side, as shown in Figure 5. In this case, the maximum

tolerated IoU t should be,

t =

{

σ1+σ2

2w−σ1−σ2

σ1 + σ2 < w

1 otherwise
(11)

where w is the average width of the object’s bounding box.

For example, w ≈ 2 meters for vehicles.

If the IoU of a pair of boxes exceeds the maximum

threshold, then either one of the predicted boxes is incorrect

or one of the predicted variances is incorrect. Assuming the

bounding box is wrong, we can remove the box with the

lower likelihood. Otherwise, we can assume the variance is

inaccurate and increase the variance of the less likely box

such that t would equal the observed IoU. The former is re-

ferred to as Hard NMS while the latter is analogous to Soft

NMS [2]. The effect of this choice is examined in the abla-

tion study in Section 4.2.

4. Experiments

Our proposed approach is evaluated and compared

against state-of-the-art methods on two datasets: the large-

scale ATG4D object detection dataset, and the small-scale

KITTI object detection benchmark [8].

4.1. Evaluation on ATG4D

The ATG4D dataset contains 5,000 sequences for train-

ing and 500 for validation. The sequences from the train set

are sampled at 10 Hz, while the validation set are sampled

at 0.5 Hz. The entire dataset contains 1.2 million sweeps

for training, and 5,969 sweeps for validation. All sweeps

are captured using a Velodyne 64E LiDAR. We adopt the

same evaluation procedure as the KITTI benchmark and

only consider the detections within the front 90◦ field of

view of the sensor and up to 70 meters. As a result, our

range image contains only this front portion of the LiDAR

data and has dimensions of 512× 64.

The network is trained for 300k iterations using the

Adam optimizer [14] with a learning rate of 0.002 expo-

nential decayed at a rate of 0.99 every 150 iterations. We

use a batch size of 128 distributed over 32 GPUs. For ve-

hicles, we learn a multimodal distribution with three com-

ponents (K = 3), and for pedestrians and bikes, we learn a

unimodal distribution (K = 1).

Table 1 shows our results on the validation set compared

to other state-of-the-art methods. Like the KITTI bench-

mark, we compute the average precision (AP) at a 0.7 IoU

for vehicles and a 0.5 IoU for bikes and pedestrians. On this

dataset, our approach out-performs existing state-of-the-art

methods in the 0−70 meter range. Furthermore, our method

out-performs the LiDAR-only methods at all ranges, and it

is only surpassed by a LiDAR+RGB method on vehicles

and bikes at long range where the additional image data

provides the most value. We believe our approach performs

significantly better on pedestrians because our range view

representation does not discretize the input data into voxels.

4.2. Ablation Study on ATG4D

In this section, we examine the various aspects of our

proposed method, and their effects on vehicle detection per-

formance. We conduct the ablation study on the ATG4D

dataset, and the results are shown in Table 2. A detailed

description of the study is provided below.

Predicting a Probability Distribution

The largest improvement is a result of predicting a distribu-

tion of bounding boxes instead of merely the mean. When

only predicting the mean bounding box, equation (6) be-

comes a simple average, and equation (9) reduces to the

ℓ1 loss on the box corners. Furthermore, the score of the

bounding box is the class probability in this case. We be-

lieve the loss in performance is due to the probability not

being well correlated with the accuracy of the box.

Image Formation

Previous methods which utilize the range view [5, 16] uni-

formly discretize the elevation angle into rows. However,

the lasers in the Velodyne 64E LiDAR are not uniformly

spaced. A gain in performance can be obtained by mapping

points to rows using the laser id and processing the data di-

rectly as the sensor captured it.

Mean Shift Clustering

Without clustering, each point independently predicts a dis-

tribution of bounding boxes. These individual box predic-

tions naturally contain some amount of noise, and we can

12682

Table 1: BEV Object Detection Performance on ATG4D

Method Input
Vehicle AP0.7 Bike AP0.5 Pedestrian AP0.5

0-70m 0-30m 30-50m 50-70m 0-70m 0-30m 30-50m 50-70m 0-70m 0-30m 30-50m 50-70m

LaserNet (Ours) LiDAR 85.34 95.02 84.42 67.65 61.93 74.62 51.37 40.95 80.37 88.02 77.85 65.75

PIXOR [28] LiDAR 80.99 93.34 80.20 60.19 - - - - - - - -

PIXOR++ [27] LiDAR 82.63 93.80 82.34 63.42 - - - - - - - -

ContFuse [17] LiDAR 83.13 93.08 82.48 65.53 57.27 68.08 48.83 38.26 73.51 80.60 71.68 59.12

ContFuse [17] LiDAR+RGB 85.17 93.86 84.41 69.83 61.13 72.01 52.60 43.03 76.84 82.97 75.54 64.19

Table 2: Ablation Study on ATG4D

Predicted Distribution Image Spacing Mean Shift IoU Threshold NMS Type Vehicle AP0.7

Mean-only Laser Yes 0.1 Hard 77.05

Unimodal Uniform Yes 0.1 Hard 79.14

Unimodal Laser No 0.1 Hard 80.22

Unimodal Laser Yes 0.1 Hard 80.92

Multimodal Laser Yes 0.1 Hard 81.80

Multimodal Laser Yes N/A Soft 84.43

Multimodal Laser Yes Adaptive Hard 83.68

Multimodal Laser Yes Adaptive Soft 85.34

Table 3: Runtime Performance on KITTI

Method Forward Pass (ms) Total (ms)

LaserNet (Ours) 12 30

PIXOR [28] 35 62

PIXOR++ [27] 35 62

VoxelNet [30] 190 225

MV3D [30] - 360

AVOD [15] 80 100

F-PointNet [22] - 170

ContFuse [17] 60 -

reduce this noise by combining the independent predictions

through mean shift clustering.

Non-Maximum Suppression

When the LiDAR points are sparse, there are multiple con-

figurations of bounding boxes that could explain the ob-

served data. By predicting a multimodal distribution at each

point, we can further improve the recall of our method. It

is inappropriate to use NMS with a strict threshold when

producing a multimodal distribution because only the most

likely bounding box will persist. Alternatively, we could

use Soft NMS [2] to re-weight the confidence instead of

eliminating boxes, but this breaks our probabilistic interpre-

tation of the confidence. By leveraging our adaptive NMS

algorithm, we maintain our probabilistic interpretation and

obtain better performance.

4.3. Runtime Evaluation

Runtime performance is equally important for the pur-

pose of autonomous driving. Table 3 compares the run-

time performance between our approach (measured on a

NVIDIA 1080Ti GPU) and existing methods on KITTI. The

forward pass refers to the amount of time it takes to run the

network, and the total includes pre and post processing in

addition to the forward pass. Our proposed method is twice

as fast as the fastest state-of-the-art method. We are able

Table 4: BEV Object Detection Performance on KITTI

Method Input
Vehicle AP0.7

Easy Moderate Hard

LaserNet (Ours) LiDAR 78.25 73.77 66.47

PIXOR [28] LiDAR 81.70 77.05 72.95

PIXOR++ [27] LiDAR 89.38 83.70 77.97

VoxelNet [30] LiDAR 89.35 79.26 77.39

MV3D [5] LiDAR+RGB 86.02 76.90 68.49

AVOD [15] LiDAR+RGB 88.53 83.79 77.90

F-PointNet [22] LiDAR+RGB 88.70 84.00 75.33

ContFuse [17] LiDAR+RGB 88.81 85.83 77.33

to achieve a faster runtime because we operate on a small

dense range view image instead of a large and sparse bird’s

eye view representation.

4.4. Evaluation on KITTI

The KITTI object detection benchmark [8] contains

7,481 training sweeps and 7,518 testing sweeps captured

by a Velodyne 64E LiDAR. For the training set, object an-

notations are provided within the front 90◦ field of view of

the LiDAR up to approximately 70 meters.

To train our network, we use 5,985 sweeps from the

training set, and we holdout the remaining sweeps for val-

idation. We train the network for 50k iterations with the

same learning schedule as before, and we use a batch size

of 12 on a single GPU. To help avoid overfitting on this

small training set, we use data augmentation. We randomly

flip the range image, and we apply random pixel shifts in

the horizontal dimension.

Learning a probability distribution, especially a multi-

modal distribution, over bounding boxes proved to be dif-

ficult on such a small dataset. Therefore, we trained the

network to only detect vehicles and to predict a unimodal

probability distribution over bounding boxes.

The KITTI evaluation server computes the AP at a 0.7
IoU across three difficulty levels: easy, moderate, and hard.

12683

(a) Calibration on KITTI (b) Calibration on ATG4D

Figure 6: Plots showing the calibration of the predicted distribution over bounding boxes on the train and validation sets. A

perfectly calibrated distribution corresponds to a line with unit slope (dashed line in the plots). We observe that the model is

unable to learn the probability distribution on KITTI, whereas it is capable of learning the distribution on the larger ATG4D.

As shown in Table 4, our approach performs worse than cur-

rent state-of-the-art bird’s eye view detectors on this small

dataset. The following section explores this discrepancy in

performance between the results on the large dataset shown

in Table 1 and the results on the small KITTI dataset.

4.5. Analysis of the Predicted Distribution

On the small dataset, our approach under-performs com-

pared to state-of-the-art methods. While on a significantly

larger dataset, our method out-performs the previous work.

The ablation study in Section 4.2 emphasizes the impor-

tance of estimating a probability distribution to our ap-

proach. If the network is unable to accurately learn this

distribution, our method will perform sub-optimally.

To evaluate the quality of the predicted distributions of a

learned model, we compute the probability of each ground

truth label given our predicted probability distribution, and

we plot the expected CDF versus the observed CDF as

shown in Figure 6. We perform this evaluation on both

the KITTI and the ATG4D datasets. On both datasets, the

model is trained to predict a unimodal probability distribu-

tion. With the small scale KITTI dataset, our model is un-

able to correctly estimate the probability distribution. How-

ever, the model is capable of precisely learning the distribu-

tion on the large scale ATG4D dataset. We hypothesize that

learning the distribution requires the network to see many

more examples than are available in the KITTI training set,

and this helps explain the difference in model performance

across these two datasets.

5. Discussion

In recent years, the research community has generally

favored detectors that operate in the bird’s eye view or di-

rectly on the 3D point cloud. There are many advantages

to these approaches. Operating directly in the output space

allows a detector to have a consistent prior over the object’s

shape, which can make the learning problem easier. This is

especially important when training on smaller datasets.

However, we think it is a mistake to overlook the range

view representation. Deep learning approaches have con-

sistently shown success across many domains when applied

to the raw input data without hand-engineered feature ex-

traction, projections, or other manipulations given there is

enough training data. The range view is the native represen-

tation of the LiDAR data; as a result, it is naturally compact.

This compact representation leads to significant gains in ef-

ficiency. Moreover, it inherently conveys important contex-

tual information in terms of how the data was captured, and

this context can be lost when the range data is projected into

a point cloud. At the same time, the range view poses sig-

nificant challenges to learning due to the varying scale and

shape of objects as well as the need to handle occlusions.

With a large training set, we have shown that it is possi-

ble to overcome these challenges and produce competitive

results while being more computationally efficient.

On a smaller dataset, our approach does not achieve the

same performance as the state-of-the-art bird’s eye view de-

tectors. Key elements of our approach include operating in

the native view of the sensor and predicting a probability

distribution over bounding boxes. Both of these make the

learning problem more difficult and require more training

data to perform well.

Finally, although we have focused on one specific rep-

resentation in this paper, we believe that other detection

approaches would also benefit from predicting probability

distributions over bounding boxes.

12684

References

[1] Jorge Beltrán, Carlos Guindel, Francisco Miguel Moreno,

Daniel Cruzado, Fernando Garcı́a, and Arturo De La Es-

calera. Birdnet: A 3D object detection framework from Li-

DAR information. In Proceedings of the International Con-

ference on Intelligent Transportation Systems (ITSC), 2018.

[2] Navaneeth Bodla, Bharat Singh, Rama Chellappa, and

Larry S Davis. Soft-NMS – Improving object detection with

one line of code. In Proceedings of the IEEE International

Conference on Computer Vision (ICCV), 2017.

[3] Xiaozhi Chen, Kaustav Kundu, Ziyu Zhang, Huimin Ma,

Sanja Fidler, and Raquel Urtasun. Monocular 3D object

detection for autonomous driving. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR), 2016.

[4] Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Andrew G

Berneshawi, Huimin Ma, Sanja Fidler, and Raquel Urtasun.

3D object proposals for accurate object class detection. In

Proceedings of Advances in Neural Information Processing

Systems (NIPS), 2015.

[5] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia.

Multi-view 3D object detection network for autonomous

driving. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition (CVPR), 2017.

[6] Di Feng, Lars Rosenbaum, and Klaus Dietmayer. Towards

safe autonomous driving: Capture uncertainty in the deep

neural network for lidar 3D vehicle detection. In Proceedings

of the International Conference on Intelligent Transportation

Systems (ITSC), 2018.

[7] Di Feng, Lars Rosenbaum, Fabian Timm, and Klaus Diet-

mayer. Leveraging heteroscedastic aleatoric uncertainties for

robust real-time LiDAR 3D object detection. arXiv preprint

arXiv:1809.05590, 2018.

[8] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for autonomous driving? the KITTI vision benchmark

suite. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), 2012.

[9] Alejandro González, Gabriel Villalonga, Jiaolong Xu, David

Vázquez, Jaume Amores, and Antonio M López. Multiview

random forest of local experts combining RGB and LIDAR

data for pedestrian detection. In Proceedings of the IEEE

Intelligent Vehicles Symposium (IV), 2015.

[10] Abner Guzman-Rivera, Dhruv Batra, and Pushmeet Kohli.

Multiple choice learning: Learning to produce multiple

structured outputs. In Proceedings of Advances in Neural

Information Processing Systems (NIPS), 2012.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2016.

[12] Borui Jiang, Ruixuan Luo, Jiayuan Mao, Tete Xiao, and Yun-

ing Jiang. Acquisition of localization confidence for accurate

object detection. In Proceedings of the European Conference

on Computer Vision (ECCV), 2018.

[13] Alex Kendall and Yarin Gal. What uncertainties do we need

in bayesian deep learning for computer vision? In Proceed-

ings of Advances in Neural Information Processing Systems

(NIPS), 2017.

[14] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014.

[15] Jason Ku, Melissa Mozifian, Jungwook Lee, Ali Harakeh,

and Steven L Waslander. Joint 3D proposal generation and

object detection from view aggregation. In Proceedings of

the IEEE/RSJ International Conference on Intelligent Robots

and Systems (IROS), 2018.

[16] Bo Li, Tianlei Zhang, and Tian Xia. Vehicle detection from

3D lidar using fully convolutional network. In Proceedings

of Robotics: Science and Systems (RSS), 2016.

[17] Ming Liang, Bin Yang, Shenlong Wang, and Raquel Urtasun.

Deep continuous fusion for multi-sensor 3D object detection.

In Proceedings of the European Conference on Computer Vi-

sion (ECCV), 2018.

[18] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and

Piotr Dollár. Focal loss for dense object detection. In Pro-

ceedings of the IEEE International Conference on Computer

Vision (ICCV), 2017.

[19] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C

Berg. SSD: Single shot multibox detector. In Proceedings

of the European Conference on Computer Vision (ECCV),

2016.

[20] Arsalan Mousavian, Dragomir Anguelov, John Flynn, and

Jana Kosecka. 3D bounding box estimation using deep learn-

ing and geometry. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2017.

[21] Cristiano Premebida, João Carreira, Jorge Batista, and Ur-

bano Nunes. Pedestrian detection combining RGB and dense

LIDAR data. In Proceedings of the IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2014.

[22] Charles R Qi, Wei Liu, Chenxia Wu, Hao Su, and Leonidas J

Guibas. Frustum pointnets for 3D object detection from

RGB-D data. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), 2018.

[23] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3D classification

and segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), 2017.

[24] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster R-CNN: Towards real-time object detection with re-

gion proposal networks. In Proceedings of Advances in Neu-

ral Information Processing Systems (NIPS), 2015.

[25] Bin Xu and Zhenzhong Chen. Multi-level fusion based 3D

object detection from monocular images. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018.

[26] Danfei Xu, Dragomir Anguelov, and Ashesh Jain. Pointfu-

sion: Deep sensor fusion for 3D bounding box estimation.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2018.

[27] Bin Yang, Ming Liang, and Raquel Urtasun. HDNET: Ex-

ploiting HD maps for 3d object detection. In Proceedings of

the Conference on Robot Learning (CoRL), 2018.

12685

[28] Bin Yang, Wenjie Luo, and Raquel Urtasun. PIXOR: Real-

time 3D object detection from point clouds. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018.

[29] Fisher Yu, Dequan Wang, Evan Shelhamer, and Trevor Dar-

rell. Deep layer aggregation. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2018.

[30] Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning

for point cloud based 3D object detection. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2018.

12686

